## addenda and errata



**Keywords:** thermoelectricity; transport properties; magnetic order; galvanomagnetic effects; thermomagnetic effects

**Supporting information**: this article has supporting information at journals.iucr.org/a

## Thermoelectric transport properties in magnetically ordered crystals. Further corrigenda and addenda

## Hans Grimmer\*

Multiscale Materials Experiments, Research with Neutrons and Muons, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland. \*Correspondence e-mail: hans.grimmer@psi.ch

Further corrigenda and addenda for the article by Grimmer [*Acta Cryst.* (2017), A**73**, 333–345] are reported. New figures in the supporting information show how the restrictions on the forms of galvanomagnetic and thermomagnetic tensors are related to those on corresponding thermoelectromagnetic tensors.

*Corrigenda.* Corrections to Grimmer (2017) are needed in Figs. 4(c) and 6(c) for the fourth-rank tensors containing components marked in blue and in Fig. 6(b) for  $\rho_{ijlm}^-, k_{ijlm}^-$  in magnetic form class 4'. The corrections are included in the figures in the supporting information.

Addenda. For even tensors (invariant under space inversion  $\overline{1}$  and time inversion 1'), the galvanomagnetic tensors  $\rho$  and the thermomagnetic tensors k are symmetric in the first two indices if the rank is even and antisymmetric if the rank is odd, whereas the thermoelectromagnetic tensors  $\Sigma$  are general for all ranks. For magnetic tensors (invariant under  $\overline{1}$  and changing sign under 1'),  $\rho$  and k are antisymmetric in the first two indices if the rank is even and symmetric if the rank is odd, whereas the tensors  $\Sigma$  are general for all ranks. For magnetic tensors (invariant under  $\overline{1}$  and changing sign under 1'),  $\rho$  and k are antisymmetric in the first two indices if the rank is even and symmetric if the rank is odd, whereas the tensors  $\Sigma$  are general for all ranks. The intrinsic symmetry of these tensors has been discussed in more detail by Gallego *et al.* (2019).

Exchanging • and  $\circ$  for certain components, new figures are obtained that clearly show how the forms of the tensors for  $\rho$  and k are related to those for  $\Sigma$ . The forms of the tensors for the limit point groups described in Grimmer (2019) are included in the supporting information in Figs. 1–6.

## References

Gallego, S. V., Etxebarria, J., Elcoro, L., Tasci, E. S. & Perez-Mato, J. M. (2019). *Acta Cryst.* A**75**, 438–447.
Grimmer, H. (2017). *Acta Cryst.* A**73**, 333–345.
Grimmer, H. (2019). *Acta Cryst.* A**75**, 409.

| Magnetic<br>form classes |   | $k^{0-}_{ij} ho^{0-}_{ij}$ |   |   | $\Sigma_{ij}^{0-}$ |   |   |
|--------------------------|---|----------------------------|---|---|--------------------|---|---|
|                          | i | $j\downarrow$              |   |   | $j\downarrow$      |   |   |
|                          | ↓ | 1                          | 2 | 3 | 1                  | 2 | 3 |
|                          | 1 |                            | 1 | 2 | •                  | • | • |
| 1                        | 2 | 6                          | / | 1 | •                  | • | • |
|                          | 3 |                            | 6 |   | •                  | • | • |

© 2020 International Union of Crystallography