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Entangled embedded periodic nets and crystal frameworks are defined, along

with their dimension type, homogeneity type, adjacency depth and periodic

isotopy type. Periodic isotopy classifications are obtained for various families of

embedded nets with small quotient graphs. The 25 periodic isotopy classes of

depth-1 embedded nets with a single-vertex quotient graph are enumerated.

Additionally, a classification is given of embeddings of n-fold copies of pcu with

all connected components in a parallel orientation and n vertices in a repeat

unit, as well as demonstrations of their maximal symmetry periodic isotopes. The

methodology of linear graph knots on the flat 3-torus [0,1)3 is introduced. These

graph knots, with linear edges, are spatial embeddings of the labelled quotient

graphs of an embedded net which are associated with its periodicity bases.

1. Introduction

Entangled and interpenetrating coordination polymers have

been investigated intensively by chemists in recent decades.

Their classification and analysis in terms of symmetry,

geometry and topological connectivity is an ongoing

research direction (Batten & Robson, 1998; Carlucci et al.,

2003, 2014; Blatov et al., 2004; Alexandrov et al., 2011). These

investigations also draw on mathematical methodologies

concerned with periodic graphs, group actions and classifica-

tion (Delgado-Friedrichs, 2005; Koch et al., 2006; Schulte,

2014; Bonneau & O’Keeffe, 2015; Baburin, 2016). On the

other hand, it seems that there have been few investigations to

date on the dynamical aspects of entangled periodic structures

with regard to deformations avoiding edge collisions, or with

regard to excitation modes and flexibility in the presence of

additional constraints (Guest et al., 2014). In what follows we

take some first steps in this direction and along the way obtain

some systematic classifications of basic families.

A proper linear 3-periodic net N ¼ ðN; SÞ is a periodic

bond-node structure in 3D with a set N of distinct nodes and a

set S of noncolliding line segment bonds. The underlying

structure graph G ¼ GðN Þ is also known as the topology ofN

(cf. Delgado-Friedrichs et al., 2005). Thus, the net N is an

embedded net for a topology G, it is translationally periodic

with respect to each basis vector of some vector space basis for

the ambient space, the nodes are distinct points, and the bonds

of N are noncolliding straight-line segments between nodes.

We also define the companion structure of a crystallographic

bar-joint framework C. In this case the bonds are of fixed

lengths which must be conserved in any continuous motion.

Additionally a 3-periodic graph (G, T) is a pair in which a

countable graph G carries a specific periodic structure T.
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Formal definitions of the periodic entities C;N and G are

given in Definitions 2.1, 2.4 and 2.5. In crystallographic

terminology it is usual in such definitions to require connect-

edness (Delgado-Friedrichs & O’Keeffe, 2003). However, we

find it convenient in these definitions to extend the usage to

cover disconnected periodic structures.

Subclasses of linear d-periodic nets N in Rd are defined in

terms of the diversity of their connected components and we

indicate the connections between these class divisions and

those used for entangled coordination polymers. In particular,

we define the dimension type, which gives a list of the periodic

ranks of connected subcomponents, and the homogeneity type

which concerns the congruence properties between these

components.

Fundamental to the structure of an embedded periodic net

are its labelled quotient graphs which are finite edge-labelled

graphs determined by periodicity bases. In particular the

infinite structure graph GðN Þ is determined by any labelled

quotient graph of this kind, and the (unique) quotient graph

QGðN Þ is the graph of the labelled quotient graph of a

primitive periodicity basis. These constructs for N provide

useful discriminating features for embedded nets even if they

are insensitive to entanglement and catenation.

Our main concern is the entangled nature of linear periodic

nets in 3-space which have more than one connected

component; however we also consider the self-entanglement

of connected structures. Specifically, we approach the classi-

fication of linear periodic nets in terms of a formal notion of

periodic isotopy equivalence, as given in Definition 6.1. This

asserts that two embedded periodic nets in R3 are periodically

isotopic if there is a continuous path of noncrossing embedded

periodic nets between them which is associated with a

continuous path of periodicity bases. In this way we formalize

an appropriate variant of the notion of ambient isotopy which

is familiar in the theory of knots and links.

As a tool for understanding periodic isotopy we define

linear graph knots on the flat 3-torus and their isotopy

equivalence classes. Such a graph knot is a spatial graph in the

3-torus which is a geometric realization (embedding) of the

labelled quotient graph of a linear periodic net arising from a

choice of right-handed periodicity basis for N . We prove a

natural finiteness theorem (Theorem 6.4) showing that there

are finitely many periodic isotopy types of linear graph knots

with a given labelled quotient graph. This in turn implies that

there are finitely many periodic isotopy types of linear

3-periodic nets with a given labelled quotient graph.

Our discussions and results are structured as follows.

Sections 2 to 6 cover terminology, illustrative examples and

general underlying theory. In Section 7 we give group theory

methods, while in Sections 8, 9 and 10 we give a range of

results, determining periodic isotopy classes and topologies for

various families of embedded nets.

More specifically, in Section 2 we give comprehensive

terminology, ab initio, and give the connections with terms

used for coordination polymers and with the net notations of

both the Reticular Chemistry Structural Resource (RCSR)

(O’Keeffe et al., 2008) and ToposPro (Blatov et al., 2014). In

the key Section 3 we discuss labelled and unlabelled quotient

graphs. The example considered in detail in Section 3.1 illus-

trates terminology and motivates the introduction of model

nets for the analysis of periodic isotopy types (periodic

isotopes). In Section 4 we define primitive periodicity bases

and introduce a measure of adjacency depth for an embedded

net. In Section 5, as preparation for the discussion of periodic

isotopy for embedded nets, we define linear graph knots on

the flat 3-torus T3
¼ ½0; 1Þ3 as spatial graphs with (general-

ized) line segment edges. In Section 6 we discuss various

isotopy equivalences for graph knots. Also we define periodic

isotopy equivalence for embedded nets and prove that it is an

equivalence relation and that there are finitely many periodic

isotopes with a common labelled quotient graph. In the

group methods of Section 7 we give the group–supergroup

construction of entangled nets (Baburin, 2016), the definition

of maximal symmetry periodic isotopes, and the role of

Burnside’s lemma in counting periodic isotopes. In Section 8

we determine periodic isotopy classes and also restricted

periodic isotopy classes for various multicomponent shift

homogeneous embeddings of n-fold pcu. Such multi-

component embedded nets are related to the interpenetrated

structures with translationally equivalent components which

are abundant in coordination polymers. For generic embed-

dings we give proofs based on Burnside’s lemma for counting

orbits of spatially equivalent embeddings, while for maximal

symmetry embeddings for n-pcu we use computations based

on group–supergroup methods. In Section 9 we give a detailed

determination of the 19 topologies and periodic isotopy

classes of connected linear 3-periodic nets with a single-vertex

quotient graph and adjacency depth 1 (Table 3). In the final

section we indicate further research directions.

2. Terminology

In any investigation with cross-disciplinary intentions, in our

case between chemistry (reticular chemistry and coordination

polymers) and mathematics (isotopy types and periodic

frameworks), it is important to be clear of the meaning of

terms. Accordingly we begin by defining all terminology from

scratch.

The structure graph G = (V, E) of a finite or countably

infinite bar-joint framework G is given a priori since, formally,

a bar-joint framework G in Rd is a pair (G, p) consisting of a

simple graph G, the structure graph, together with a place-

ment map p : V ! R
d; p : v! pðvÞ. The joints of G are the

points p(v) and the bars of G are the (unordered) joint pairs

p(v)p(w) associated with the edges vw in E. It is often assumed

that p(v) 6¼ p(w) for the edges vw and hence the bars may also

be considered to be the associated nondegenerate line

segments [p(v), p(w)].

A d-periodic bar-joint framework in R
d is a bar-joint

framework G ¼ ðG; pÞ in Rd whose periodicity is determined

by two sets Fv, Fe of noncoincident joints p(v) and bars

p(u)p(w), respectively, together with a set of basis vectors for

translational periodicity, say a ¼ fa1; . . . ; adg. The require-

ment is that the associated translates of the set Fv and the set
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Fe are, respectively, disjoint subsets of the set of joints and the

set of bars whose unions are the sets of all joints and bars. In

particular p is an injective map.

The pair of sets (Fv, Fe) is a building block, or repeating

unit, for G. We refer to this pair of sets also as a motif for G for

the basis a and note that G is determined uniquely by any pair

of periodicity basis and motif. In fact we shall only be

concerned with finite motifs. Also, for 1 � d0 < d we similarly

define a d0-periodic bar-joint framework in Rd as one that is

generated by a finite motif and a linearly independent set of d0

vectors for translational periodicity.

Definition 2.1. A crystallographic bar-joint framework C in

R
d, or crystal framework, is a d-periodic bar-joint framework

in Rd with finitely many translation classes for joints and bars.

Viewing C as a bar-joint framework, rather than as a

geometric d-periodic net, is a conceptual prelude to the

consideration of dynamical issues of flexibility and rigidity

(Power, 2014a), one in which we may bring to bear geometric

and combinatorial rigidity theory. Note however that we have

not required a crystal framework to be connected.

