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Constructing a quantum description of crystals from scattering experiments is of

great significance to explain their macroscopic properties and to evaluate the

pertinence of theoretical ab initio models. While reconstruction methods of the

one-electron reduced density matrix have already been proposed, they are

usually tied to strong assumptions that limit and may introduce bias in the

model. The goal of this paper is to infer a one-electron reduced density matrix

(1-RDM) with minimal assumptions. It has been found that the mathematical

framework of semidefinite programming can achieve this goal. Additionally, it

conveniently addresses the nontrivial constraints on the 1-RDM which were

major hindrances for the existing models. The framework established in this

work can be used as a reference to interpret experimental results. This method

has been applied to the crystal of dry ice and provides very satisfactory results

when compared with periodic ab initio calculations.

1. Introduction

The computation of one-electron expectation values such as

the mean position, the mean momentum or the mean kinetic

energy of electrons in a crystal does not require more than

the mere knowledge of the one-electron reduced density

matrix (1-RDM) (Löwdin, 1955; Coleman, 1963; McWeeny,

1960; Davidson, 1976). This quantity provides a quantum

description of an average electron and has been proved to

be sufficient (Lathiotakis & Marques, 2008; Gilbert, 1975).

Furthermore, the electron density in position and momentum

spaces can easily be derived from such a quantity. It is

therefore a useful tool for describing electronic properties at a

quantum level. Additionally, use of the 1-RDM is well suited

to represent mixed states systems using statistical ensembles

of pure states. This is generally the case for crystals at nonzero

temperature.

Several models have been proposed to approximate and

refine a 1-RDM from experimental expectation values

(Deutsch et al., 2012, 2014; Hansen & Coppens, 1978; Gillet et

al., 1999, 2001; Gillet, 2007; Gillet & Becker, 2004; Gueddida et

al., 2018; Pillet et al., 2001; Schmider et al., 1992; Clinton &

Massa, 1972; Tsirelson & Ozerov, 1996). The complementarity

between position and momentum space expectation values in

the description of the 1-RDM is now well accepted (Cooper et

al., 2004; Pisani, 2012). For this reason, deep inelastic X-ray

scattering data known as ‘directional Compton scattering

profiles’ (DCPs) have been taken into account in addition to

X-ray or polarized neutron diffraction structure factors (SFs)

to refine a variety of models. The former are related to 2D

projections of electron density in momentum space, while the
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latter are linked to the Fourier coefficients of the electron

density in position space. However, almost all of these models

require an initial guess or assumption on the electronic

configuration. When these are inappropriate or too simple,

there is a risk that the model, hence the results, will be affected

by a severe bias. Notable exceptions of model-free approaches

are the maximum entropy (MEM) and charge flipping

methods (Oszlányi & Süto��, 2004; Dobrzynski & Zukowski,

1999; Binkley et al., 1980). The purpose of this work is to

investigate and assess a new method to obtain a 1-RDM from

expectation values with minimal bias.

In order to serve as a reference, an initial periodic ab initio

calculation [at the density functional theory (DFT) level] has

been conducted from which the reference 1-RDM was

extracted. From the same calculation, a limited number of

structure factors and directional Compton profiles were

generated. Once a random noise was added, these deterio-

rated data constituted our pseudo-experimental data.

The method explicitly takes into account the so-called

N-representability conditions (Coleman, 1963), which ensure

that the inferred 1-RDM is quantum mechanically acceptable,

i.e. that there exists a many-electron wavefunction from which

the 1-RDM can be derived. Addressing these nontrivial

conditions is made possible by the use of semidefinite

programming (Vandenberghe & Boyd, 1996), a recent subfield

of convex optimization (Boyd & Vandenberghe, 2004) which is

of growing interest in systems and control theory, geometry

and statistics (Wolkowicz et al., 2012).

2. Method

2.1. Molecular spin-traced 1-RDM

In the following section, for simplicity, we will restrict our

treatment to a crystal with a single molecule per cell that has N

paired electrons. The method can be generalized to several

molecules by either assigning a 1-RDM to each molecule

provided that they can be considered electronically isolated

from each other (as in Section 3), or defining one 1-RDM for a

group of interacting molecules. Additionally, spin orbitals can

be employed to construct two spin-resolved 1-RDMs when the

system bears unpaired electrons.

