MS14-P22 | SYNTHESIS AND CRYSTAL STRUCTURE OF NEW ALKALI CHALCOGENIDO MANGANATES/INDATES

Langenmaier, Michael (Albert-Ludwigs-Universität Freiburg, Freiburg, GER)

In the system A-Fe-Q mixed-valent alkali chalcogenido ferrates are well known [1-3]. Recently we mimiced an equivalent mixed-valent state for Mn, by a partially replacement of Mn(II) by In(III) [4]. Now we present newly obtained metalates Na₁₂MnIn₂ Q_{10} (Q=S, Se) (1,2) as well as so far unknow indates K₆In₂S₆ (3) and K₆InS_{4.5} (4). In all these compounds there are [MQ_4] tetrahedra, either isolated or connected via edges.

The compounds were obtained by heating stoichiometric mixtures of the elements or binary phases at T_{max} =1200K. All structures were determined by means of X-ray single crystal diffraction.

The compounds 1 & 2 crystallize in the space group $P2_1/m$ and contain isolated $[lnQ_4]^{5^-}$ tetrahedra as well as $[M_2Q_6]^{7^-}$ dimers with M=Mn and In.

 $K_6In_2S_6$ crystallizes in $P2_1/c$. Though not isotypic, it shows similarities to $K_6Fe_2S_6$ [5] with its $[In_2S_6]^{6-}$ dimers of edge-sharing tetrahedra.

 $K_6InS_{4.5}$ crystallizes in $P6_3mc$ and is almost isotypic to K_6MnS_4 [6]. The only difference is an additional S position, which is only partially occupied.

- [1] P. Stüble, S. Peschke, D. Johrendt, C. Röhr, J. Solid State Chem., 258, 416, (2018).
- [2] P. Stüble, A. Berroth, C. Röhr, Z. Naturforsch. B, 71, 485, (2016).
- [3] K. O. Klepp, H. Boller, Monatsh. Chem., 112, 83, (1981).
- [4] M. Langenmaier, J. Brantl, C. Röhr, Z. Kristallogr. Suppl., 39, 68 (2019).
- [5] M. Schwarz, M. Haas, C Röhr, Z. anorg. allg. Chem., 639, 360 (2013).
- [6] W. Bronger, H. Balk-Hardtdegen, Z. Anorg. Allg. Chem., 574, 89 (1989).