In the case of a 3D crystal framework C, particularly an

entangled one of material origin, it is natural to require that

the line segments [p(v), p(w)], for vw 2 E, are essentially

disjoint in the sense that they intersect at most at a common

endpoint p(x) for some x 2 V. We generally adopt this

noncrossing assumption and say that C is a proper crystal

framework in this case. Thus a proper crystal framework C

determines a closed set, denoted jCj, formed by the union of

the (nondegenerate) line segments [p(v), p(w)], for vw 2 E.

We call this closed set the body of C. By our assumptions one

may recover C from its body and the positions of the joints.

The connected components of a crystal framework may

have a lower rank (or dimension) of periodicity. Accordingly

we make the following definition.

Definition 2.2. A subperiodic crystal framework, or

d0-periodic crystal framework, with rank 1 � d0 < d, is a

d0-periodic bar-joint framework in Rd, with d0 linearly inde-

pendent period vectors and finitely many translation classes

for joints and bars.

For completeness we define a 0-periodic bar-joint frame-

work in Rd to be a finite bar-joint framework inRd. Thus every

connected component of a crystal framework in Rd is either

itself a crystal framework in Rd or is a subperiodic crystal

framework with rank 1� d0 � d, or is a finite framework. Note

that a subperiodic subframework exists for C if and only if C

has infinitely many connected components, that is, if and only

if the body of C has infinitely many topologically connected

components.

In view of the finiteness requirement for the d0-periodic

translation classes, a subperiodic crystal framework inRd has a

joint set consisting of finitely many translates of a sublattice of

rank d0. In general connected d0-periodic subperiodic frame-

works may differ in the nature of their affine span, or spatial

dimension, which may take any integral value between d0 and

d. Formally, the spatial dimension is the dimension of the

linear span of all the so-called bar vectors p(w) � p(v) asso-

ciated with the bars p(v)p(w) of the framework. Once again

we define a subperiodic framework to be proper if there are no

intersections of edges.

The various definitions above, and also the following defi-

nition of dimension type, transpose immediately to the simpler

category of linear periodic nets N , as defined in the next

section.

We now introduce the general terminology which is specific

to 3D space. Also we indicate how later this formulation of

dimension type aligns with the terminology used by chemists

for entangled periodic nets.

Definition 2.3. A periodic or subperiodic framework C in 3D

space has dimension type d ¼ fd0; d1; . . . ; dsg, where d0 is the

periodicity rank of C and where d1, . . . , ds is the decreasing list

of periodicity ranks of the connected components. (In the

symbol, a number representing the periodicity rank of a

component is listed only once even if it occurs as the rank of

several components.)

In particular there are 15 dimension types d for periodicity

rank-3 crystallographic frameworks, or for linear 3-periodic

nets, namely

f3; 3g; f3; 3; 2g; f3; 3; 1g; f3; 3; 0g; f3; 3; 2; 1g; f3; 3; 2; 0g;

f3; 3; 1; 0g; f3; 3; 2; 1; 0g f3; 2g; f3; 2; 1g; f3; 2; 0g;

f3; 2; 1; 0g; f3; 1g; f3; 1; 0g; f3; 0g:

2.1. Categories of periodic structures

Consider the following frequently used terms for periodic

structures, arranged with an increasing mathematical flavour:

crystal, crystal framework, linear periodic net, periodic graph,

topological crystal.

We have defined proper crystal frameworks in R
d with

essentially disjoint bars and these may be viewed as forming

an ‘upper category’ of periodic objects for which there is

interest in bar-length-preserving dynamics. If we disregard bar

lengths, but not geometry, then we are in the companion

category of positions, or line drawings, or embeddings of

d-periodic nets in Rd. Such embeddings are of interest in

reticular chemistry and in this connection we may define a

linear d-periodic net in Rd to be a pair (N, S), consisting of a

set N of nodes and a set S of line segments, where these sets

correspond to the joints and bars of a proper d-periodic crystal

framework. A stand-alone definition is the following.

Definition 2.4. A (proper) linear d-periodic net in Rd is a

pair N ¼ ðN; SÞ where (i) S, the set of edges (or bonds) of N ,

is a countable set of essentially disjoint line segments [p, q],

with p 6¼ q, (ii) N, the set of vertices (or nodes) ofN , is the set

of endpoints of members of S, (iii) there is a basis of vectors

for Rd such that the sets N and S are invariant under the
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translation group T for this basis, (iv) the sets N and S

partition into finitely many T -orbits.

Thus a linear periodic net can be thought of as a proper

linear embedding of the structure graph of a crystal frame-

work, the relevant crystal frameworks being those with no

isolated joints of degree 0. Note that a linear periodic net is

not required to be connected.

A linear d-periodic net is referred to in reticular chemistry

as an embedding of a ‘d-periodic net’. This is because the term

d-periodic net has been appropriated for the underlying

structure graph of a linear periodic net. See Delgado-

Friedrichs & O’Keeffe (2003), for example. This reference, to

a more fundamental category on which to build, so to speak,

then allows one to talk of a d-periodic net having an embed-

ding with, perhaps, certain symmetry attributes. It follows

then, tautologically, that a d-periodic net is a graph with

certain periodicity properties and we formally specify this in

Definition 2.5.

The next definition is a slight variant of the definition given

by Delgado-Friedrichs (2005), in that we also require edge

orbits to be finite in number.

Definition 2.5. (i) A periodic graph is a pair (G, T), where G

is a countably infinite simple (abstract) graph and T is a free

abelian subgroup of Aut(G) which acts on G freely and is such

that the sets of vertex orbits and edge orbits are finite. The

group T is called a translation group for G and its rank is

called the dimension of (G, T). (ii) A d-periodic graph or a

d-periodic net is a periodic graph of dimension d. (iii) The

translation group T and the periodic graph (G, T) are maximal

if no periodic structure (G, T0) exists with T0 a proper super-

group of T.

The subgroup T [or the pair (G, T)] is referred to as a

periodic structure on G. Some care is necessary with assertions

such as ‘N is an embedding of a 3-periodic net G’. This has

two interpretations according to whether G comes with a

given periodic structure T which is to be represented faithfully

in the embedding as a translation group or, on the other hand,

whether the embedding respects some periodic structure T0 in

AutðGÞ.

Finally we remark that there is another category of nets

which is relevant to more mathematical considerations of

entanglement, namely string-node nets in the sense of Power

& Schulze (2018). In the discrete case these have a similar

definition to linear periodic nets but the edges may be

continuous paths rather than line segments.

2.2. Maximal symmetry, the RCSR and self-entanglement

Let N be a linear d-periodic net. Then there is a natural

injective inclusion map

�N : SðN Þ ! AutðGðN ÞÞ

from the usual symmetry group (space group) SðN Þ of N to

the automorphism group of its structure graph GðN Þ.

Definition 2.6. Let N be a linear d-periodic net. (i) The

graphical symmetry group of N is the automorphism group

AutðGðN ÞÞ. This is also called the maximal symmetry group

of N . (ii) A maximal symmetry embedding of GðN Þ is an

embedded netM for which GðMÞ ¼ GðN Þ and the map �M is

a group isomorphism.

A key result of the work of Delgado-Friedrichs (2003, 2005)

shows that many connected 3-periodic graphs have unique

maximal symmetry placements, possibly with edge crossings.

These placements arise for a so-called stable net by means of a

minimum-energy placement, associated with a fixed lattice of

orbits of a single node, followed by a renormalization by the

point group of the structure graph. In fact a stable net is

defined as one for which the minimum-energy placement has

no node collisions. See also Delgado-Friedrichs & O’Keeffe

(2003), Sunada (2013). While maximum-symmetry positions

for connected stable nets are unique, up to spatial congruence

and rescaling, edge crossings may occur for simply defined

nets because, roughly speaking, the local edge density is too

high. It becomes an interesting issue then to define and

determine the finitely many classes of maximum-symmetry

proper placements and this is true also for multicomponent

nets. See Section 7.1.

The RCSR (O’Keeffe et al., 2008) is a convenient online

database which, in part, defines a set of around 3000 topolo-

gies G together with an indication of their maximal symmetry

embedded nets. The graphs G are denoted in bold notation,

such as pcu and dia, in what is now standard nomenclature. We

shall make use of this and denote the maximal symmetry

embedding of a connected topology abc as N abc. This deter-

mines N abc as a subset of R3 up to a scaling factor and spatial

congruence. ToposPro (Blatov et al., 2014) is a more sophis-

ticated program package, suitable for multipurpose crystal-

lochemical analysis and has a more extensive periodic net

database. In particular it provides labelled quotient graphs for

3-periodic nets.

Both these databases give coordination density data which

can be useful for discriminating the structure graphs of

embedded nets.

In Section 6 we formalize the periodic isotopy equivalence

of pairs of embedded nets. One of our motivations is to

identify and classify connected embedded nets which are not

periodically isotopic to their maximal symmetry embedded

net. We refer to such an embedded net as a self-entangled

embedded net.

2.3. Derived periodic nets

We remark that the geometry and structural properties of a

linear periodic net or framework can often be analysed in

terms of derived nets or frameworks. These associated struc-

tures can arise through a number of operations and we now

indicate some of these.
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(i) The periodic substitution of a (usually connected) finite

unit with a new finite unit (possibly even a single node) while

maintaining incidence properties. This move is common in

reticular chemistry for the creation of ‘underlying nets’

(Alexandrov et al., 2011; O’Keeffe & Yaghi, 2012).