Let f�igi2f1;...;ng be a set of atomic orbitals describing the

electrons of each atom taken as an independent system. From

f�igi2f1;...;ng, one can deduce an orthogonal basis set f�igi2f1;...;ng
for the molecule, using the Löwdin orthogonalization proce-

dure (Löwdin, 1950) for example. Expanding the spin-traced

1-RDM b��ðr; r0Þ in such a basis, one reveals its basis-set

representation: the population matrix bPP, so that

b��ðr; r0Þ ¼
Pn
i;j

bPPij�
�
i ðrÞ�jðr

0Þ: ð1Þ

Although it is not necessary to use an orthogonal basis, it is

done here because the N-representability conditions are

conveniently expressed in such a basis. In general, these

conditions are expressed on the eigenvalues of the spin-traced

1-RDM. In this case, they are translated into conditions on the

eigenvalues of bPP and state that they must lie in [0, 2] (as N is

even) and their sum must be equal to N.

2.2. Expectation values

Any one-electron expectation value hbOOi can be calculated

from its operator bOOr0 applied to the 1-RDM b��ðr; r0Þ:

hbOOi ¼ R bOOr0
b��ðr; r0Þ

h i
r0¼r

dr ð2Þ

where bOOr0 means that the operator only acts on variable r0. By

defining the basis-set representation of bOO as

bOOij ¼
R
��i ðrÞ bOOr0�jðr

0Þ

h i
r0¼r

dr ð3Þ

one can conveniently write the expectation value as hbOOi =

tr ðbPPbOOÞ [using equation (1)], where tr is the matrix trace

operator.

In particular, in position space, the X-ray structure factors

FðqÞ, which are given by

FðqÞ ¼
R b��ðr; rÞ expðiq � rÞ dr ð4Þ

¼
Pn
i;j

bPPij

R
��i ðrÞ�jðrÞ expðiq � rÞ dr; ð5Þ

have an operator whose basis-set representation is

bFFijðqÞ ¼
R
��i ðrÞ�jðrÞ expðiq � rÞ dr: ð6Þ

In momentum space, the directional Compton profiles JuðqÞ

can be defined through the autocorrelation function BðrÞ

(Pattison & Weyrich, 1979; Weyrich et al., 1979; Benesch et al.,

1971) as

Ju
ðqÞ ¼

Z
1

2�
BðtuÞ expð�itqÞ dt ð7Þ

BðrÞ ¼
R b��ðr0; rþ r0Þ dr0: ð8Þ

Their operator basis-set representation is therefore

bJJ u

ij ðqÞ ¼

Z Z
1

2�
��i ðr

0
Þ�jðtuþ r0Þ expð�itqÞ dt dr0: ð9Þ

From equations (4) and (7)–(8), one can appreciate the

complementarity of both expectation values as they, respec-

tively, shed light upon the diagonal and the off-diagonal

directions of the 1-RDM

2.3. Constrained least-squares fitting scheme

In the Bayesian sense, the objective is to infer the most

probable population matrixbPP so that it fits given independent

expectation values hbOO�i. In the following, the expectation

values hbOO�i are SFs and DCPs data. Supposing the latter

follow Gaussian error distributions with standard deviations

�� and no a priori knowledge is given on bPP, the problem is

equivalent to minimizing the so-called �2 function with respect

to the elements of bPP (Gillet & Becker, 2004; Sivia & Skilling,

2006). It can be summarized in the following optimization

program:
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minimizebPP P
�

1
�2
�
hbOO�i � trðbPPbOO�Þ

��� ���2
subject to trðbPPÞ ¼ N;

bPP � 0;

2I �bPP � 0

ð10Þ

where I is the identity matrix and the notation A � 0 means

that A is a symmetric positive semidefinite matrix, i.e. its

eigenvalues are non-negative. The last two constraints are

mathematically equivalent to the condition that the eigen-

values of bPP must lie in [0, 2].

The following passage will cast program (10) as a semi-

definite optimization program. These steps are quite standard

in the field of convex optimization (Boyd & Vandenberghe,

2004). Introducing a new variable t, program (10) is equivalent

to

minimizebPP;t t

subject to trðbPPÞ ¼ N;

bPP � 0;

2I �bPP � 0;

t � jjD�Ojj2 � 0

ð11Þ

where D�O is a column vector whose elements are [hbOO�i

�tr ðbPPbOO�Þ]/�� and jj � jj is the Euclidean norm.

