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Piecewise linear descriptions are presented of weavings of threads, loops and

2-periodic nets. Crystallographic data are provided for regular structures,

defined as those with one kind (symmetry-related) of vertex (corner) and edge

(stick). These include infinite families of biaxial thread weaves, interwoven

square lattices (sql), honeycomb (hcb) nets, and tetragonal and hexagonal

polycatenanes.

1. Introduction

Weaving of threads into fabrics is one of the oldest of human

creative activities. More recently it has become of interest in

the design, synthesis and description of an emerging class of

network crystalline materials in which the vertices and edges

of the net are molecular units. In a recent paper (Liu et al.,

2018), which reviewed material structures based on weaving of

molecular ‘threads’, it was argued from a chemical perspective

that it was most appropriate to consider such structures as

piecewise linear, i.e. they are composed of linear segments

(‘sticks’) that meet at divalent vertices (‘corners’). With

reference to the most symmetrical embedding of a structure, a

transitivity p q r is defined to indicate that there are p kinds

(related by symmetry) of corner, q kinds of stick and r

kinds of thread. In this paper we are concerned only with

regular structures – those with transitivity 1 1 1. In the jargon,

corner- (or vertex-)transitive structures are isogonal, stick- (or

edge-)transitive structures are isotoxal and thread-transitive

structures are isonemal.

In this work, our goal is to identify those periodic

structures that are most suitable for designed synthesis by

assembly from molecular components [reticular chemistry

(Yaghi et al., 2003)]. At the molecular level, structures are

almost universally made of such components joined by

straight links. It is a basic tenet of reticular chemistry that the

most favourable structures to target are those with minimal

transitivity (Li et al., 2014). ‘Crystallographic description’ of

the title refers to structure description in terms of symmetry,

unit-cell parameters and coordinates of vertices. To complete

the description, links (edges) are explicitly specified (‘from’

vertices and ‘to’ vertices). We believe that the combination of

the piecewise linear construction, with the crystallographic

description, is novel. For other approaches to weaving we

refer readers to Thompson & Hyde (2018, and references

therein).

Obtaining the maximum-symmetry embedding of a

weave, along with its minimal transitivity representation, are
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surprisingly difficult problems. Weavings are really in the same

category as knots, and determining the symmetry of knots is

not straightforward (e.g. Flapan, 1988) in contrast to the

situation with periodic graphs (Treacy et al., 1997; Delgado-

Friedrichs & O’Keeffe, 2003). Indeed, we report below on

structures that we described earlier as having transitivity 1 2 1

but which actually have a higher-symmetry description with

transitivity 1 1 1. These earlier descriptions were not wrong,

but just not optimal. Here, we restrict ourselves to structures

with transitivity 1 1 1, and so they must be optimal. We call

them regular by analogy with polyhedra and 2-periodic tilings,

for which the term regular is universally applied to structures

with transitivity (vertices edges faces) 1 1 1.

Here, we extend the earlier discussion to include additional

regular 2-periodic thread weaves and polycatenanes and also

include interwoven 2-periodic nets.

Over the years the topic of weaving has accumulated a huge

variety of special terms. Here, we examine 2-periodic inter-

woven structures that have the symmetry of a layer group.

Curiously, most mathematical papers discussing weaving omit

the symmetry aspect, but we note a significant exception

(Roth, 1993). The 2-periodic lattice defines what we term the

lattice plane [this is the ‘master net’ of Thompson & Hyde

(2018)]. In a weaving of conventional fabrics, if the threads are

pulled straight they intersect in the lattice plane and the points

of intersection fall on the vertices of a 2-periodic net. In a

biaxial (2-way) weave the net is that of the square lattice, sql.

In a triaxial (3-way) weave the net is either that of the kagome

pattern, kgm, or the hexagonal lattice hxl. Here, bold, lower-

case, three-letter symbols are RCSR (Reticular Chemistry

Structure Resource) symbols (O’Keeffe et al., 2008). In some

other patterns of interlaced threads, if the threads are pulled

straight (and allowed to pass through each other) they fall into

parallel rows. We refer to this as chain-link weaving as this is

the pattern used in chain-link fences. The term also applies to

the patterns of conventional knitting.

We define a quantity, girth, as the ratio of the shortest

distance between sticks and the stick length (all the reported

structures have just one kind of stick, which we treat as

freely hinged cylindrical rods). In finding an optimal embed-

ding we search for the parameters that give the largest girth.

This maximum girth is the ratio of the stick diameter to the

length of the thickest stick compatible with that weave. The

purist may note that ‘girth’ normally refers to circumference

rather than diameter. They can multiply our reported values

by �.

The concept of girth was introduced in our earlier paper

(Liu et al., 2018) and is inspired by earlier work on curved

threads for knots (Stasiak et al., 1998) and weavings (Evans et

al., 2015). As we show below, plots of girth as a function of

structural parameters (unit cell and coordinates) allow the

identification and mapping of regions of existence of topolo-

gically distinct structures. It is of practical interest that larger-

girth structures will likely be more amenable to designed

synthesis. We note that non-edge-transitive structures (i.e.

those involving more than one kind of stick, q > 1) will entail

multiple girths.

