MS15-P133 - LATE | Thermal Expansion of Alkaline-Earth Borates

Bubnova, Rimma (Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, Saint Petersburg, RUS); Yukhno, Valentina (Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg, RUS); Krzhizhanovskaya, Maria (Dept. of Crystallography, Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, RUS); Filatov, Stanislav (Dept. of Crystallography, Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, RUS)

Here we present the results of investigation of thermal expansion of Ca-borates $\left(\mathrm{Ca}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}, \mathrm{Ca}_{2} \mathrm{~B}_{2} \mathrm{O}_{5} \mathrm{CaB}_{2} \mathrm{O}_{4}, \mathrm{CaB}_{4} \mathrm{O}_{7}\right)$ in comparison to that of Mg -, Sr - and Ba-borates [1-4]. Tendency of decrease in the volume expansion as well as high decrease of the melting points is observed with an increase in the $\mathrm{B}_{2} \mathrm{O}_{3}$ content in the $\mathrm{MO}-\mathrm{B}_{2} \mathrm{O}_{3}$ systems $(\mathrm{M}=$ $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$) as a result of the degree of polymerization increase. Average value of volume expansion increases gradually from 34 (Ca) to 42 (Ba) $\times 10^{-6} \mathrm{~K}^{-1}$ due to increase of the M^{2+} size. In the $\mathrm{M}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}(\mathrm{M}=\mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr})$ stoichiometry, $\mathrm{Mg}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}$ borate expands the weakest $\left(\alpha_{V}=30 \times 10^{-6} \mathrm{~K}^{-1}\right.$).

High anisotropy of the expansion is observed for $\mathrm{M}_{3} \mathrm{~B}_{2} \mathrm{O}_{6}, \mathrm{M}_{2} \mathrm{~B}_{2} \mathrm{O}_{5}$ (OD) and $\mathrm{MB}_{2} \mathrm{O}_{4}$ (1D) based on the BO_{3} triangles only ($\mathrm{M}=\mathrm{Ca}$ and Sr): the structure highly expands perpendicular to the BO_{3} planes, i . e. along the direction of the weaker bonds in the crystal structure. $\mathrm{M}_{2} \mathrm{~B}_{2} \mathrm{O}_{5}$ monoclinic polymorphs expand maximally anisotropically due to shear deformations of monoclinic plane.

High-temperature powder X-ray diffraction experiments were performed in Saint-Petersburg State University Research Centre for XRD Studies. The study was supported by the Russian Foundation for Basic Research (No. 18-03-00679).
[1] Filatov S.K. et al. Struct. Chem. (2016) 27, 1663.
[2] Bubnova R. et al. Crystals (2017) 7, 93.
[3] Volkov S. et al. Acta Cryst. (2017) B73, 1056.
[4] Firsova V.A. et al. Glass Phys. Chem. (2019) 45, 305.

