Titanium dioxide (TiO$_2$), finds a wide range of applications in environmental remediation such as air/surfaces sanitization, wastewater treatment, due to its photocatalytic properties. However, one of the main shortcomings of TiO$_2$ is its wide band gap which restrains its use to UV light. Therefore, the development of TiO$_2$ materials with enhanced visible light activity is important for using solar energy as the light source during the photocatalytic process. This is often the result of electronic structure engineering of materials through doping. An effective way is to dope TiO$_2$ with non-metal elements such as carbon (C), sulphur (S), nitrogen (N), fluorine (F), etc., especially the incorporation of multiple dopants (codoping) which was found to be an efficient strategy for improving TiO$_2$ visible light activity [1].

On the other hand, it is known that Moringa oleifera seeds contain some chemical compounds rich in carbon, nitrogen and sulphur [2]. Usually, after oil extraction, the seed residues become a waste. In this study, several compounds have been isolated from Moringa oleifera residues. Those, which contain carbon, nitrogen and sulphur have been used for TiO$_2$ codoping. Several techniques, especially X-ray diffraction, were used to characterise the obtained S, N, C-TiO$_2$ photocatalysts. The results showed that Moringa oleifera waste could be valorised as dopant to develop a simple and efficient method for the preparation of novel TiO$_2$ based photocatalysts.