2. Methods

Weaves are found in those 67 (out of the 80) layer groups that

do not have an in-plane mirror. Regular weaves are found by

placing a single vertex at x, y, z and examining systematically

edges to the symmetry-related vertices. For this study,

this procedure was done by hand and the list of weaves

presented here is unlikely to be complete. For example, we

have not yet examined systematically the rectangular or

oblique weaves.

Maximum-girth embeddings were found using the

3-periodic space group obtained from the layer group by

changing the symbol p or c to P or C, then building an

11a � 11 b � 3c domain of unit cells, where the edge vectors a

and b lie in the plane of the weave. The third cell edge vector,

c, points out of the plane. The ‘fundamental stick’ is nominally

associated with the central cell, although x, y, z can attain

values outside the range 0 to 1, whereupon the fundamental

stick may not even intersect the central cell. Some weaves

connect across multiple cells, and larger domain sizes in the a,

b plane were sometimes needed for parts of this study.

Depending on the crystal symmetry, and the local symmetry of

the vertex x, y, z, up to five parameters were varied (x, y, z,

and the ratios b/a and c/a, with a held at a = |a| = 1) in order to

identify the largest nearest-neighbour girth – that is, the

closest stick distance divided by the stick length. Sticks directly

linked to the fundamental stick were excluded from the list of

neighbouring sticks for girth calculations since the closest

distance between linked sticks is always zero. In this study, we

examined those groups with fixed inter-axial angles, viz.

hexagonal, trigonal, tetragonal and rectangular groups. In

regular weaves, all sticks (edges) are symmetry related and

have identical lengths and girths. The downhill simplex

method of Nelder & Mead (1965) was used to find the

maximum-girth values. This was done by posing the problem

as a convex one – the minimization of the value of 1/girth –

using the implementation provided in Numerical Recipes in C

by Press et al. (1992).

To compute the girth, sticks were treated as line segments,

with a length and direction, between a ‘from’ vertex and a ‘to’

vertex. There are three scenarios to consider when evaluating

the proximity of two line segments (infinitesimally thin sticks).

These are when the point of closest approach: (i) lies on each

stick, away from their ends; (ii) is between the end of one stick,

but lying on the second stick; (iii) is between the ends of both

sticks. The closest distance between two line segments, or

between a line segment and a point, or between two points is

found by simple geometry. That closest distance determines

the maximum allowed diameter of the stick (cylinder) where

cylinders just touch. Strictly speaking, if connected sticks are

treated uncompromisingly as rigid cylinders, then only straight

‘threads’ are possible, since any flexing at the joints between

cylinders (vertices) will automatically result in an overlap at

the ends. We relaxed the no-overlap condition at the vertices,

allowing cylinders to hinge with no penalty. As a result, our

sticks therefore have bevelled ends and the maximum girth

allowed is 1. This is a reasonable relaxation of the geometrical
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constraint because most girths in weaves are much less than 1.

Further, discs (where girth > 1), hinged across their diameters,

make inherently unsuitable ‘sticks’ for generating weaves.

3. Biaxial weaves

There is extensive literature and specialized nomenclature on

biaxial weaves. Normally fabrics are made on a loom with one

set of threads, the warp, in place and the orthogonal threads,

the weft (or ‘woof’), interwoven. The pattern of weaving, when

viewed from one side, can be expressed as a grid of squares

coloured black for weft on top (i.e. visible), or white for warp

on top, as shown later. Such patterns are known as designs.

The classic source of designs is Watson’s Advanced Textile

Design (Grosicki, 1977). Systematic compilations of isonemal

designs (some hundreds) are in the work of Grünbaum &

Shephard (1980, 1985, 1986, 1988).

3.1. Regular weavings based on the square lattice net sql

The simplest biaxial weave is plain weave, also called calico,

box and tabby weave. In this weave, threads cross in the simple

repeating pattern under, over, . . . . The symmetry is p4/nbm

(Roth, 1993) and was identified as the regular biaxial weave

(Liu et al., 2018). Here, we identify an infinite family of regular

weaves with symmetry p4/n. This is derived as follows. We

start with two parallel square lattices (with orthogonal lattice

vectors a and b) of points, one above and the other below the

lattice plane of the weave. We next connect a point on one of

the lattices to a symmetry-related point on the other lattice,

separated laterally by the in-plane vector ua + vb, u and v

being integers. This constitutes a stitch through the plane of

the weave. If this is embedded in a doubled cell, with an

appropriate origin, then a 4/n axis will generate a weave

(alternating ‘up’ and ‘down’ stitches) for certain values of u

and v, as illustrated in Fig. 1. With u = 0 and v = 1 the plain

weave results. It is straightforward to see that the permissible

values of u and v for distinct weaves are just those of

the generalized knight’s move on an infinite square chess

board (Delgado-Friedrichs & O’Keeffe, 2009). Specifically,

the constraints are: (a) u < v; (b) u, v are co-prime (i.e. no

common factor); (c) u, v are of opposite parity (one odd, one

even).

