MS23-P09 | Incommensurately modulated structures in the series RETE2-

Poddig, Hagen (Technische Universität Dresden, Dresden, GER); Doert, Thomas (Technische Universität Dresden, Dresden, GER)
Rare earth metal polychalcogenides $R E X_{2-\delta}(X=\mathrm{S}, \mathrm{Se}, \mathrm{Te} ; 0 \leq \delta \leq 0.2$) comprise puckered [REX] double layers and planar [X] layers, the latter being subject to modulations due to electronic reasons and chalcogen defects [1].

The main reflections of all $R E T e_{2-\delta}$ crystals correspond to an average ZrSSi type (space group $P 4 / \mathrm{nmm}$) with unit cell with cell dimensions of $a \approx 440$ to 450 pm and $c \approx 910$ to 920 pm . Satellite positions, however, vary with δ. The structures of $R E T_{1.9}$ ($R E=\mathrm{La}, \mathrm{Pr}, \mathrm{Nd}$) compounds can be described in the tetragonal superspace group $P 4 / n(\alpha 61 / 2) 00(-6 \alpha 1 / 2) 00$ with modulation vectors $q_{1} \approx(0.26,0.32,1 / 2)$ and $q_{2} \approx(-0.32,0.26,1 / 2)$, whereas LaTe 1.8 is orthorhombic, superspace group $\operatorname{Pmmn}(\alpha 61 / 2) 000(-\alpha 61 / 2) 000$ as its modulation vectors $q_{1}=(0.275,0.31,1 / 2)$ and $q_{2}=(-0.275,0.31,1 / 2)$ are incompatible with fourfold rotational symmetry.

The Te layers of the $R E T e_{1.9}$ compounds show a displacive and occupational modulation, forming an array of vacancies, $\mathrm{Te}_{2}{ }^{2-}$ anions and linaer $\mathrm{Te}_{3}{ }^{4-}$ anions. For $\mathrm{LaTe}_{1.8}$, the modulation in the Te layers is more pronounced with a variety of different Te anions.
[1] T. Doert, C. J. Müller: Binary Polysulfides and Polyselenides of Trivalent Rare-Earth Metals, in: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, 2016.

