The LaCo$_{0.9}$Mn$_{0.1}$O$_3$ perovskite series has been widely studied as responses to chemical composition or volume give rise to a variety of electrical and magnetic properties [1]. Volume changes can be induced by the application of pressure, which can be used to study structural-property relationships. High-pressure neutron-diffraction experiments have been performed on LaCo$_{0.9}$Mn$_{0.1}$O$_3$ and LaCoO$_3$ powders. Neutron powder diffraction is essential to determine the structure of perovskite-like oxides. The high-pressure structural evolution of LaCo$_{0.9}$Mn$_{0.1}$O$_3$ will be presented [2]. The change in tilting angle and strain has been determined upon pressure. This study compliments high-pressure magnetisation measurements, where the Curie temperature shows a strong dependence on applied pressure. A structural study of LaCoO$_3$ as a function of pressure and temperature using neutron diffraction will also be presented [3]. This study is of great interest for its unique temperature-dependent electronic properties. The aforementioned experiments have been carried out on the PEARL instrument, the high-pressure-dedicated diffractometer at ISIS, STFC [4]. We are developing new pressure cells for neutron diffraction to extend the maximum achievable pressure at ISIS.