Fig. 2 illustrates some of these weaves. The threads are here

depicted by black and white to mimic the design of the weave.

The number of crossings in the unit cell is 2t where t = (u2 +

v2). The possible values of t are therefore ‘Pythagorean’

numbers, the sum of two integers squared. Possible values of t

are 5, 13, 17, 25, 29, 37, . . . . It is also the case that there are 2t

crossings in the up–down repeat of the thread. The plain

weave has the RCSR symbol sql-w. We identify the others as

sql-w12, sql-w23 etc. where the numbers are uv. Weaves with v

= u + 1 are known as sponge weaves. We have not seen

the others explicitly described. Data for maximum-girth

embeddings, or representative examples, are given in Table 1.

Notable is that the angle at the corner is always �99.9�
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Figure 1
Generation of the weave sql-w12. (a) shows that the link between corners
is a ‘knight’s move’ u, v on a square lattice. (b) The side view illustrating
the three-dimensional nature of the weave.

Figure 2
Some regular weaves, sql-wuv, drawn with black and white for the warp
(horizontal threads) and weft (vertical threads), respectively. The
numbers are the values of u and v. 1 2, 2 3 and 3 4 are examples of
sponge weaves.

Table 1
Crystallographic data for regular univariant (zc/a) weaves.

For drawing in 3-periodic groups convert the lattice symbol to upper case (p to
P) and make c/a sufficiently large that layers do not overlap. Entries are in the
order they appear in the text.

Symbol Group From To zc/a Girth Angle (�)

sql-w p4/nbm 3/4, 1/4, z 1/4, 3/4, �z 0.2973 0.4142 99.88
sql-w12 p4/n 3/4, 1/4, z 5/4, 7/4, �z 0.6648 0.0828 99.88
sql-w23 p4/n 3/4, 1/4, z 5/4, 11/4, �z 1.0719 0.0319 99.88
sql-w14 p4/n 3/4, 1/4, z 9/4, 11/4, �z 1.2258 0.0244 99.88
kgm-w p622 1/2, 0, z 1/2, 1/2, �z 0.1768 0.3333 109.47
wvm p622 1/2, 0, z 3/2, 1/2, �z 0.4030 0.1547 94.12
sql-c5 p4/n 1/4, 1/4, z 7/4, 3/4, �z 0.5590 0.1633 70.53
sql-c13 p4/n 1/4, 1/4, z 11/4, 3/4, �z 0.9014 0.0628 70.53
sql-c17 p4/n 1/4, 1/4, z 11/4, 7/4, �z 1.0308 0.0480 70.53
hcb-c3 p�331m 0, 0, z 1, 0, �z 0.3535 0.3333 90.00
hcb-c6 p622 1/3, 2/3, z 1/3, �1/3, �z 0.4653 0.1547 78.69
hcb-c21 p�33 0, 0, z 1, 3, �z 0.9354 0.4762 90.00
hcb-c7 p�33 1/3, 2/3, z 2/3, 7/3, �z 0.5401 0.1429 90.00
hcb-c13 p�33 1/3, 2/3, z 8/3, 4/3, �z 0.7360 0.0769 90.00
hcb-c19 p�33 1/3, 2/3, z 2/3, 10/3, �z 0.8897 0.0526 90.00



� 2 tan�1ð21=4Þ. Some weaves for small u, v are also illustrated

in Fig. 2. The warp and weft are shown as black and white,

respectively, so that the pattern of the design emerges.

Weavings 1, v have interesting designs with intertwined spirals.

We have not seen these described before. Fig. 3 shows the

design for sql-w120 (u = 1, v = 20).

3.2. Weavings with bundles of threads

Worsted fabrics are woven with a yarn of multiple threads.

In the simplest such case there can be parallel threads. A plain

weave with parallel threads is known as basket weave and it

has a regular (transitivity 1 1 1) embedding, as do all the

weaves of the previous section. Basket weave was earlier

assigned the symbol wvc by Liu et al. (2018) who, however,

gave the transitivity as 1 2 1. We note here a

better embedding with transitivity 1 1 1. We

give this the symbol sql-w-c to emphasize

that the basket weave can be considered as

two interwoven plain weaves (Fig. 4). (The

appended symbol -c is RCSR notation for an

interpenetrating pair of structures.) If the

sql-w-c structure were to be drawn for the

optimal embedding of cylindrical threads,

the figure shows that the lattice plane is

not fully occupied; thus the structure is

more suitable as a weaving of laths (as in

basket making). However, when the weaving

is made with (approximately) cylindrical

threads, as used in shirt-making, then it is

known as ‘Oxford weave’.

Regular weavings of pairs are also

possible for the other regular biaxial weaves.

These are given the symbol sql-w12-c,

sql-w23-c etc. These structures are also

depicted in Fig. 4 and data for optimum-girth

embeddings are given in Table 2.

