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An Introduction to Clifford Algebras and Spinors by two Brazilian physicists, Jayme Vaz

Jr and Roldão da Rocha Jr of IMECC, Universidade Estudual de Campinas and CMCC –

Universidade Federal do ABC, was first published by Oxford University Press in hard-

cover in 2016 and republished in 2019 as a paperback. The 256-page book begins with a

sweeping preface that relates the historic works on unifying geometric and algebraic

operations by celebrities like G. Leibnitz, J.-R. Argand, C. F. Gauss, R. W. Hamilton,

H. G. Grassmann, W. K. Clifford, E. Cartan, W. Pauli, P. Dirac etc. For crystallographers it

may be of interest to know that J. G. Grassmann (Justus G. was the father of Hermann G.

Grassmann) originally introduced the characterization of crystal planes by orthogonal

vectors, now commonly denoted with Miller indices [see Erhard Scholz in Schubring

(1996), pp. 37–46]. J. G. Grassmann’s work, including his mathematical school textbooks,

provided H. G. Grassmann with fertile ideas for his new concepts of algebra, solely

defined by the relations of its elements, from which G. Peano distilled the modern

concept of vectors. Grassmann’s pioneering approach was so far ahead of its time that

only a few bright minds (like R. W. Hamilton, F. Klein and S. Lie) recognized its genius

during his lifetime, late in Grassmann’s life. But the young Cambridge-educated genius

W. K. Clifford was truly exceptional, and published in 1878 (one year after Grassmann’s

death) his seminal paper ‘Applications of Grassmann’s Extensive Algebra’ in Am. J.

Math. It elegantly unified the earlier works of Hamilton on quaternions and Grassmann’s

metric-free algebra of extension to geometric algebras (now known as Clifford algebras),

by simply adding in the Clifford (or geometric) product the inner product of vectors

(necessary for measurements) and the outer product of Grassmann.

The authors began to develop their subject 20 years ago in the form of lecture notes in

several university courses and have plenty of their own publications on the subject.

The text is divided into seven chapters, each completed with a final subsection full of

exercises and recommendations for further reading. Readers will have to work their way

through the subject-specific notation, for which the well-ordered seven-page Appendix B

‘List of Symbols’ provides essential support. References (7 pp.) and an index (4 pp.)

complete the backmatter. The book may therefore in parts be used for lecture courses to

graduate students, or alternatively for self-study and as a launch pad for further research.

It is of interest to anybody who wants to understand a modern description of spinors in

Clifford algebra language. The level is clearly graduate student or above. It will be easiest

to read for physicists and mathematicians, but crystallographers with sufficient mathe-

matical background in linear algebra, tensor algebra and group theory should find it

accessible. For readers who want an introduction to Clifford algebras, which will make

reading this introduction to spinors easier, I would recommend the two college-level

textbooks by MacDonald (2011, 2012) and the recent Springer Brief by Xambó-

Descamps (2018).

In ‘Preliminaries’ (Chapter 1) vectors are introduced with eight axioms for addition

and scalar multiplication (scalars are here taken as elements of a field, e.g. real and

complex numbers and quaternions). For quaternions left and right multiplication must be

distinguished. Then the dual vector space of linear functionals mapping vectors into

scalars equipped with a covector basis is defined. Covariant and contravariant transfor-

mations are distinguished and their practical use is demonstrated with two pages of
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examples in three-dimensional Euclidean space and for

polynomials of degree less than or equal to 2. Consideration is

given to the bidual, kernel and image of linear transforma-

tions, correlations (maps from vector to dual vector space)

and bilinear functionals, and the distinction between quadratic

and symplectic spaces. Special compact ‘musical’ notation is

introduced for symmetric correlations (i.e. correlations and

their inverse) and illustrated with an example in three-

dimensional Euclidean space. Since this notation is quite

particular, readers should take care not to skip over these

preliminaries. Next, the tensor product of arbitrary numbers

of vectors and covectors, tensor bases, symmetry, mixed

bilinear functionals and transformations of tensors are

reviewed and illustrated with examples from two and three

dimensions, followed by the definition of direct sums of vector

spaces. The preliminaries conclude by introducing tensor

algebra (sums and products of tensors), grading of tensors,

grade involution, and even and odd grade projection. Another

involution is reversion, conjugation being the combination of

it with grade involution. A set of eight exercises reinforces and

extends the content covered in the preliminaries.

