MS15-P133 - LATE | THERMAL EXPANSION OF ALKALINE-EARTH BORATES

Bubnova, Rimma (Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, Saint Petersburg, RUS); Yukhno, Valentina (Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg, RUS); Krzhizhanovskaya, Maria (Dept. of Crystallography, Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, RUS); Filatov, Stanislav (Dept. of Crystallography, Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, RUS)

Here we present the results of investigation of thermal expansion of Ca-borates ($Ca_3B_2O_6$, $Ca_2B_2O_5$ CaB_2O_4 , CaB_4O_7) in comparison to that of Mg-, Sr- and Ba-borates [1–4]. Tendency of decrease in the volume expansion as well as high decrease of the melting points is observed with an increase in the B_2O_3 content in the MO– B_2O_3 systems (M = Ca, Sr, Ba) as a result of the degree of polymerization increase. Average value of volume expansion increases gradually from 34 (Ca) to 42 (Ba) $\times 10^{-6}$ K⁻¹ due to increase of the M²⁺ size. In the $M_3B_2O_6$ (M = Mg, Ca, Sr) stoichiometry, $Mg_3B_2O_6$ borate expands the weakest ($\alpha_V = 30 \times 10^{-6}$ K⁻¹).

High anisotropy of the expansion is observed for $M_3B_2O_6$, $M_2B_2O_5$ (0D) and MB_2O_4 (1D) based on the BO₃ triangles only (M = Ca and Sr): the structure highly expands perpendicular to the BO₃ planes, i. e. along the direction of the weaker bonds in the crystal structure. $M_2B_2O_5$ monoclinic polymorphs expand maximally anisotropically due to shear deformations of monoclinic plane.

High-temperature powder X-ray diffraction experiments were performed in Saint-Petersburg State University Research Centre for XRD Studies. The study was supported by the Russian Foundation for Basic Research (No. 18-03-00679).

- [1] Filatov S.K. et al. Struct. Chem. (2016) 27, 1663.
- [2] Bubnova R. et al. Crystals (2017) 7, 93.
- [3] Volkov S. et al. Acta Cryst. (2017) B73, 1056.
- [4] Firsova V.A. et al. Glass Phys. Chem. (2019) 45, 305.