We identify three further regular struc-

tures in this section. In these, the single

thread of plain weave is replaced by a helical

pair of entwined threads in the spirit of

worsted fabrics (known as stuffs). We use the

extension -ww to signify worsted weave and

our structures are sql-ww, sql-ww* and sql-

ww**. These patterns are illustrated in Fig. 5, and optimum-

girth data are in Table 2. In sql-w, warp and weft helices of the

same handedness are woven as in the plain weave. sql-w* is

similar, but now the helices are alternately of opposite hand-
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Figure 3
The design (weaving pattern) of sql-w120. Note the interleaved spirals.

Figure 4
Weaves using pairs of threads. Top: left, sql-w-c drawn with ‘flat’ threads
to be area filling; centre, with one half of the threads missing, illustrating
that sql-w-c is two interwoven sql-w weaves; right, swl-w-c drawn with
cylindrical threads of maximum girth. Bottom: two more double-thread
weaves, illustrating their open nature.

Table 2
Crystallographic data for bi- and trivariant regular weavings and polycatenanes.

Vertices at x, y, z except for wvc (x, �x, z), cmt in p�331m (x, 0, z) and sql-c** (0, y, z). Data can be
plotted for any values of the cell parameters a, b = a and c, with z calculated from zc/a using the
3-periodic group derived from the given group by capitalizing the lattice symbol (p). Where
applicable, data are for second-origin setting of groups. Entries are in the order they appear in the
text.

Symbol Group Edge to x y zc/a Girth Angle (�)

pcu-w-c (wvc) p4/nbm 1/2+x, 1/2�x, �z 0.1667 �0.1667 0.2500 0.2722 109.47
pcu-w12-c p4/n x+3/2, y�1/2, �z 0.3283 0.1128 0.5590 0.0544 109.47
pcu-w23-c p4/n x+5/2, y�1/2, �z 0.3258 0.1016 0.9014 0.0209 109.47
sql-w12-c p4/n x+3/2, y�1/2, �z 0.0536 0.0932 0.5590 0.0544 109.47
sql-w23-c p4/n x+5/2, y�1/2, �z 0.1014 0.1464 0.9014 0.0209 109.47
sql-ww p422 1+y, x, �z 0.2675 0.0304 0.333 0.1884 85.60
sql-ww* p�44b2 1/2+y, 1/2+x, �z �0.0269 0.2335 0.3069 0.1904 89.29
sql-ww** p4212 1+y, x, �z 0.2050 0.1336 0.3500 0.1378 74.74
kgm-ww p622 1+y, x, �z 0.3551 �0.0318 0.2237 0.1687 91.34
hcb-w p321 y, 1+x, �z 0.4047 0.4272 0.3981 0.0796 47.07
hcb-w-c p622 y, 1+x, �z 0.3697 0.4608 0.2918 0.0688 57.17
zza p622 y�x, 1+y, �z �0.0055 0.2308 0.3441 0.1006 99.35
zzb p422 1�y, 2�x, �z 0.0866 0.2335 0.8171 0.0420 33.69
zzc p4212 2�y, 1�x, �z 0.2441 0.0488 0.6533 0.0564 36.42
zzd p312 x�1, x�y+1, �z 0.5017 0.2827 0.6907 0.0796 46.98
zze p321 x�y, 1�y, �z 0.4273 0.0227 0.3979 0.0796 47.09
sql-c** pnam 1/2, 1/2+y, �z 0.0 0.1213 0.2237 0.2051 73.39
cmi p�44 1�y, 1+x, �z 0.2659 0.2557 0.3257 0.1654 75.31
cmi-c p�44 1+y, �1�x, �z 0.2027 0.2162 0.6165 0.0544 70.53
cmi-c* p�44b2 1�y, 1+x, �z 0.2442 0.2481 0.4286 0.1611 68.27
cmx p�44 1+y, �1�x, �z 0.2515 0.2497 0.6175 0.0628 71.37
cmv p4/n 2�y, 1+x, �z �0.0219 0.6153 0.4564 0.1368 73.56
cmt p�331m 1, 1�x, �z 0.1340 0.0 0.2664 0.2282 95.05
cmt p�33 x�y, x, �z 0.9524 0.7619 0.3086 0.2500 90.00
cmw p�33 x�y�1, x, �z 0.6154 0.1538 0.5095 0.1111 90.00
cmz p�33 2�y, 2�x+y, �z 0.2313 �0.2721 0.5832 0.0500 90.00



edness and the structure is achiral. In sql-w** the warp and

weft helices interpenetrate – see the detail in Fig. 5.

4. Triaxial weaves

We have only a small group of regular triaxial weaves. They all

have symmetry p622 and are portrayed in Fig. 6 with crystal-

lographic data in Tables 1 and 2. The first is the kagome weave,

kgm, commonly used in basket making – especially with

bamboo laths – and also known as bamboo weave. It is an

open weave. With ‘planar’ (i.e. lath-like) threads, only one

quarter of the area of the lattice plane is occupied. Indeed, the

name comes from the Japanese for ‘basket eye’. Kagome

weave has the property of Borromean rings that, if one

component is removed, the other two fall apart. Notice in the

figure that green threads are over red, red over blue, and blue

over green so every colour is, in a sense, layered ‘in the middle’

of the other two.