Chapter 2 on ‘Exterior Algebra and Grassmann Algebra’

reviews these two algebras and their relation to tensor algebra,

ending with the Hodge isomorphism. After commenting on

Grassmann’s original work (1862), it defines permutations and

the alternator operator (with the example of symmetric group

S3), showing its application to covariant and contravariant

tensors and for the definition of a matrix determinant.

p-Vectors are defined as alternating covariant tensors of order

p, similarly p-covectors, their spaces being denoted with the

famous capital Greek lambda symbol, and their dimensions

being considered. The alternator is applied to define (Defini-

tion 2.1) and study the exterior product of p-vectors. A variety

of definitions and more advanced literature on the subject are

given as ‘Observation’ (p. 27). Then notions of the basis for

p-vector spaces, the notational sum convention and maximum

dimension n-vectors (pseudoscalars) are introduced. The

combination of the direct sum of all p-vector spaces with the

exterior product leads to exterior algebras (Definition 2.2) for

both vectors and covectors. Examples in three and four

dimensions and as an application to solving a linear system of

equations are given. It is observed that the exterior algebra

can be obtained as a quotient in tensor algebra (a consequence

of the theorem on p. 35), starting with elementary notions of

equivalence relations and ideals. The ideal used is the kernel

of the alternator. Next the notions of left and right contrac-

tions (inner product) by covectors are defined, studied and

generalized to p-covectors together with an example in four

dimensions. Vector space orientation is defined by the choice

of a pseudoscalar, which in turn serves to define quasi-Hodge

isomorphisms (two examples show its application). Slightly

deviating from Grassmann’s original (he used the Hodge star

operator called in German Ergänzung), the authors define the

regressive product based on the quasi-Hodge isomorphism. By

endowing exterior algebra with an extension of a metric

bilinear functional (also called metric) to all of the exterior

algebra, the authors define Grassmann algebra (Definition

2.3), and an example is given for three dimensions. The

Hodge isomorphism is defined between p-vector spaces of

dimensions p and n � p, and its relation with the quasi-Hodge

isomorphism is made explicit. Chapter 2 is rounded off by

advising additional reading and providing ten exercises

including Plücker coordinates and the cross product of Gibbs–

Heaviside vector algebra.

The following three chapters are all on (real and complex)

Clifford or geometric algebra(s).

Chapter 3 provides their definition, the relation to tensor

algebra and Grassmann algebra. The definition (Definition

3.1) is that of generation by elements of a quadratic vector

space (with non-degenerate metric), with unity, and the anti-

commutator resulting in the metric. Next, isomorphism-based

universality of a Clifford algebra is defined. This is the case for

dimension 2n (Theorem 3.1). The existence is shown (Theorem

3.2) and examples for n = 1 and 3 dimensions follow. Like

exterior algebra, Clifford algebra can also be obtained as a

quotient of tensor algebra, the relevant ideal being the tensor

product of a vector minus its metric times unity, as proposed in

1954 by Chevalley. Observations on notation (p. 64) are given

(important for readers beyond this point) and the universality

of the tensor quotient definition is shown (Theorem 3.3).

Dimension and vector space(!) isomorphisms with exterior

and Grassmann algebra are given, and the computational

preference for orthogonal bases is explained. The center of

a Clifford algebra and isomorphisms of grade involution,

reversion and (Clifford) conjugation are introduced, with

obvious relations to corresponding notions in tensor algebra.

An example computes the reversion of a product of two

(simple) mono-grade Clifford algebra elements (p-vectors).

The Z2 grading is clarified, the general grade structure of the

product of two simple elements of grades p, q is shown, and

the extension of the metric to p-vectors and norm definitions

are added. Examples illustrate Clifford algebras Cl1,2, Cl3,0 and

Cl3,1. Two theorems on properties of non-universal Clifford

algebras follow. Then, in the context of Grassmann algebra

creation and annihilation operators (note the relation to

quantum field theory) based on exterior product and

contraction are defined, studied and combined to two inter-

related Clifford mappings. Next follows a subsection on the

mutual relation between Clifford and Grassmann algebras

with observations on the exterior product, and contractions in

Clifford algebra. To assist readers with recommended addi-

tional readings a subsection on notation is added. Finally,

seven instructive exercises round off the chapter.

Chapter 4 extensively treats the ‘Classification and Repre-

sentation of the Clifford Algebras’ with many explicit exam-

ples of representations, isomorphisms, relations to quaternions

and real and complex matrix algebras. It begins with an

introduction to the alternating tensor product, a set of theo-

rems on the structure of Clifford algebras for combining two

such algebras, complexification of a Clifford algebra, and

elementary isomorphisms. Second, the task of classification is

addressed starting with low-dimensional cases and for the

general case isomorphisms to square matrix algebras over real

and complex numbers and quaternions are employed. Up to
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dimension n = 7, exhaustive isomorphism listings are provided.