(ii) A more sophisticated operation which has been used for

the classification of coordination polymers replaces each

minimal ring of edges by a node (barycentrically placed) and

adds an edge between a pair of such nodes if their minimal

rings are entangled. In this way one arrives at the Hopf ring

net (HRN) of an embedded net N (Alexandrov et al., 2012,

2017). This is usually well defined as a (possibly improper)

linear 3-periodic net and it has proven to be an effective

discriminator in the taxonomic analysis of crystals and coor-

dination polymer databases.

(iii) There are various conventions in which notational

augmentation is used (O’Keeffe et al., 2008) to indicate the

derivation of an embedded net or its relationship with a parent

net. In the RCSR listing, for example, the notation pcu-c4

indicates the topology made up of four disjoint copies of pcu

(O’Keeffe et al., 2008). In Tables 1, 2 we use a notation for

model embedded nets, such asMff
pcu; . . ., which is indicative of

a hierarchical construction.

(iv) On the mathematical side, in the rigidity theory of

periodic bar-joint frameworks C there are natural periodic

graph operations and associated geometric moves, such as

periodic edge contractions, which lead to inductive schemes

in proofs. In particular periodic Henneberg moves, which

conserve the average degree count, feature in the rigidity

and flexibility theory of such frameworks (Nixon & Ross,

2015).

2.4. Types of entanglement and homogeneity type

Let us return to descriptive aspects of disconnected linear

3-periodic nets N in R3.

We first note the following scheme of Carlucci et al. (2014)

which has been used in the classification of observed entan-

gled coordinated polymers. Such a coordination polymer, P

say, is also a proper linear d-periodic net N in R3, and this is

either of full rank d = 3, or is of subperiodicity rank 1 � d < 3,

or is a finite net (which we shall say has rank 0). Let P be a

d-periodic coordination polymer in R3. Then P is said to

be (i) in the interpenetration class if all connected components

of N are also d-periodic, (ii) in the polycatenation class

otherwise.

Thus P is in the interpenetration class if and only if the

dimension type of its net is {3; 3}, {2; 2}, {1; 1} or {0; 0}.

The entangled coordination polymers in the interpenetra-

tion class may be further divided as subclasses of n-fold type,

according to the number n of components, where, necessarily,

n is finite.

The linear 3-periodic nets in the polycatenation class have

some components which are subperiodic and in particular

they have countably many components. When all the

components are 2-periodic, that is, when N has dimension

type {3; 2}, then N is either of parallel type or inclined type.

Parallel type is characterized by the common coplanarity of

the periodicity vectors of the components, whereas N is of

inclined type if there exist two components which are not

parallel in this manner. The diversity here may be neatly

quantified by the number, �2 say, of planes through the origin

that are determined by the (pairs of) periodicity vectors of the

components.

Similarly, the disconnected linear 3-periodic nets of

dimension type {3; 1} can be viewed as being of parallel type,

with all the 1-periodic components going in the same direc-

tion, or, if not, as inclined type. In fact there is a natural further

division of the nonparallel (inclined) types for the nets of

dimension type {3; 1} according to whether the periodicity

vectors for the components are coplanar or not. We could

describe such nets as being of coplanar inclined type and triple

inclined type, respectively. The diversity here may also be

neatly quantified by the number, �1 say, of lines through the

origin that are determined by the periodicity vectors of the

components.

The disconnected nets of parallel type are of particular

interest for their mathematical and observed entanglement

features, such as Borromean entanglement and woven or

braided structures (Carlucci et al., 2014; Liu et al., 2018).

The foregoing terminology is concerned with the periodic

and subperiodic nature of the components of a net without

regard to further comparisons between them. On the other

hand, the following terms identify subclasses according to the

possible congruence between the connected components.

N is of homogeneous type if its components are pairwise

congruent. Here the implementing congruences are not

assumed to belong to the space group.

N is n-heterogeneous, with n > 1, if there are exactly n

congruence classes of connected components.

Thus every 3-periodic linear net N in R
3 is either of

homogeneous type or n-heterogeneous for some n = 2, 3, . . . .

The homogeneous linear 3-periodic nets split into two

natural subclasses.

N is of shift-homogeneous type if all components are

pairwise translationally equivalent (shift equivalent). Other-

wise, when N contains at least one pair of components which

are not shift equivalent then we say that the homogeneous net

N is of rotation type.

Finally we take account of the space group ofN to specify a

very strong form of homogeneity: each of the two homo-

geneous types contains a further subtype according to whether

N is also of transitive type or not, where N is component

transitive (or is of transitive type) if the space group ofN acts

transitively on components.

Such component transitive periodic nets have been

considered in detail by Baburin (2016) with regard to their

construction through group–supergroup methods.

Note that a homogeneous linear 3-periodic net in R3 which

is not connected falls into exactly one of 16 possible dimen-

sion–homogeneity types according to the four possible types

of homogeneity and the four possible dimension types d,

namely d ¼ f3; 3g; f3; 2g; f3; 1g or {3; 0}. For a full list of

correspondences see Fig. 1.
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2.5. Catenation and Borromean entanglement

To the dimension–homogeneity type division of multi-

component embedded nets one may consider further

subclasses which are associated with entanglement features

between the components. Indeed, our main consideration in

what follows is a formalization of such entanglement in terms

of linear graph knots. We note here some natural entangle-

ment invariants of Borromean type. In fact the embedded nets

of dimension type {3; 2} have been rather thoroughly identified

by Carlucci et al. (2014), Alexandrov et al. (2017) where it is

shown that subdimensional 2-periodic components can be

catenated or woven in diverse ways.

To partly quantify this one may define the following

entanglement indices. LetN be such a parallel type embedded

net, with dimension type {3; 2}, and let S be a finite set of

components. Then a separating isotopy of S is a continuous

deformation of S to a position which properly lies on both

sides of the complement of a plane in R3. If there is no

separating isotopy for a pair S ¼ fN i;N jg of components of

N then we say that they are entangled components, or are

properly entangled. This partial definition can be made

rigorous by means of a formal definition of periodic isotopy.

We may then define the component entanglement degree of a

componentN i ofN to be the maximum number, �ðN iÞ say, of

components N j which can form an entangled pair with N i.

Also the component entanglement degree of N itself may be

defined to be the maximum such value.

Likewise, one can define the entanglement degrees of

components for embedded nets of dimension type {3; 1} and

for the subdimensional nets of dimension type {2; 2} (woven

layers) and dimension type {1; 1} (braids). More formally, we

may say that N has Borromean entanglement if there is a set

of n � 3 connected components which admit no separating

periodic isotopy while, on the other hand, every pair in this set

admits a separating periodic isotopy. In a similar way one can

formalize the notion of Brunnian catenation (Liang & Mislow,

1994) for a multicomponent embedded net.

2.6. When topologies are different

Two standard graph isomorphism invariants used by crys-

tallographers are the point symbol and the coordination

sequence.

In a vertex transitive countable graph G the point symbol

(PS), which appears as 42464 for bcu for example, indicates the

multiplicities (24 and 4) of the cycle lengths (4 and 6) for a set

of minimal cycles which contain a pair of edges incident to a

given vertex. If the valency (or coordination) of G is r then

there are r(r � 1)/2 such pairs and so the multiplicity indices

sum to r(r � 1)/2. For G nontransitive on vertices the point

symbol is a list of individual point symbols for the vertex

classes (Blatov et al., 2010).

The coordination sequence (CS) of a vertex transitive

countable graph G is usually given partially as a finite list of

integers associated with a vertex v, say n1, n2, n3, n4, n5, where

nk is the number of vertices w 6¼ v for which there is an edge

path from v to w of length k but not of shorter length. For bcu

this sequence is 8, 26, 56, 98, 152. Cumulative sums of the CS

are known as topological densities, and the RCSR, for

example, records the tenfold sum, td10.

Even the entire CS is not a complete invariant for the set

of underlying graphs of embedded periodic nets. However,

this counting invariant can be useful for discriminating nets

whose local structures are very similar. A case in point is

the pair 8T17 and 8T21 appearing in Table 3, which have

partial coordination sequences 8, 32, 88 and 8, 32, 80,

respectively.

3. Quotient graphs

We now define quotient graphs (QGs) and labelled quotient

graphs (LQGs) associated with the periodic structure bases of

a linear periodic net N . Although QGs and LQGs are not

sensitive to entanglement they nevertheless offer a means of

subcategorizing linear periodic nets. See, for example, the

discussions by Eon (2011, 2016), Klee (2004), Klein (2012),

Thimm (2004) and Section 4.3 below.