A regular worsted version of kagome (kgm-ww), with

helical pairs of threads in each direction, is also shown in

Fig. 6.

Another regular triaxial weave has long been known as

‘mad weave’. It is found commonly in bamboo weaves, parti-

cularly of platters. In contrast to kagome weave, if mad weave

is made of ‘planar’ threads, the plane is fully covered. The

resulting pattern is also presented in the figure.

Two other triaxial structures are illustrated in Fig. 7. These

can be considered as weavings derived from the 3-coordinated

(3-c) hcb net. To make weavings from 4-c (4-coordinated) nets,

such as sql and kgm, each vertex is split into two. To make a

weaving from a 3-c net, such as hcb, each vertex must be split

into three. The resulting vertices must also be non-coplanar.

This can be accomplished with symmetry p321, as shown in

Fig. 7 for hcb-w. In this structure, zigzag threads run in three

directions and their axes intersect to form a planar kagome

net, so this structure is indeed a triaxial fabric weave. Note,

however, that the angle at each corner is now quite small

(�47�) at optimum girth.
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Figure 6
Regular triaxial weaves. Bottom right is the pattern when ‘mad’ weave is
made with thin area-filling laths. All structures are chiral (symmetry
p622).

Figure 8
A regular triaxial weave, zza, with six pairs of helices crossing at vertices
of a hexagonal lattice net (hxl).

Figure 7
Top: hcb-w, a triaxial weave based on the hcb net (thin black lines). A
detail of the triple crossing in hcb-w is shown on the right. Bottom: two
such weaves interpenetrating, hcb-w-c.

Figure 5
Regular weavings with helical bundles of threads (‘worsted’) in a simple
weave pattern. Top left: all helices of the same handedness. Top right:
weaving with helices of both handedness. Bottom left: a variation in which
helices (but not individual threads) intersect, as shown in the detail in the
bottom right.



Two such weaves can interpenetrate to form hcb-w-c

with symmetry p622, as seen in the figure. Isolated in the figure

is a detail of the ‘triple crossing’ around one parent hcb

vertex.

We adduce another triaxial weave of bundles of threads

with symmetry p622 and symbol zza (Fig. 8). In this lovely

structure 12 threads converge on a crossing, as detailed in the

figure. The crossing points are now the vertices of the hexa-

gonal lattice net (hxl). This pattern is not possible with straight

threads replacing the helical pairs because all thread axes are

coplanar.

5. Some weavings of zigzag threads

In conventional fabric weaving the projection of the thread on

the lattice plane is a straight line. In worsteds they are almost

straight. By contrast, in weavings such as chain link and

knitting, the projection of the thread is far from linear. Liu et

al. (2018) show some such patterns but none had transitivity

1 1 1. Here (Fig. 9) we present some examples of regular

weavings of zigzag threads. In optimum-girth embeddings the

angle between rods is less than 60� as already noted above for

hcb-w. It is likely that there are many more examples with

even smaller angles but, although beautifully intricate, they

are less likely to be feasible targets for designed synthesis and

have not been systematically explored.

6. Interwoven 2-periodic nets

6.1. Interwoven square lattice nets (sql)

There is an infinite family of regular 2-periodic weavings of

sql nets. This is simply related to the family of regular biaxial

thread weaves described in Section 3.1. Thus, with symmetry

p4/n (origin choice 2), those threads had a vertex at 3/4, 1/4, z.

If instead we place a vertex at 1/4, 1/4, z, the same link

produces interpenetrating sql nets. The number of nets, t, is

given by the same u, v knight’s-move vector components as

before, by t = u2 + v2. Specifically, t = 5, 13, 17, . . . as explained

in that earlier section. Fig. 10 illustrates sql-c5. The pattern is

such that the weaving of any two overlapping rings is over,

over, under, under . . . repeated periodically, and a ring of one

net is linked to two each of the other four nets so the cate-

nation number is 8. More generally for sql-cn the catenation

number is 2(n � 1).

We note here also a regular rectangular interweaving of two

sql nets, symbol sql-c** (Fig. 11). This has symmetry pman and

catenation number 2. A vertex- and edge-transitive tetragon

does not have to have equal angles: it could be diamond

shaped. To obtain equal angles we set a = b. Data for

maximum girth with this constraint are given in Table 2.

6.2. Regular weavings of honeycomb (hcb) nets

A 2-periodic pattern, hxl-w (Fig. 12, left), of three inter-

woven hcb nets has symmetry p31m. Just as plain weave sql-w

is derived by splitting the square lattice net into two compo-

nents, and the kagome weave kgm-w is derived by splitting the

kagome net into three, the hxl-w pattern is generated by

splitting each vertex of the 6-coordinated hexagonal lattice net

(hxl) into two 3-coordinated vertices.