The result is that Clifford algebras are determined by the

signature parameters p, q of Clp,q, i.e. by the difference

r ¼ p� q mod 8, where it matters if p � q; p> q or p< q. The

results are summarized in table form (pp. 101–102) providing

helpful reference information. Next, the notions of regular

representation, idempotents, simple algebras and their rela-

tions are discussed and applied to Clifford algebra repre-

sentations with examples in Cl2,0 and Cl3,0. Theorem 4.6

specifies the general product structure of primitive idempo-

tents in Clifford algebras and the resulting group thus gener-

ated. Again, extensive examples for Cl0,7, Cl1,3 and Cl4,1 follow.

Hermitian conjugation and transposition in the Clifford

algebra context are discussed and expressed in a case-

dependent way by products and involutions with an illus-

trative example in Cl4,1. Additional reading is recommended

and three exercises with quaternionic matrix representation

for Cl1,3, Dirac gamma matrices, and Weyl or chiral repre-

sentation for complexified Cl1,3 and Majorana representation

for Cl3,1 are given.

This is followed by Chapter 5 on ‘Clifford Algebras and

Associated Groups’ beginning with orthogonal transforma-

tions, components of orthogonal groups and special ortho-

gonal groups (det T = 1, T a transformation in the group), an

example of O(1, 1), orthogonal symmetries and reflections.

Then the Cartan–Dieudonné theorem that orthogonal trans-

formations can be represented in Clifford algebra by reflec-

tions with respect to hyperplanes is proved in its weak version;

the strong version shows that n reflections suffice (n = dim V).

For a modern proof of the strong version the reader needs to

look elsewhere [see e.g. Xambó-Descamps (2018)]. Next,

Clifford–Lipschitz groups are discussed as subgroups of the

invertible Clifford element group. Important tools are the

adjoint representation and its twisted version. The latter in

particular leads to elegant representations of the twisted

Clifford–Lipschitz group [defined in equation (5.47)], the

orthogonal and special orthogonal groups. As illustration the

example Cl2,0 is studied. Further notable subgroups of Clif-

ford–Lipschitz groups are pin groups (with group element

norm = �1) and spin groups (even grade group elements with

norm =�1). If the norms = +1, the groups are termed reduced

with symbol index +. The twofold covering of Pin+ for O+ and

Spin+ for SO+ are explained, and a theorem shows that

Spin+(p, q) = fR 2 Clþp;q j ~RRR ¼ R ~RR ¼ 1g, where Cl+ is the even

subalgebra and ~RR the reverse of R. Examples are given for

Spin+(1, 1) and Spin(3). Furthermore, the Lie algebras of the

thus-introduced groups are discussed in Clifford algebra

terms. For example, the commutator algebra of bivectors is

found to be the Lie algebra of Spin+(p, q), and the example of

Spin(3) is given. Then follows a study of conformal transfor-

mations in the context of Clifford algebras, beginning with

plane Möbius transformations, conformal compactification

resulting in O(p + 1, q + 1) as a twofold covering of the

conformal group Conf(p, q). Attention is given to Möbius

transformations in Minkowski spacetime (p = 1, q = 3),

conformal transformations (with details listed in Table 5.1),

and to the Lie algebra of the conformal group, generated by

the bivectors in Cl2,4. The chapter closes with additional

reading recommendations and five instructive exercises. We

note that the two ingredients of the Cartan–Dieudonné

theorem and conformal transformations in Clifford algebras

famously led Hestenes & Holt (2007) to their comprehensive

study of space groups in terms of three specific vector

generators providing the necessary intelligence for the

complete three-dimensional interactive Space Group Visua-

lizer (http://spacegroup.info/, Hitzer & Perwass, 2010), that

can be linked live to the online edition of Volume A of the

International Tables for Crystallography.

The heart of the book really is the overlong Chapter 6 (64

pp.) on ‘Spinors’, which might have been better split into three

chapters. At its beginning the authors clarify three common

notions of spinors: algebraic (spin group in Clifford algebra),

classical (with irreducible spin group representation) and

spinor operators (using the even subalgebra of a Clifford

algebra as representation space). One subsection is devoted to

each of the three common notions of spinors. In the subsection

on algebraic spinors, the classification depends on the value of

p � q mod 8, the results being summarized in Table 6.1 (real

case) and Table 6.2 (complex case). The subsection on classical

spinors relies on the classification of real even subalgebras

(Table 6.3). Here as well the classification depends on p � q

mod 8, and the results are listed in Table 6.4 (real case) and

Table 6.5 (complex case). A more extensive subsection is

devoted to spinor operators as elements of the graded irre-

ducible representation space of Clp,q. Six examples help to

make this notion more concrete. A generalization of spinor

algebra published by Mosna et al. (2003) is reviewed in some

detail, with key roles for the pseudoscalars of Clp,q, Clp0;q0
and

Clp�p0;q�q0
. Examples for Cl1,1, Cl3,0 and Cl4,1 are given. The

next subsection provides a detailed comparison of the three

different spinor definitions, where up to dimension n = 5 all

spinors and spinor operators are listed in Table 6.6. It is

found that the case restricted to complex Clifford algebras is

much simpler and then all three spinor types can easily be

summarized in two lines as in Table 6.7. Detailed examples for

Cl3,0 and Cl1,3 close this subsection on comparisons. Next, the

inner product in the space of algebraic spinors is discussed

with a spinor structure map and two types of inner products

in spinor space, depending on the use of reversion or

Clifford conjugation. An example illustrates this for Cl1,3, and

then the important physics case of charge conjugation is

algebraically described in complexified Clifford algebras.