Let N ¼ ðN; SÞ be a linear 3-periodic net with periodic

structure basis a ¼ fa1; a2; a3g. Then N is completely deter-

mined by a and any associated building block motif (Fv, Fe). It
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is natural, especially in illustrating examples, to choose the set

Fe of edges of N to be as connected as possible and to choose

Fv to be a subset of the vertices of these edges. Let T denote

the translation group associated with a, so that T is the set of

transformations

Tk : ðx; y; zÞ ! ðx; y; zÞ þ k1a1 þ k2a2 þ k3a3; k 2 Z3:

Each (undirected) line segment edge p(e) in Fe has the form

[Tkp(ve), Tlp(we)], where p(ve) and p(we) are the representa-

tives in Fv for the endpoint nodes Tkp(ve), Tlp(we) of the edge

p(e). The labels k and l here may be viewed as the cell labels or

translation labels associated with endpoints of p(e). [As before

ve, we indicate vertices of the underlying structure graph

GðN Þ.]

The LQGðN ; aÞ of the pair ðN ; aÞ is a finite multigraph

together with a directed labelling for each edge, where the

labelling is by elements k 2 Z3. The vertices correspond to (or

are labelled by) the vertices v of the nodes p(v) in Fv, and the

edges correspond to edges p(e) in Fe. The directedness is

indicated by the ordered pair (ve, we), or by vewe (viewed as

directedness ‘from ve to we’). The label for this directed edge is

then k � l where k, l are the translation labels as in the

previous paragraph, and so the labelled directed edge is

denoted (vewe, k � l). There is no ambiguity since the directed

labelled edge (vewe, k � l) is considered to be the same

directed edge as (weve, l � k). In particular the following

definition of the depth of a labelled directed graph is well

defined.

Definition 3.1. LetH ¼ ðH; �Þ be any LQG. Then the depth

of H is the maximum modulus of the coordinates of the edge

labels.

The QGðN ; aÞ of the pair ðN ; aÞ is the undirected graph G

obtained from the LQG. If a is a primitive periodicity basis,

that is, one associated with a maximal lattice in N , then

QGðN ; aÞ is independent of a and is the usual quotient graph

of N in which the vertices are labelled by the translation

group orbits of the nodes. Primitive periodicity bases are

discussed further in the next section. Moreover, we identify

there the ‘preferred’ primitive periodicity bases which have a

‘best fit’ forN in the sense of minimizing the maximum size of

the associated edge labels.

Definition 3.2. The QGðN Þ of a linear periodic net N in Rd

is the unlabelled multigraph graph of the LQG determined by

a primitive periodicity basis.

Finally we remark on the homological terminology related

to the edge labellings of a LQG. The homology group

H1ðT
3;ZÞ of the 3-torus T3 is isomorphic to Z

3. In this

isomorphism the standard generators of Z3 may be viewed as

corresponding to (homology classes of) three 1-cycles which

wind once around the 3-torus (which we may parametrize

naturally by the set [0, 1)3) in the positive coordinate direc-

tions. Also, we may associate the standard ordered basis for Z3

with a periodicity basis a for N . In this case the sum of the

labels of a directed cycle of edges in the labelled quotient

graph is equal to the homology class of the associated closed

path in T3.

3.1. Embedded nets with a common LQG

We now consider the family of all linear 3-periodic nets

(proper embedded nets) which have a periodic structure basis

determining a particular common LQG. This discussion illu-

minates some of the terminology set out so far and it also gives

a prelude to discussions of periodic isotopy. Also it motivates

the introduction of model nets and linear graphs knots on the

3-torus.

Let H be the 6-coordinated graph with two vertices v1, v2,

two connecting edges between them and two loop edges on

each vertex. (We say that a finite or countable graph is

n-coordinated if every vertex has valency n.) Let (H, �) be the

LQG with labels (0, 0, 1), (1, 1, 1) for the loop edges for v1,

labels (0, 1, 0), (0, 0, 1) for the loop edges for v2, and labels

(0, 0, 0), (0, �1, �1) for the two directed edges from v1 to v2.

Let N be an embedded net with a general periodic structure

basis a such that LQGðN ; aÞ ¼ ðH; �Þ. (In particular N has

adjacency depth 1, as defined in the next section.) Note that

the four loop edges on v1 and v2 imply that N has two

countable sets of 2D parallel subnets all of which are pairwise

disjoint. These subnets are either parallel to the pair {a2, a3} or

to the pair {a3, a1 + a2 + a3}. In particular if N
0
� N is the

embedded net which is the union of these 2D subnets then N
0

is a derived net ofN of dimension type {3; 2}. AlsoN
0
is in the

polycatenation class of inclined type (rather than parallel

type). By means of a simple oriented affine equivalence (see

Definition 4.3) the general pair ðN ; aÞ with LQG(H, �) is

equivalent to a pair ðM; bÞ, having the same LQG, where b is

the standard right-handed orthonormal basis. We shall call the

pair ðM; bÞ a model net.

By translation (another oriented affine transformation) we

may assume that there is a node p1 ofM at the origin which is

associated with the vertex v1 of H. Let p2 be the unique node

associated with v2 which lies in the unit cell [0, 1)3. Now the

pair ðM; bÞ is uniquely determined by p2 and we denote it

simply as Mðp2Þ. Fig. 2 illustrates the part of the linear

periodic netMðp2Þ which is visible in [0, 1)3. In Section 5 we

shall formalize diagrams such as Fig. 2 in terms of linear graph

knots on the flat 3-torus.

With this normalization the point p2 can be any point in

[0, 1)3, subject to the essential disjointness of edges, and we

writeO for this set of positions of p2. Note that as p2 moves on

a small closed circular path around the main diagonal its

incident edges are determined and there will be five edge

crossings with the diagonal. In fact the two vertical edges and

the two horizontal edges which are incident to p2 contribute

two crossings each, and the other edge incident to p2 contri-

butes one crossing. These are the only edge crossings that

occur as p2 ‘carries’ its six edges of incidence during this

motion. It follows from similar observations that O is the

disjoint union of five pathwise connected sets.
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In this way we see that a pair of nets Mðp2Þ;Mðp
0
2Þ, with

p2, p2
0 in the same component set, are strictly periodically

isotopic in the sense that there is a continuous path of linear

periodic nets between them, each of which has the same

periodic structure basis, namely b. From this we may deduce

that there are at most five periodic isotopy classes of

embedded nets N which have the specific LQG (H, �) for

some periodic structure. Conceivably there could be fewer

periodic isotopy classes since we have not contemplated

isotopy paths of nets, with associated paths of periodicity

bases, for which the LQG changes several times before

returning to (H, �).

Let us also note the following incidental facts about the nets

Mðp2Þ. They are 6-coordinated periodic nets and so provide

examples of critically coordinated bar-joint frameworks, of

interest in rigidity theory and the analysis of rigid unit modes.

This is also true of course for all frameworks with the same

underlying quotient graph.

4. Adjacency depth and model nets

We now define the adjacency depth of a linear 3-periodic net

N . This positive integer can serve as a useful taxonomic index

and in Sections 9, 10 we determine, in the case of some small

quotient graphs, the 3-periodic graphs which possess an

embedding as a (proper) linear 3-periodic net with depth 1.

These identifications also serve as a starting point for the

determination of the periodic isotopy types of more general

depth-1 embedded nets.

We first review maximal periodicity lattices for embedded

nets N and their primitive periodicity bases.

4.1. Primitive periodic structure

Let a be a vector space basis for Rd which consists of a

periodicity basis for a linear d-periodic net N . The associated

translation group T ðaÞ of isometries of N is a subgroup of the

space group of N . We say that a is a primitive, or a maximal

periodicity basis, if there is no periodicity basis b such that

T ðaÞ is a proper subset of T ðbÞ.

We focus on 3D and in order to distinguish mirror-related

nets we generally consider right-handed periodicity bases of

the embedded nets N .

The next well-known lemma shows that different right-

handed primitive bases are simply related by the matrix

of an invertible transformation with integer entries and

determinant 1. Let GLðd;RÞ be the group of invertible d � d

real matrices, viewed also as linear transformations of Rd, and

let GLþðd;RÞ be the subgroup of matrices with positive

determinant. Also, let SLðd;RÞ be the subgroup of elements

with determinant 1, and SLðd;ZÞ the subgroup of SLðd;RÞ
with integer entries.

Lemma 4.1. Let N ¼ ðN; SÞ be a linear 3-periodic net in R3

with a primitive right-handed periodicity basis b and a right-

handed periodicity basis a. Then a is primitive if and only if

there is a matrix Z 2 SLð3;ZÞ with a ¼ Zb ¼ ðZb1;Zb2;Zb3Þ.

4.2. The adjacency depth �ðN Þ of a linear periodic net

While certain elementary linear periodic nets N have

‘natural’ primitive periodicity bases, it follows from Lemma

4.1 that such a basis is not determined by N . It is natural then

to seek a preferred basis a which is a ‘good fit’ in some sense.

The next definition provides one such sense, namely that the

primitive basis a should be one that minimizes the adjacency

depth of the pair ðN ; aÞ.

Definition 4.2. The adjacency depth of the pair ðN ; aÞ,

denoted �ðN ; aÞ, is the depth of the LQGðN ; aÞ, that is the

maximum modulus of its edge labels. The adjacency depth, or

depth, of N is the minimum value, �ðN Þ, of the adjacency

depths �ðN ; bÞ taken over all right-handed primitive peri-

odicity bases b.

Let N be a linear 3-periodic net with periodicity basis a.