This pattern is well known in ornamentation and is also

found frequently in crystal structures (Alexandrov et al., 2017,

and references therein). Like the kagome weave, it has the

Borromean property that although the nets are interwoven,

removal of one component leaves the other two unlinked. It

can be seen from the figure that blue is over green, green over
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Figure 10
sql-c5, a pattern formed from the regular interweaving of five sql nets.

Figure 9
Four regular patterns of chiral weavings of zigzags with angles less than
60�.

Figure 11
sql-c**, a regular rectangular interweaving of two sql nets.



red, and red over blue. In what follows we refer to such a

combination as a ‘Borromean triplet’. Note that the catenation

number of each hexagon is zero.

Two hxl-w (= hcb-c3) weaves of lower-symmetry (p312)

embedding can be combined to form hcb-c6 with symmetry

p622 as illustrated in Fig. 13. The two -c3 are Borromean

triplets but, as also shown in the figure, nets of one triplet are

directly catenated with the nets of the other. Specifically, each

ring is catenated with four rings of each of the three others for

a catenation number of 12.

Delgado-Friedrichs & O’Keeffe (2009) also gave the rules

for allowed generalized knight’s moves ua + vb on an infinite

hexagonal chess board. They are: (a) u, v co-prime; (b) uv 6¼

3n (n an integer); (c) v > 2u. A (hexagonal) supercell of edge

ua + vb will contain t = u2
� uv + v2 points. t is a prime number

of the form 6n + 1 (n an integer) or a product of such primes

(e.g. 7 � 7, 7 � 13, . . . ).

If now, with symmetry p3, a vertex at 0, 0, z is joined to

one at u, v, �z, a pattern of 3t interpenetrating hcb nets

is obtained. The factor of ‘3’ arises from the fact that an

edge of hcb is 1=
p

3 times a unit-cell edge. The simplest

possibility is hcb-c21 (u, v, t = 1, 3, 7) illustrated in Fig. 12

(right). Note that in these structures there is just one vertex

per unit cell.

A related family hcb-ct is obtained as follows. Again with

symmetry p3; a point at 1/3, 2/3, z is joined to

uþ v ¼ 3nþ 1 : 1=3þ ðv� 2uÞ=3; 2=3þ ð2v� uÞ=3;�z

uþ v ¼ 3nþ 2 : 1=3þ ð2v� uÞ=3; 2=3þ ðv� 2uÞ=3;�z:

Now there are two vertices per unit cell. The simplest

possibility is hcb-c7 (u, v, t = 1, 3, 7), shown in Fig. 14.

The pattern of weaving in hcb-c7 is particularly interesting.

As for hcb-c3, no two nets are interwoven but there are

Borromean triplets. Each one of the seven nets is ‘in the

middle’, in the sense that it is under three nets and over three.

It may be seen from the figure that each of these sets of three

is a Borromean triplet and there are accordingly 14 distinct

triplets – one ‘above’ and one ‘below’ each of the seven nets.

To describe the pattern of the weaving, a tiling with seven

vertices (represented by seven colours), 21 edges (each colour

is a neighbour to the other six) and 14 triangular faces (for the

Borromean triplets) is required. This has genus 0 and should

be inscribed on a torus, but can be shown as a 2-periodic tiling

with coloured vertices, as in Fig. 15. The colouring in the figure

is the same as in Fig. 14, and each differently coloured triangle

in Fig. 15 corresponds to a Borromean triplet in Fig. 14. Also,
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Figure 13
Two hxl-w (= hcb-c3) weaves (top) combining to form hcb-c6 (below). On
the right is shown how one ring (red) of one hxl-w is catenated to four
rings of one triplet of the other triplet.

Figure 15
The pattern of weaving in hcb-c7. Each vertex corresponds to a similarly
coloured layer in Fig. 14. The 14 triangles with distinct vertex colourings
correspond to the 14 Borromean triplets in hcb-c7. On the right, the six
colours surrounding black show the six Borromean triplets involving the
black layer. The two triplets of second-neighbour vertices correspond to
the Borromean triplets (green–yellow–blue and red–magenta–orange)
‘above’ and ‘below’ a black hcb net.

Figure 14
The pattern of weaving of seven hcb nets (each of a different colour) in
hcb-c7. Note that each colour always crosses above three other colours
and always crosses below the three remaining colours.

Figure 12
Two regular weavings of honeycomb (hcb) nets with just one vertex per
unit cell. Left: hxl-w, with three interwoven hcb nets; right: hcb-c21, with
21 interwoven hcb nets.



as indicated in Fig. 15, it can be seen which Borromean triplets

are ‘above’ and ‘below’ a given layer. They are the two triplet

second-neighbour colours, which are shown on the

surrounding hexagon. Thus, for black, these are green–yellow–

blue and red–magenta–orange.

7. Polycatenanes (‘chain mail’)

Linked loops are commonly called ‘polycatenanes’ in chem-

istry. 2-Periodic patterns are also called ‘chain mails’ after the

medieval armour (maille is a French word for ‘stitch’). Liu et

al. (2018) described a number of these. Here we identify two

families of regular patterns.

