Three new Ba-bearing beryllophosphates were recently described. Minjiangite, BaBe$_2$P$_2$O$_8$, occurs in the Nanping No. 31 pegmatite, China (space group $P6_3/mmm$, $a = 5.028(1)$, $b = 7.466(1)$ Å). It shows a phyllophosphate structure consisting of double layers of tetrahedra, which contain both Be and P in a 1:1 ratio. Inside the layers, (Be,P)O$_4$ tetrahedra form six-membered rings by sharing corners. The Ba atoms are located in regular 12-coordinated polyhedra and connect two successive double layers. Wilancookite, (Ba,K,Na)$_8$(Ba,Li,[])$_6$Be$_2$P$_4$O$_{36}$·32H$_2$O, occurs in the Lavra Ponte do Piauí pegmatite, Minas Gerais, Brazil. Its crystal structure ($I2_3$, $a = 13.5398(2)$ Å) is identical to those of pahasapaite and of synthetic zeolite RHO; the framework is based on corner-sharing BeO$_4$ and PO$_4$ tetrahedra forming a large cavity in which occur Ba atoms and water molecules. Three different types of rings are building the cavity: eight-, six-, and four-membered rings. A third new species was discovered in the Vilatte-Haute pegmatite, Limousin, France, with the ideal formula BaCa[Be$_4$P$_4$O$_{16}$]·6H$_2$O. This beryllophosphate (space group $P2_1/c$, $a = 9.4958(4)$, $b = 13.6758(4)$, $c = 13.4696(4)$ Å, $\beta = 90.398(3)^\circ$) shows a zeolite framework identical to that of phillipsite, based on corner-sharing BeO$_4$ and PO$_4$ tetrahedra forming inter-connected 4-membered and 8-membered rings. Large cages within this zeolite framework contain Ba, Ca and water molecules.