Consider the semi-open parallelepipeds (rhomboids)

Pk : ¼ PkðaÞ :

¼ ft1a1 þ t2a2 þ t3a3 : ki � ti < ki þ 1; 1 � i � 3g;

k 2 Z3:

These sets form a partition of R3, with Pk viewed as a unit cell

with label k. Note that each cell Pj has 26 ‘neighbours’, given

by those cells Pl whose closures intersect the closure of Pk.

(For diagonal neighbours this intersection is a single point.)

Thus we have the equivalent geometric description that

�ðN Þ ¼ 1 if and only if there is a primitive periodicity basis

such that the pair of end nodes of every edge lie in neigh-

bouring cells of the cell partition, where here we also view

each cell as a neighbour of itself.

It should not be surprising that for the connected embedded

periodic nets of materials the adjacency depth is generally 1.

Indeed, while the maximum symmetry embeddingN elv for the

net elv has adjacency depth 2, it appears to us to be the only

connected example in the current RCSR listing with �ðN Þ> 1.

The periodic net elv gets its name from the fact that its
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(a) A labelled quotient graph (H, �). (b) Part of the net Mðp2Þ in the
cube [0, 1)3 where Mðp2Þ is determined by the LQG together with the
standard basis periodic structure b, a node p1 at the origin and the node p2

in the unit cell [0, 1)3.



minimal edge cycles have length 11. On the other hand, in

Section 8 we shall see simple examples of multicomponent

nets with adjacency depth equal to the number of connected

components.

Definition 4.3. Let N i = ðNi; SiÞ, i = 1, 2, be linear

3-periodic nets in R3. Then N 1 and N 2 are affinely equivalent

[respectively, orientedly (or chirally) affinely equivalent] if

there are translates of N 1 and N 2 which are conjugate by a

matrix X in GLð3;RÞ [respectively, GLþð3;RÞ].

It follows from the definitions that ifN 1 andN 2 are affinely

equivalent then they have the same adjacency depth.

The next elementary lemma is a consequence of the fact

that linear 3-periodic nets are, by assumption, proper in the

sense that their edges must be noncrossing (i.e. essentially

disjoint).

Lemma 4.4. Let N be a linear 3-periodic net with a depth-1

LQG (H, �). Then there are at most seven loop edges on each

vertex of H and the multiplicity of edges between each pair of

vertices is at most 8.

Proof. Let a be a periodic structure basis such that

�ðN ; aÞ ¼ 1. Without loss of generality we may assume that a

is an orthonormal basis. Let p1 be a node of N . Let p2, . . . , p8

be the nodes Tkp1 where k 6¼ (0, 0, 0) with coordinates equal

to 0 or 1, and let p9, . . . , p27 be the nodes Tkp1 for the

remaining values of k with coordinates equal to 0, 1 or �1.

Every line segment [p1, pt] with t � 9 has a lattice translate

which either coincides with or intersects, at midpoints, one of

the line segments [p1, pt] with t < 9. Since N has no edge

crossings it follows that there are at most seven translation

classes for the edges associated with multiple loops of H at a

vertex.

We may assume that p1 = (0, 0, 0). Let q1 be a node in (0, 1)3

in a distinct translation class. Since the depth is 1 it follows that

the edges [q1, p] in N with p a translate of p1, correspond to

the positions p = �, where � 2 Z3 has coordinates taking the

values�1, 0 or 1. The possible values of � are also the labels in

the quotient graph of N for the edges directed from the orbit

vertex of p1 to the orbit vertex of q1. There are thus 27

possibilities for the edges [q1, p], and we denote the terminal

nodes p by �a, �b, . . . .

SinceN is a proper net, with no crossing edges, we have the

constraint that k = (�a� �b)/2 is not a lattice point for any pair

�a, �b. For otherwise [q1 + k, �b + k] is an edge of N and its

midpoint coincides with the midpoint of [q1, �a]. It follows

from the constraint that there are at most eight terminal

nodes. &

The following proposition gives a necessary condition for a

general 3-periodic graph (G, T) to have an embedding as a

proper linear 3-periodic net. Moreover this condition is useful

later for the computational determination of possible

topologies for nets which have a quotient graph with one or

two vertices.

We say that a LQG (H, �) has the divisibility property, or is

divisible, if for some pair of labelled edges (v1v2, k), (v1v2, l),

with the same vertices, and possibly v1 = v2, the vector k � l is

divisible in the sense that it is equal to nt, with t 2 Z3 and n� 2

an integer. If this does not hold then the three entries of k � l

are coprime and (H, �) is said to be indivisible.

Proposition 4.5. LetN be a (proper) linear 3-periodic net in

R
3 and let (H, �) be a LQG associated with some periodic

structure basis for N . Then (H, �) is indivisible.

Proof. Let (v1v2, k), (v1v2, l) be two edges of (H, �), with v1

6¼ v2. Then N has the incident edges [(p(v1), 0), (p(v2), k)],

[(p(v1), 0), (p(v2), l)] which, by the properness of N , are not

collinear. Without loss of generality and to simplify notation

assume that the periodicity basis defining the LQG is the

standard orthonormal basis. Then these edges are [p(v1), p(v2)

+ k] and [p(v1), p(v2) + l]. Taking all translates of these two

edges by integer multiples of t = k � l we obtain a 1-periodic

(zigzag) subnet, Z say, of N with period vector t = (t1, t2, t3).

Suppose next that t is divisible with t ¼ nt0; t0 2 Z3 and

n � 2. Since Z þ t0 does not coincide with Z there are crossing

edges, a contradiction.

Consider now two loop edges (v1v1, k), (v1v1, l) and corre-

sponding incident edges in N , say [p(v1), p(v1) + k] and

[p(v1), p(v1) + l]. Taking all translates of these two edges by

the integer combinations n1k + n2l, with ðn1; n2Þ 2 Z
2, we

obtain a 2-periodic subnet, with period vectors {k, l}, which is

an embedding of sql. The vector t = k � l is a diagonal vector

for the parallelograms of this subnet and so, as before, t cannot

be divisible. &

As a consequence of the proof we also see that an

embedded net is improper if either of the following conditions

fails to hold: (i) for pairs of loop edges in the LQG with the

same vertex the two labels generate a maximal rank-2

subgroup of the translation group, (ii) for pairs of nonloop

edges the difference of the two labels generates a maximal

rank-1 subgroup.

4.3. Model nets and LQGs

We first note that every abstract 3-periodic graph (G, T) can

be represented by a model net M in R3 with standard peri-

odicity basis b, in the sense that G is isomorphic to the

structure graph GðMÞ ofM by an isomorphism which induces

a representation of T as the translation group ofM associated

with b. Formally, we define a model net to be such a pair

ðM; bÞ but we generally take the basis choice as understood

and use notation such asM;Mðp; iÞ;Mðp2Þ etc.

Let (G, T) be a 3-periodic graph with periodic structure T

and let H = G/T be the quotient graph (V(H), E(H)) deter-

mined by T. Identify the automorphism group T with the

integer translation group of R3. This is achieved through the

choice of a group isomorphism i : T ! Z
3 and this choice

introduces an ordered triple of generators and coordinates for

T. Any other such map, j say, has the form X � i where

X 2 GLð3;ZÞ.
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Label the vertices of G by pairs (vk, g) where g 2 T and

v1, . . . , vn is a complete set of representatives for the T-orbits

of vertices. For the sake of economy we also label the vertices

of H by v1, . . . , vn. Let pH : V(H) ! [0, 1)3 be any injective

placement map. Then there is a unique injective placement

map p : VðGÞ ! R
3 induced by p and i, with

pððvk; gÞÞ ¼ pHðvkÞ þ iðgÞ; 1 � k � n; g 2 T:

Thus the maps pH, i determine a (possibly improper) model

embedded net for (G, T) which we denote as Mðp; iÞ. In

particular if ((vk, g), (vl, h)) is an edge of G then this deter-

mines the line segment edge [p((vk, g)), p((vl, h))] ofMðp; iÞ.

This net is possibly improper since some edges may intersect.

WriteHðiÞ for the LQG (H, �) ofMðp; iÞ with respect to b. As

the notation implies, this depends only on the choice of i which

coordinatizes the group T.

With i fixed we can consider continuous paths of such

placements, say pt
H; 0 � t � 1, which in turn induce paths of

model nets, t!Mt ¼Mðp
t
HÞ; 0 � t � 1. (See also Section

3.1.) When there are no edge collisions, that is, when all the

netsMt in the path are proper, this provides a strict periodic

isotopy between the the pairs ðM0; bÞ and ðM1; bÞ and their

given periodic structure bases, b. (Such isotopy is also formally

defined in the remarks following Definition 6.1.)

Note that if H is a bouquet graph, that is, has a single vertex,

then the strict periodic isotopy determined by t! pt
H

between two model nets forH corresponds simply to a path of

translations.

In the next proposition we consider 3-periodic graphs as

pairs (G, T), as in Definition 2.5 [and Definition 4.2 of Eon

(2011)]. Moreover we have the following natural notion of

isomorphism.

Definition 4.6. The pairs (G, T), (G0, T0) are isomorphic as

3-periodic graphs if and only if there is a countable graph

isomorphism G ! G0 induced by a bijection � : V ! V0,

together with a group isomorphism � : T ! T0 such that

�(g(v)) = �(g)(�(v)) for v 2 V, g 2 T.