7.1. Tetragonal chain mail

Just as biaxial thread weave can be generated by splitting

the vertices of a square lattice (sql) into components, a related

splitting can generate linked tetragons. In the simplest case

there will be four corners per unit cell, with two above and two

below the lattice plane, and for square symmetry the only

possibility is p4. Fig. 16 illustrates the generation of the simple

regular tetragonal chain mail, cmi. Each tetragon is linked to

four others (catenation number 4). At optimum girth (data in

Table 2) the angle is about 75�.

We show also cmi-c and cmi-c*, which are pairs of inter-

penetrating cmi patterns. These are generated by adding a

glide component to the symmetry. Specifically, b-glide

symmetry augments the layer group to p4b2, to generate cmi-

c*, and n-glide symmetry in the lattice plane augments the

layer group symmetry to p4/n, for cmi-c. In cmi-c* both

components are directly connected by Hopf links and the

catenation number is now 8. In cmi-c the rings of one

component are not linked to those of the other.

There are infinitely more patterns of linked tetragons. As

there are just four points related by a 4 axis in the unit cell, the

possibilities can be systematically enumerated as follows. In

the case of cmi-c an edge is defined as the link from x, y, z to

1 + y, �1 � x, �z (space group P4, second-origin choice).

Systematic variation of x, y and zc/a, for fixed a, in the

3-periodic group P4, was carried out to determine maximum

girth, as described in Section 2. Additionally, for a given x, y a

maximum girth can be found by varying just zc/a, and a

contour (or intensity) map of that girth as a function of x and y

prepared. As we see in Fig. 17, the map has regions of finite

girth (coloured) bounded by lines of zero girth (black), where

edges intersect. Structures in a given region are isotopic but

edges must be broken and reformed to pass from one region to

the other, so generally structures in separate regions are not

isotopic. In some instances, they are symmetry-related

variants.

We identified over a hundred regions in the tetragonal

chain-mail (TCM) system. Maximum-girth data for the 12

largest-maximum-girth structures are given in Table 3. Note

that the isotopic structures TCM2 and TCM3 (indicated in Fig.

17) correspond to separate ‘attractor’ maximum-girth peaks

within a single region (i.e. are not separated by a zero-girth

boundary). Illustrations of these structures are attached as

supporting information. They include examples of catenation

number for every multiple of 4 from 4 to 24. For each p4

structure there are also corresponding p4b2 and p4/n struc-

tures.

We present in Fig. 18 the next two simplest, after cmi,

tetragonal chain mails (TCM2 and TCM5) with catenation
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Figure 16
Top: derivation of the simplest tetragonal chain mail, cmi, from the square
lattice net (sql). Bottom: two modes of interweaving of cmi. In cmi-c
(bottom right) the two sets are not directly linked.

Figure 17
Structure map for the tetragonal chain-mail system, cmi. x and y are the
in-plane crystallographic coordinates of the ‘from’ vertex. The intensity of
the image is proportional to the maximum girth of sticks, found by
adjusting zc/a at each x, y. Different colours represent regions within
which structures are attracted to a local maximum-girth value. The dark
lines represent places where the maximum girth is zero, where sticks are
forced to intersect by symmetry. At these boundaries, sticks must pass
through each other to enter an adjoining region. The values of some of
the peak girths are indicated. Some regions contain two maximum-girth
attractors for the same weave, such as TCM2 and TCM3 (see illustration
in supporting information.)



numbers 8 and 12, respectively. These both have symmetry p4

and, again, catenated pairs are generated by changing the

symmetry to p4b2 and p4/n. In cmi, rings are linked in pairs

but, as clarified in Fig. 18, in TCM2 rings are linked in fours,

forming a torus link (4, 4). In TCM5, we see in the figure that

each tetragon is linked to five others.

As discussed by Liu et al. (2018), it appears not possible to

have regular chain mail with planar rings. The most regular is a

rectangular pattern (European four-in-one, symbol cmk) with

transitivity 1 2 1.

7.2. Hexagonal chain mail

Of the patterns described by Liu et al. (2018) we find just

one, symbol cmt, that has a regular embedding. It is also the

one example of 2-periodic chain mail forming the basis of a

crystal structure (Thorp-Greenwood et al., 2015).1 This struc-

ture has an embedding with symmetry p31m, but has a larger-

girth embedding with lower symmetry p3, shown in Fig. 19. We

give data for both chain-mail symmetries in Table 2. cmt can

be generated by inscribing hexagons in the hexagonal faces of

hxl-w (= hcb-c3). In a wide-ranging investigation we generated

a structure map (Fig. 20), similar to that for tetragonal chain

mail, now using p3 and links from x, y, z to x � y, x, � z. Data

for ten large-girth structures are listed in Table 4, which

includes two structures that lie outside the range of the illu-

strated map. Notable is the fact that the optimized girth is

always 1/n, n an integer, and the optimum angle at each corner

is always 90�. cmt has girth 1/4.