Using Schur’s complement (Zhang, 2006), the last

constraint of program (11) can be written as a linear matrix

inequality:

I D�O

ðD�OÞT t

� �
� 0 ð12Þ

where I is the identity matrix of appropriate dimensions. This

inequality is indeed linear with respect tobPP as D�O is a linear

function of bPP.

This type of program, where the objective function is linear

and the constraints are linear combinations of symmetric

matrices that must be positive semidefinite, has been exten-

sively studied and is referred to as the class of semidefinite

programming (Vandenberghe & Boyd, 1996). Interior-point

algorithms can be used to solve this class of problems and no

initial guess is required. Treatment of the two-electron

reduced density matrix (2-RDM) by semidefinite program-

ming has already been reported in the context of variational

computation of molecules (Mazziotti, 2007).

In the present work, this program has been addressed by

using the optimization software Mosek (ApS, 2017) interfaced

by the Yalmip toolbox (Löfberg, 2004) under Matlab.

3. Application to dry ice

Dry ice CO2 is a molecular crystal with four molecules per

cubic unit cell (Fig. 1).

3.1. Expectation values generation

For the following example, structure factors and directional

Compton profiles have been generated using the Crystal14

periodic ab initio software (Dovesi, Orlando et al., 2014;

Dovesi, Saunders et al., 2014). DFT and the B3LYP of the

hybrid exchange and correlation functional have been chosen

as a theoretical framework. Large polarized and diffuse

atomic basis sets (triple-zeta valence with polarization quality)

(Peintinger et al., 2013; Civalleri et al., 2012) for both types of

atoms have been used.

In the following, 1800 structure factors [(h, k, l)cubic cell 2 Z3

| 0 � h � 7, �7 � k � 7, �7 � l � 7, sinð�maxÞ=� 	 1.08 Å�1]

and three directional Compton profiles [u = (h, k, l)cubic cell 2

{(0, 0, 1), (1, 1, 0), (1, 1, 1)}], with a resolution of 0.15 a.u. (a.u.

= atomic unit) and limited to 6 a.u., were computed.

To prove the robustness of the method, Gaussian errors

have been added to the data. For each structure factor, the

standard deviation is 3% of its modulus and for each direc-

tional Compton profile JuðqÞ, it is set to be ½JuðqÞ=�u

1=2 where

�u is such that ½Juð0Þ=�u

1=2
¼ 0:03� Juð0Þ. Such distorted

DCPs and SFs are illustrated, respectively, in Fig. 2 and in
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Figure 1
Unit cell of dry ice: space group Pa�33, a = 5.63 Å, C—O bond length 1.05 Å
(De Smedt & Keesom, 1924).

Figure 2
Directional Compton profile JuðqÞ (in red) and tr½bPPbJJ uðqÞ
 (in blue) for
dry ice in the crystallographic direction u ¼ ð1; 1; 1Þ in the conventional
cell. The spectrum is in atomic units and the profile is normalized to one
electron.



Fig. 3 by means of a Fourier density map. In the following, the

resulting distorted DCPs and SFs will be qualified as ‘pseudo-

experimental’ data.

3.2. Independent molecule model

As the four CO2 molecules in the unit cell are identical and

sufficiently distant from each other, each molecule can be

described by the same molecular spin-traced 1-RDM in a

different orientation set of local axes. Consequently, the total

structure factors FtotðqÞ and directional Compton profiles

Ju
totðqÞ can be computed from the molecular structure factors

and directional Compton profiles FðqÞ and JuðqÞ by

FtotðqÞ ¼ FðqÞ þ
P4

m¼2

exp½�iðb��mqÞ � rm
Fðb��mqÞ ð13Þ

Ju
totðqÞ ¼ JuðqÞ þ

P4

m¼2

Jð
b��muÞðqÞ ð14Þ

where rm and b��m are, respectively, the translation vector and

the inverse of the rotation matrix, bringing the first molecule

to molecule m ðm 2 2; 3; 4Þ.

To assess the robustness of the method, the basis set

f�igi2f1;...;ng used to represent the spin-traced 1-RDM has been

chosen to have fewer degrees of freedom and diffuseness than

the one used to generate the expectation values [3-21G(d)]

(Binkley et al., 1980; Schuchardt et al., 2007; Feller, 1996).