It is in this sense that we may say that an isomorphism

(G, T)! (G0, T0) of periodic graphs is a pair of isomorphisms

(�, �) which respects the periodic structure.

Note, for example, that the countable structure graph

G ¼ GðN pcuÞ has periodic structure T (respectively, T0)

determined by the periodicity basis (2, 0, 0), (0, 2, 0), (0, 0, 1)

[respectively, (4, 0, 0), (0, 1, 0), (0, 0, 1)] for N pcu. The peri-

odic graphs (G, T) and (G, T0) fail to be isomorphic since they

have different quotient graphs, which is a necessary condition

for this.

Proposition 4.7. Let (G, T), (G0, T0) be 3-periodic graphs

(with given periodic structures) with LQGs HðiÞ = ðH; �Þ,
Hði0Þ = ðH 0; �0Þ arising from group isomorphisms i : T ! Z

3

and i0 : T 0 ! Z
3. Then the following statements are equiva-

lent.

(i) (G, T) and (G0, T0) are isomorphic as 3-periodic graphs.

(ii) There is a graph isomorphism � : H ! H0 and

X 2 GLð3;ZÞ with j det Xj ¼ 1 such that �0(�(e)) = X(�(e))

for all directed edges e of HðiÞ.

Proof. (ii) ) (i). A typical edge e of HðiÞ is denoted by a

triple [ve, we, �(e)] and a typical associated edge of G is

ðgðveÞ; ðgþ i�1
ð�ðeÞÞÞðweÞÞ;

where g 2 T and where we have written the group operation in

T additively. Define � : V(G)! V(G0) by �(g(v)) = �(g)(�(v))

where v 2 V(H), g 2 T and � is the group isomorphism T! T0

defined by � = (i0)�1
�X � i. Then � is a bijection between the

vertex sets of G and G0. Moreover, we note that since � � i�1

is equal to (i0)�1
�X the �-induced edge [�(g(ve), �(g +

i�1(�(e)))(we)] is equal to

ð�ðgÞð�ðveÞÞ; �ðgþ i�1ð�ðeÞÞÞð�ðweÞÞÞ

¼ ð�ðgÞð�ðveÞÞ; ð�ðgÞ þ ði
0
Þ
�1

Xð�ðeÞÞÞð�ðweÞÞÞ

and so is an edge of G0, since X(�(e)) is equal to �0(�(e)), the

label of the edge �(e) in Hði0Þ. Thus � induces a graph

isomorphism G ! G0 and moreover the pair �, � is an

isomorphism of the periodic graphs, as required.

(i)) (ii). Consider an isomorphism from (G, T) to (G0, T0)

given by the pair �, �. Note that �v : V(G) ! V(G0) maps

T-orbits to T0-orbits, as does �e : E(G) ! E(G0), and so �
defines a graph isomorphism � from H = G/T to H0 = G0/T0.

Also, the edge [ve, i�1(�(e))(we)] in G [associated with the

edge e = (ve, we, �(e)) as before] maps to

ð�ðveÞ; �ði
�1
ð�ðeÞÞðweÞÞÞ

¼ ð�ðveÞ; �ðði
�1ð�ðeÞÞÞð�ðweÞÞÞ

¼ ð�ðveÞ; ði
0
Þ
�1
ðX�ðeÞÞð�ðweÞÞÞ

where X is the matrix in GLð3;ZÞ with X = i0 � � � i�1. This

implies that X�(e) must be the label for the associated edge

�(e) in H0ði0Þ, and so (ii) holds. &

In the case when H = G/T and H0 = G/T0 are bouquet graphs

one can say much more. Any graph isomorphism � : G! G0

lifts to a linear isomorphism between the model netsM;M0

determined by any pair T, T0 of maximal periodic structures.

See for example Proposition 3 of Kostousov (2007). It follows

that for bouquet quotient graph nets we have the following

stronger theorem.

Theorem 4.8. LetMðp; iÞ andMðp0; i0Þ be model nets, with

nodes on the integer lattice, for 3-periodic graphs (G, T) and

(G, T0) with bouquet quotient graphs. Then the following are

equivalent. (i) G and G0 are isomorphic as countable graphs.

(ii)Mðp; iÞ andMðp0; i0Þ are affinely equivalent by a matrix X

in GLð3;ZÞ.

Definition 4.9. A (proper) linear 3-periodic netN is a lattice

net if its set of nodes is a lattice in R3.
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Equivalently N is a lattice net if its quotient graph is a

bouquet graph. One may also define a general lattice net in R3

as a (not necessarily proper) embedded net whose quotient

graph is a bouquet graph. Theorem 4.8 shows that lattice nets

(even general ones) are classified up to affine equivalence by

their topologies. In Theorem 9.5 we obtain a proof of this in

the depth-1 case through a case-by-case analysis. Also we

show that for the connected depth-1 lattice nets there are 19

classes.

In principle Proposition 4.7 could be used as a basis for a

computational classification of periodic nets with small

quotient graphs with a depth-1 labelling. However we note

that there are more practical filtering methods such as those

underlying Proposition 10.1 which determines the 117

connected topologies associated with certain depth-1 nets

which are supported on two parallel vertex lattices in a

bipartite manner.

5. Linear graph knots

Let H be a multigraph, that is, a general finite graph, possibly

with loops and with an arbitrary multiplicity of ‘parallel’ edges

between any pair of vertices. Then a graph knot in R3 is a

faithful geometric representation of H where the vertices v are

represented as distinct points p(v) in R3 and each edge e with

vertices v, w is represented by a smooth path ~ppðeÞ � R3, with

endpoints p(v), p(w). Such paths are required to be free from

self-intersections and disjoint from each other, except possibly

for coinciding endpoints. Thus a graph knot K is formally a

triple K ¼ ðH; p; ~ppÞ, and we may also refer to this triple as a

spatial graph or as a proper placement of H in R3. It is natural

also to denote a graph knot K simply as a pair (N, S), where N

is the set of vertices, or nodes, p(v) in Rd, and S is the set of

nonintersecting paths ~ppðeÞ. We remark that spatial graphs

feature in the mathematical theory of intrinsically linked

connected graphs (Conway & Gordon, 1983; Kohara &

Suzuki, 1992).

One can similarly define a graph knot K in any smooth

manifold and of particular relevance is the Riemannian

manifold known as a flat 3-torus. This is essentially the topo-

logical 3-torus identified naturally with the set [0, 1)3 and the

topology, in the usual mathematical sense, is the natural one

associated with continuity of the quotient map R3
! ½0; 1Þ3.

Moreover we define a line segment in the flat torus to be the

image of a line segment in R3 under this quotient map. The

curiosity here is that such a flat torus line segment may appear

as the union of several line segment sets in [0, 1)3.

We formally define a linear graph knot in the flat torus to be

a triple ðH; p; ~ppÞ, or a pair (N, S), where the vertices, or nodes,

p(v) lie in [0, 1)3 and the paths, or edges, ~ppðeÞ, are essentially

disjoint flat torus line segments. Intuitively, this is simply a

finite net in the flat 3-torus with linear nonintersecting edges.

We now associate a linear graph knot K in [0, 1)3 with an

embedded net N with a specified periodicity basis a. Infor-

mally, this is done by replacing N by its affine normalization

N
0
, wherein a is rescaled to the standard basis, and defining K

as the intersection of the body jN
0
j with [0, 1)3. That is, one

takes the simplest model netN
0

for N and ignores everything

outside the cube [0, 1)3.

For the formal definition, let (Fv, Fe) be a motif for ðN ; aÞ,

where Fv 	 N (respectively, Fe 	 S) is a finite set of repre-

sentatives for translation classes of nodes (respectively, edges)

of N ¼ ðN; SÞ, with respect to a. Let � : R3
! ½0; 1Þ3 be the

natural quotient map associated with the ordered basis a. This

is a composition of the linear map for which a maps to the

standard right-handed basis, followed by the quotient map.

Define p : Fv ! [0, 1)3 to be the induced injection and

~pp : Fe ! ½0; 1Þ3 to be the induced map from closed line

segments to closed line segments of the flat torus [0, 1)3.

Definition 5.1. Let H be the quotient graph for the pair

ðN ; aÞ. The triple ðH; p; ~ppÞ is the linear graph knot of ðN ; aÞ

and is denoted as lgkðN ; aÞ.

Since N is necessarily proper, with essentially disjoint

edges, the placement ðH; p; ~ppÞ has essentially disjoint edges

and so is a linear graph knot.

Note that the linear graph knot determines uniquely the net

N
0

which in fact can be viewed as its covering net. It follows

immediately that if lgkðN ; aÞ ¼ lgkðM; bÞ thenN andM are

linear periodic nets which are orientedly affine equivalent.

We now give some simple examples together with

perspective illustrations. Such illustrations are unique up to

translations within the flat 3-torus and so it is always possible

to arrange that the nodes are interior to the open unit cube. In

this case the 3D diagram reveals their valencies. On the other

hand, as we saw in the partial body examples in Section 3.1 it

can be natural to normalize and simplify the depiction by a

translation which moves a node to the origin.