As shown in Fig. 21 the structure comprises hexagons

inscribed in the faces of hxl-w (= hxg-c3). The rings are not

directly catenated but form Borromean triplets. The structure

with the next-largest girth is HCM2 with girth = 1/9. This is

again derived from hxl-w by inscribing hexagons in hxl-w but
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Figure 19
Regular hexagonal chain mail cmt. In the centre is the pattern of overlap
with one ring (blue). If the blue ring is removed, the others are not linked.
On the right is a Borromean triplet of rings. Note how red is always above
green; green is always above blue; and blue is always above red.

Table 3
Data for 12 regions in the tetragonal chain-mail (TCM) system.

The maximum-girth structure is given the RCSR code cmi. All weaves are
based on sticks connecting from (x, y, z) to (1 � y, 1 � x, � z) in space group
p4. The structure map is shown in Fig. 17.

Symbol x y zc/a Girth Angle (�)

cmi 0.2659 0.2557 0.3257 0.1654 75.31
TCM2 0.5218 0.1152 0.4557 0.1368 73.59
TCM3 0.3794 �0.0146 0.3976 0.1201 77.74
TCM4 0.4500 �0.3500 0.7115 0.0907 70.53
TCM5 0.2515 �0.2497 0.6175 0.0628 71.37
TCM6 0.6794 �0.1018 0.4622 0.0563 78.28
TCM7 1.0135 �0.4189 0.8719 0.0544 70.53
TCM8 0.7675 �0.2392 0.4973 0.0500 79.12
TCM9 0.8543 �0.3744 0.5329 0.0450 79.73
TCM10 0.4879 �0.1490 0.5241 0.0434 74.89
TCM11 0.9404 �0.5074 0.5653 0.0410 80.30
TCM12 0.6400 �0.5088 0.6753 0.0331 75.31

Figure 20
Structure map for the hexagonal chain-mail system, cmt. The peaks in
girth within each region are the reciprocals of integers, 1/n. The values of
some of the peak girths are indicated.

Figure 18
Two patterns of tetragonal chain mail, with catenation numbers 8 (top)
and 12 (bottom). In each case the detail on the right shows the pattern
whereby simple loops connect into complicated links.

1 These authors, correctly in our opinion, refer to their structure as Borromean
chain mail. However, one finds on the web at http://katlas.org/wiki/L10n107
and https://commons.wikimedia.org/wiki/File:Borromean-chainmail-tile.svg a
quite different structure. This has four components, so is not strictly
‘Borromean’, even though no two components are linked. A piecewise linear
representation is shown in the supporting information.



now the hexagons form additional Borromean triplets as

shown in the figure.

The structures next in girth are again 1/9 (HCM3) and 1/11

(HCM4). These two are in fact isotopic as they correspond to

two attractor maximum-girth peaks in the same region of the

structure map. This structure is now derived from hcb-c7 as

cmt is derived from hcb-c3, as shown in Fig. 22. There is again

a related structure (HCM10, girth = 1/20) in which the

inscribed hexagons form additional Borromean triplets, as

shown in the figure.

Next, in order of girth, are: HCM5, with girth = 1/12, which

is formed from hcb-c13; and HCM6, girth = 1/13, formed from

hcb-c19. These are illustrated in the supporting information.

At the intersections of the zero-girth lines in the structure

map, vertices and edges overlap. If we remove the degeneracy

by allowing overlapping corners and sticks to merge, new

higher-coordination, non-zero-girth weaves appear. Maximum

girth = 1/n, as before, but with different sets of integer-n

values.

8. Summary and conclusions

In this work we have limited ourselves to structures that, in a

piecewise linear representation, have just one kind of vertex

(corner) and one kind of link (stick). In the structures made

from infinite threads they are necessarily simple zigzags with

axes that intersect to form a simple planar 2-periodic net. Such

materials are termed fabric weavings (Liu et al., 2018). We

have not considered chain-link weavings for which, in the

2-periodic case, the axes of the threads form parallel lines. This

class of weaving includes knitting. The symmetry must be

rectangular or lower and, we believe, there are no regular

chain-link weavings. We note, however, that knitted materials

are expected to have significantly different mechanical

properties from woven fabrics (e.g. Poincloux et al., 2018);

consequently a crystallographic description and classification

of such structures would be useful.

We recall that a motivation for our work is to develop a

library of structures that could form the basis of designed

syntheses of targeted crystalline materials. In this context it is

important to remember that, while knitting uses just one

thread, and biaxial or triaxial weaving just two or three, the

tactic of the chemical approach to woven crystal structures is

to link (polymerize) pre-assembled components into woven

threads (Wadhwa et al., 2016; Zhao et al., 2017; Liu et al., 2016).

Although many of the patterns reported here are unlikely to

appear in fabrics, they may well appear in crystal structures.

Finally, we draw attention to an interesting recent paper by

Nishiyama (2019) which shows that fluid flow may well adopt

weaving patterns.
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