3.3. Results analysis

Program (11) has been successfully solved for the case of

dry ice. The DCPs and SFs computed with the optimized

population matrix are near identical to their reference. In

Fig. 2, one DCP derived from the 1-RDM model is

plotted together with its pseudo-experimental reference for

comparison (the Compton profiles anisotropies are not

compared as they are negligible compared with the added

random noise). The same comparison is made for the SFs in a

Fourier density map in Fig. 3.

The inferred and the periodic ab initio spin-traced 1-RDM

are in close agreement along the O—C—O bond (Fig. 4).

Although slight differences are observed in the off-diagonal

regions, corresponding to the subtle interactions between both

bonds, the general features have been accurately reproduced.

In a plane comprising the atoms of the molecule, the overall

expected picture of the deformation density map, i.e. the

difference between the total density and the non-interacting

atom density, is recovered with minor discrepancies on the

oxygen atoms and around the carbon atom (Fig. 5). The fact

that the axial symmetry is not obtained originates from the

lack of symmetry constraints and the limited amount of

experimental information (Fig. 3). It could possibly be

recovered by providing additional knowledge (symmetry

constraints on the basis set or the population matrix for

example) to the model or using more expectation values.

The off-diagonal regions in Fig. 4 are highly sensitive to the

amount of noise added to the DCPs and the sharp contrast

around the O—O interaction (region 5–1 a.u.) is quickly lost
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Figure 4
Spin-traced 1-RDM b��ðr; r0Þ contour maps for two different segments [as
the 1-RDM is a six-variable function, no convenient graphical
representation exists apart from restricting the variation of the two
position vectors of �ðr; r0Þ along a path]. For each segment, the position
vectors r (horizontal axis) and r0 (vertical axis) are restricted to vary along
the segment. Upper panel: along the O—C—O bonding. Lower panel:
along a segment parallel and 1 a.u. away from the O—C—O bonding.
Left column: inferred from position and momentum space expectation
values. Right column: periodic ab initio computation. Contours at
intervals of �0.01 � 2n a.u.�3 (n = 0–20): positive and negative contours
are blue solid lines and red dashed lines, respectively.

Figure 3
Density map reconstructed from truncated Fourier series with coefficients
tr ½bPPbFFðqÞ
 (left) and FðqÞ (right) in a plane including the O—C—O
bonding. Contours at intervals of �0.01 � 2n a.u.�3 (n = 0–20): positive
and negative contours are blue solid lines and red dashed lines,
respectively. (Although density is a non-negative valued function,
negative regions appear, as the Fourier series representing density is
truncated. This is not an issue as the goal is to compare the structure
factors.)



as the standard deviation is increased. This sensitivity might be

particularly high for the case of dry ice as limited information

can be deduced from DCPs because of their relatively low

anistropies. Additionally, as the noise added to the SFs grows,

further discrepancies appear quite naturally on the deforma-

tion density map.

Furthermore, restricting the optimization on the SFs only

severely impacts the results (Fig. 6) and therefore clearly

illustrates the complementarity of both momentum and posi-

tion expectation values as mentioned in Section 2.2. Of course,

restricting the optimization on the DCPs gives an even worse

result.

4. Conclusions

With the aim of inferring a 1-RDM from structure factors and

directional Compton profiles with minimal prior knowledge, a

method based on semidefinite programming was proposed.

The effectiveness of this method has been evaluated on the

crystal of dry ice taking periodic ab initio calculations as

reference. In this example, the method was in very good

agreement with the reference, showing that the use of both

structure factors and directional Compton profiles provides

sufficient information to infer the 1-RDM in a given atomic

basis set.

Such a method could be used as a reference to interpret

experimental results. For now, it is only applicable to mol-

ecular crystals but it could possibly, in the future, be extended

to the modelling of the 1-RDM of more general crystalline

systems by using the periodic 1-RDM of the crystal as opposed

to its molecular block-diagonal version as presented above.

While this method is quite general, it still depends on the

choice of the atomic basis set and the atomic orbitals for each

atom. This constitutes a prejudice for the electronic config-

uration as it truncates the Hilbert space available for the

1-RDM to be refined with respect to the experimental data. Its

result can be refined through optimization of the basis, such

as in the work of Gueddida et al. (2018); however, the most

ideal solution would be an inference process that does

not require a basis set at all. At this stage, further work is

required to achieve this as, to the best of our knowledge,

the N-representability conditions are more conveniently

expressed in a given basis.

Ultimately, one would like to infer a 2-RDM from experi-

mental data but technical and conceptual obstacles make the

N-representability difficult to account for in this case.
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