Example 5.2. The simplest proper linear 3-periodic net is the

primitive cubic net N ¼ N pcu. We may normalize this so that

the node set is a translate of the set Z3. The standard primitive

periodic structure basis gives the graph knot lgkðN ; bÞ, which

we denote as Kpcu and which is illustrated in Fig. 3. The three

‘line segment’ edges in the flat torus are here depicted by three

pairs of line segments. The quotient graph of N pcu, which is

also the underlying graph of Kpcu, has one vertex and three

loop edges. Note that if the node is translated to the origin
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Figure 3
The linear graph knot Kpcu on the flat 3-torus [0, 1)3.



then the depiction of the loop edges is given by three axial line

segments.

By taking a union of n disjoint generic translates (within

[0, 1)3) of Kpcu one obtains the linear graph knot of an asso-

ciated multicomponent linear net. In Theorem 8.2 we compute

the number of periodic isotopy classes of such nets and the

graph knot perspective is helpful for the proof of this.

Example 5.3. Fig. 4 shows linear graph knots (or finite linear

nets) on the flat torus for the maximal symmetry netsN bcu and

N srs. Each is determined by a natural primitive right-handed

depth-1 periodicity basis a which, by the definition of

lgkðN ; aÞ, is normalized to b. The quotient graphs for these

examples are, respectively, the bouquet graph with four loop

edges and the complete graph on four vertices. The periodic

extensions of these graph knots give well-defined model nets,

sayMbcu andMsrs, which are orientedly affinely equivalent to

the maximal symmetry nets N bcu and N srs.

Example 5.4. The linear 3-periodic netN dia for the diamond

crystal net (with maximal symmetry) has a periodic structure

basis a corresponding to three incident edges of a regular

tetrahedron, and has a motif consisting of two vertices and

four edges. The graph knot Kdia ¼ lgkðN dia; aÞ is obtained by

(i) an oriented affine equivalence with a model netMdia with

standard orthonormal periodic structure basis, and (ii) the

intersection of Mdia with [0, 1)3. This graph knot has an

underlying graph H(0, 4, 0) (in the notation of Section 10)

with two vertices and four nonloop edges.

In Figs. 5, 6 we indicate four graph knots which define

model nets each with underlying net (structure graph) equal to

dia. In fact the graph knots K1, K2 are rotationally linearly

isotopic (see Definition 6.3). To see this consider a linear

graph knot homotopy starting with K1 which is determined by

a downward motion of the central vertex [at (1/2, 1/2, 1/2) say]

of K2 through the floor of [0, 1)3. The edge deformations are

determined and, since the floor is equal to the roof, we can

terminate the vertex motion at (1/2, 1/2, 1/2). Note that there

are no edge crossings, so that the homotopy is in fact an

isotopy. Moreover, examining the edges, one of which is re-

entrant, we see that the final linear graph knot is equal to the

image of K1 under a half-turn rotation about the line through

(1/2, 1/2, 1/2) and (0, 0, 1/2).

On the other hand K2 and K3 are linearly isotopic in terms

of a motion of the vertex of K2 at the origin to the position of

the left-hand vertex of K3. It follows from this that the asso-

ciated model nets M1;M2;M3 are strictly periodically

isotopic, simply by taking the periodic extension of these

isotopies to define periodic isotopies.

In contrast to this, observe first that the linear graph knot K4

is obtained from K3 by a continuous motion of the nodes p1

and p2 to their new positions in the 3-torus. Such a motion

defines a linear homotopy in the natural sense. The (uniquely)

determined edges of the intermediate knots in this case

inevitably cross at some point in the motion so these linear

homotopies are not linear isotopies. The model netM4 for the

knot K4 is in fact not periodically isotopic to the unique

maximal symmetry embedding N dia, and so is self-entangled.

We show this in Example 6.7.

In the model nets of the examples above we have taken a

primitive periodic structure basis with minimal adjacency

depth. In view of this the represented edges between adjacent

nodes in these examples have at most two diagramatic

components, that is they reenter the cube at most once. In

general the linear graph knot associated with a periodic

structure basis of depth 1 has edges which can reenter at most

three times.

Remark 5.5. We shall consider families of embedded nets up

to oriented affine equivalence and up to periodic isotopy. In

general there may exist enantiomorphic pairs, that is, mirror

images N ;N
0

which are not equivalent. This is the case, for

example, for embeddings of srs. However, such inequivalent

pairs do not exist if the quotient graph is a single vertex
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Figure 4
Linear graph knots on the flat torus for (a) bcu and (b) srs.

Figure 6
Linear graph knots (a) K3 and (b) K4 associated with dia.

Figure 5
Linear graph knots (a) K1 and (b) K2 associated with dia.



(lattice nets) or a pair of vertices with no loop edges (double

lattice nets with bipartite structure). This becomes evident in

the latter case, for example, on considering an affine equiva-

lence with a model net for which the point (1/2, 1/2, 1/2) is the

midpoint of the two representative nodes in the unit cell. This

midpoint serves as a point of inversion for the model net (or,

equivalently, its graph knot). The graph knots in Fig. 6 indicate

such centred positions.

Remark 5.6. We have observed that for a linear 3-periodic

net the primitive right-handed periodicity bases a are deter-

mined up to transformations by matrices in SLð3;ZÞ. Such

matrices induce chiral automorphisms of the flat 3-torus which

preserve the linear structure. Accordingly (and echoing the

terminology for embedded nets) it is natural to define two

graph knots on the same flat torus to be orientedly (or

chirally) affinely equivalent if they have translates which

correspond to each other under such an automorphism. Thus,

to each linear 3-periodic net N one could associate its

primitive graph knot, on the understanding that it is only

determined up to oriented affine equivalence.

Remark 5.7. We remark that triply periodic surfaces may be

viewed as periodic extensions of compact surfaces on the flat

3-torus. It follows that the tilings and triangulations of these

compact surfaces generate special classes of linear 3-periodic

nets. Such nets have been considered, for example, in the

context of periodic hyperbolic surfaces and minimal surfaces,

where the methods of hyperbolic geometry play a role in the

definition of isotopy classes (Evans et al., 2013; Hyde et al.,

2003; see also Hyde & Delgado-Friedrichs, 2011).

6. Isotopy equivalence

Consider the following informal question: when can N 0 be

deformed into N 1 by a continuous path with no edge cross-

ings?

This question is not straightforward to approach for two

reasons. Firstly, a linear periodic net may contain, as a finite

subnet, a linear realization of an arbitrary knot or link.

For example, the components of N could be translates of a

linear realization of an arbitrary finite knot where all vertices

have degree 2. (Here N would have dimension type {3; 0}.)

Thus, resolving the question by means of discriminating

invariants is in general as hard a task as the corresponding

one for knots and links. Secondly, the rules for such defor-

mation equivalence need to be decided upon, and, a priori,

the deformation equivalence classes are dependent on these

rules.

The following definition may be regarded as the natural

form of isotopy equivalence appropriate for the category of

embedded periodic nets in 3D which have line segment bonds,

no crossing edges and no coincidences of node locations (node

collisions).

Definition 6.1. Let N 0 and N 1 be proper linear 3-periodic

nets in R3. Then N 0 and N 1 are periodically isotopic, or have

the same periodic isotopy type, if there is a family of such

(noncrossing) nets, N t, for 0 < t < 1, for which

(a) there is a continuous path of bases of R3, t! at, 0 � t �

1, where at is a right-handed periodicity basis for N t,

(b) there are bijective functions ft : jN 0j ! jN tj; for 0 � t

� 1, which map nodes to nodes, such that

(i) f0 is the identity map on jN 0j,

(ii) for each node point p in jN 0j the map t ! ft(p) is

continuous,

(iii) the restriction of ft to each edge [a, b] is the unique

affine map onto the image edge, [ft(a), ft(b)] in jN tj deter-

mined by linear interpolation.

We make a number of immediate observations:

(1) The condition (iii) could be omitted but is a conceptual

convenience in that it implies that each map ft from the body

of N 0 to the body of N t is determined by its restriction to the

nodes.

(2) The definition applies to entangled nets with several

connected components and in this case the isotopy can be

viewed as a set of n independent periodic isotopies, for the n

components, with the same time parameter t and periodicity

bases at, and subject only to the noncollision of components

for each value of t.

(3) Every such netN 0 is periodically isotopic to a model net

N 1 ¼M with periodicity basis b. Indeed, for any right-

handed periodicity basis a for N there is an elementary

isotopy equivalence from ðN ; aÞ to a unique pair ðM; bÞ

which is determined by a path of transformations from

GLþðd;RÞ which in turn is determined by any continuous path

of bases from a to b.

(4) If N 0 and N 1 are orientedly affine equivalent then they

are periodically isotopic since the topological group

GLþð3;RÞ is path-connected.

We also define the pair ðN 0; aÞ to be strictly periodically

isotopic to the pair ðN 1; bÞ if there is an isotopy equivalence

½at; ðftÞ
, as in parts (a), (b) of the definition with a0 ¼ a and

a1 ¼ b. In view of the previous observations we have the

following:

Equivalent definition. The embedded periodic nets N and

N
0

in R3 are periodically isotopic if there is a rescaling and

rotation of N
0

to a net N
00

so that (i) N and N
00

have a

common embedded translation group with basis a, and (ii)

ðN ; aÞ and ðN
00
; aÞ are strictly periodic isotopic.