A further subsection is devoted to the triality principle in

Clifford algebras, basically drawing on material from Benn &

Tucker (1987). For the eight-dimensional Euclidean space V,

the space E is defined as the direct sum of V with its

16-dimensional spinor space S. E is endowed with a commu-

tative, non-associative Chevalley product and an operator

E ! E is constructed and shown to be an order-3 auto-

morphism (Theorem 6.1). This can in particular be realized in

octonion algebra (see Table 6.8) that can in turn be defined as

a special product on the direct sum of real numbers and the

seven-dimensional anti-Euclidean space. A further subsection

concentrates on the treatment of pure spinors as defined by
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Cartan (1938). The Cartan equation vu = 0, where v is a

2r-dimensional complex vector, the spinor u a vector in the

2r-dimensional representation space of the spin group, means

for u not equal to zero that v is isotropic. Example 6.4 thus

employs the Witt decomposition for the real space with

signature (p, q) to construct the maximal totally isotropic

subspaces. Definition 6.4 then defines the general concept of a

pure spinor in Cl(V, g). An alternative pure spinor char-

acterization is specified in Theorem 6.2. A spinor space basis

can always be composed of pure spinors. Then considerations

follow of dual rotations (using the volume element of the

maximal totally isotropic subspace of the complexified base

space), Penrose flagpoles and a generalization of these flag-

poles (via dual rotations). Considered next are Weyl spinors in

Cl3,0, with definitions of dotted and undotted, covariant and

contravariant spinors, respectively, based on idempotents

involving the vector e3. A similar algebraic description is given

for Weyl spinors in Cl0,3 isomorphic to a direct sum of

quaternions. General elements R in Cl3,0 with R conjugate(R)

= 1, hence elements of SLð2;CÞ, allow one to derive the

transformation rules for Weyl spinors. The concept of para-

vectors (combinations of scalars and vectors) in Cl3,0 allows

one to represent spacetime vectors, that can be generated by

Weyl spinors, including the spacetime metric. Furthermore,

paravectors of Cl4,1 can be generated from Cl3,0 as well,

involving the Klein absolute of the real space with signature

(2, 4). Next, twistors are discussed in two ways [following

Keller (1997) on the one hand, and a generic alternative

approach based on Cl4,1 paravectors on the other hand] as

geometric multivectors (elements of the Dirac algebra Cl4,1).

Finally, a quantum-physics-motivated spinor classification by

bilinear covariants is thoroughly developed exclusively in the

language of Clifford algebra. The chapter ends with additional

reading recommendations and a set of five instructive exer-

cises.

For comparison Appendix A gives the ‘Standard Two-

Component Spinor Formalism’ of Weyl spinors, the four types

of contravariant and covariant, dotted and undotted spinors,

null flags, flagpoles and one page on supersymmetry algebra in

conventional terms. This may greatly help readers familiar

with theoretical physics and spinor theory to understand the

correspondence between standard textbook formalism and

the new comprehensive Clifford-algebra-based approach to

spinors presented in great detail in this book.

The authors have taken on a gargantuan task of compre-

hensively casting spinor theory in the language of Clifford

algebras, and based on their own research show how this

opens up new insights and avenues of advancing this field.

They make great efforts to introduce the historic literature

and recommend further reading. Nevertheless, in one instance,

I thought due credit should have been given for what the

authors call ‘an amazing interpretation for a spinor in three-

dimensional Euclidean space’ (p. 163) that carries over to four-

dimensional spacetime (p. 165). Basically, the spinor appears

as a geometric rotation and dilation operator applied to a unit

vector (that had been used to construct a primitive idempo-

tent) resulting in the current density of quantum mechanics.

This result can already be found in Hestenes’ classic Spacetime

Algebra [Hestenes (2015), as listed in the references, p. 235].

In conclusion, the book is written very thoroughly, enhances

previous textbooks on the subject (e.g. Lounesto, 2001),

comprehensively demonstrates that Clifford algebras are the

ideal mathematical language for spinors, and comes with all

the peripherals needed for teaching, self-study or for use as a

reference text; it certainly is worth the money.
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