Strict periodic isotopy is evidently an equivalence relation

on the set of pairs ðN ; aÞ. Periodic isotopy is also an equiva-

lence relation but this is not so immediate. However, as

the next proof shows, one can replace a pair of given

periodic isotopies, between N 0 and N 1 and between N 1 and

N 2, by a new pair such that the paths of periodicity bases

can be concatenated, and so provide an isotopy between N 0

and N 2.

Theorem 6.2. Periodic isotopy equivalence is an equivalence

relation on the set of proper linear 3-periodic nets.
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Proof. Let fðatÞ; ðftÞ : 0 � t � 1g be an isotopy equivalence

for N 0;N 1 as above and let fðbtÞ; ðgtÞ : 1 � t � 2g be an

isotopy equivalence between N 1 and N 2. Suppressing the

implementing maps ft and gt we may denote this information

as

N 0 !ðatÞ N 1; N 1 !ðbtÞ N 2:

We now have two periodic structures a1 and b0 on N 1. If they

were the same then a periodic isotopy between N 0 and N 2

could be completed by the simple concatenation of these

paths. However, in general we must choose new periodic

structures to achieve this.

For a periodic structure basis e ¼ fe1; e2; e3g and

k ¼ ðk1; k2; k3Þ 2 Z
3 let us write k � e for {k1e1, k2e2, k3e3}. We

have a1 ¼ j � e for some primitive periodic structure basis e of

N 1. Similarly b0
¼ j0 � e0 for some primitive periodic structure

basis e0. Since primitive right-handed periodicity bases on the

same linear periodic net are equivalent by a linear map

X 2 GLþð3;ZÞ, it follows that the vectors of e0 are integral

linear combinations of the vectors of e. Thus the vectors of b0

are integral linear combinations of the vectors of e. It follows

that we can now find elements k; k0 2 Z3 so that the vectors of

k � a1 are integral linear combinations of the vectors of k0 � b0.

Consider now the induced isotopy equivalences

N 0 !ðk�atÞ N 1; N 1 !ðk0 �btÞ N 2:

These isotopies are identical to the previous isotopy equiv-

alences at the level of the paths of individual nodes, but the

framing periodic structure bases have been replaced. These

periodic isotopies do not yet match, so to speak, but we note

that the second isotopy equivalence implies an isotopy

equivalence from ðN 1; dÞ to some ðN 2; d0Þ whenever the

periodic structure basis d has vectors which are integer

combinations of the vectors of ðk0 � b0
Þ. Thus we can do this in

the case d ¼ k � a1 to obtain matching isotopy paths, in the

sense that the terminal and initial periodic structure bases on

N 1 agree. Composing these paths we obtain the desired

isotopy equivalence between N 0 and N 2. &

6.1. Isotopy equivalence for linear graph knots

In the next definition we formally define two linear graph

knots on the flat torus to be linearly isotopic if there is a

continuous path of linear graph knots between them. It

follows that if the linear graph knots lgkðN 1; aÞ and lgkðN 2; bÞ

are linearly isotopic then, by simple periodic extension, the

nets N 1 and N 2 are periodically isotopic. Also we see in

Proposition 6.5 a form of converse, namely that if N 1 and N 2

are periodically isotopic then they have graph knots,

associated with some choice of periodic structures, which are

linearly isotopic.

On the other hand, note that a linear 3-periodic netN in R3

with the standard periodicity basis {b} is periodically isotopic

to its image N
0

under an isometric map which cyclically

permutes the coordinate axes. This is because there is a

continuous path of rotation maps of R3 from the identity map

to the cyclic rotation and restricting these maps to jN j

provides maps (ft) for a periodic isotopy. While the associated

graph knots K ¼ lgkðN ; bÞ and K0 ¼ lgkðN
0
; b0Þ, considered

as knots in the same 3-torus, are homeomorphic (under a

cyclic automorphism of the 3-torus which maps one graph

knot to the other) they need not be linearly isotopic. This

follows since linear isotopy within a fixed 3-torus must

preserve the homology classes of cycles and yet K may contain

a directed cycle of edges with a homology class in

H1ðT
3;ZÞ ¼ Z3 which do not appear as a homology class of

any cycle of edges in K0.

In view of this, in the next formal definition we also give

weaker forms of linear isotopy equivalence which can be

considered as linear isotopy up to rotations and linear isotopy

up to affine automorphisms.

Let X 2 GLþð3;ZÞ. Then there is an induced homeo-

morphism of the flat 3-torus which we denote as X�. This is

affine in the sense that flat torus line segments map to flat

torus line segments.

Definition 6.3. Let K0 = (N0, S0) and K1 = (N1, S1) be linear

graph knots on the flat torus T3
¼ ½0; 1Þ3.

(i) K0 and K1 are linearly isotopic if there are linear graph

knots Kt = (Nt, St), for 0 < t < 1, and bijective continuous

functions ft : |K0|! |Kt| such that f0 is the identity map on K0,

ft(N0) = Nt, ft(S0) = St, and the paths t! ft(p), for p 2 K0 and 0

� t � 1, are continuous.

(ii) K0 and K1 are rotationally linearly isotopic if for some

rotation automorphism X�, with X a rotation in GLþð3;ZÞ,
the graph knots K1 and X�K2 are linearly isotopic.

(ii) K0 and K1 are globally linearly isotopic if for some affine

automorphism X�, with X 2 GLþð3;ZÞ, the graph knots K1

and X�K2 are linearly isotopic.

6.2. Enumerating linear graph knots and embedded nets

We can indicate a linear graph knot K on the flat 3-torus by

the triple (Q, h, p), where (Q, h) is a labelled directed quotient

graph and p = (x1, . . . , xn) denotes the positions of its n

vertices in the flat 3-torus T3
¼ ½0; 1Þ3. We may also define

general placements of K, or of (Q, h), as triples (Q, h, p0)

associated with points p0 in the n-fold direct product ðT3
Þ

n.

Such placements either correspond to proper linear graph

knots with the same LQG, or are what we shall call singular

placements, for which the nodes xi
0 of p0 may coincide, or

where some pairs of line segment bonds determined by (Q, h)

and p0 are not essentially disjoint.

The general placements of K are thus parametrized by the

points x0 of the flat 3n-torus T3n
¼ ½0; 1Þ3n, and this manifold is

the disjoint union of the set KðQ; hÞ of proper placements and

the set SðQ; hÞ of singular placements.

Theorem 6.4. There are finitely many linear isotopy classes

of linear graph knots in the flat torus T3 with a given LQG.

The following short but deep proof echoes a proof used by

Randell (1998) in connection with invariants for finite piece-
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wise linear knots in R3. However, we remark that an alter-

native more intuitive proof of this general finiteness theorem

could be based on the fact that the isotopy classes of the linear

graph knots can be labelled by finitely many crossing diagrams

(appropriate to the 3-torus). Also direct arguments are

available to show such finiteness for LQGs with one or two

vertices.

Proof. It suffices to show that there are finitely many

representative linear graph knots (with the same given LQG)

so that any linear graph knot (with the given LQG) is linearly

isotopic to one of them. The set SðQ; hÞ is a closed semi-

algebraic set since it is defined by a set of polynomials and

inequalities. The open set KðQ; hÞ is equal to T3n\SðQ; hÞ.

Since this set is the difference of two algebraic sets it follows

from the structure of real algebraic varieties (Whitney, 1957)

that the number of connected components of KðQ; hÞ is finite.

Taking a representative linear graph knot from each of these

components completes the proof. &

The theorem implies that the isotopy classes of linear graph

knots are countable, since LQGs are countable, and so in

principle these classes may be listed by various schemes. For

example, for each n there are finitely many LQGs of depth 1

with n vertices and so there are finitely many linear isotopy

classes of linear graphs knots with n vertices and depth 1.

The corollary of the next elementary proposition gives a

similar finiteness for the periodic isotopy classes of embedded

periodic nets.

Proposition 6.5. Let N and N
0

be linear 3-periodic nets in

R
3. Then the following are equivalent. (i) N and N

0
are

periodically isotopy equivalent. (ii) There are right-handed

periodicity bases a and a0 for N and N
0

such that the linear

graph knots lgkðN ; aÞ and lgkðN
0
; a0Þ are linearly isotopic.

Proof. Suppose that (i) holds. Let N 0 ¼ N and N 1 ¼ N
0

and assume the equivalence is implemented, as in the defini-

tion of periodic isotopy, by a path of intermediate nets N t

together with (a) a continuous path of bases t! at, 0 � t � 1,

where at is a periodicity basis for N t, and (b) bijective

functions ft from the set of nodes of N 0 to the set of nodes

of N t. The functions ft necessarily respect the periodic struc-

ture. Let a = a0 and a0 = a1. It follows that the resulting

path t! lgkðN t; atÞ is an isotopy between lgkðN ; aÞ and

lgkðN
0
; a0Þ.

Suppose that (ii) holds, with K ¼ lgkðN ; aÞ and

K0 ¼ lgkðN
0
; a0Þ. A linear isotopy equivalence (ft) between K

and K0 extends uniquely, by periodic extension, to a periodic

isotopy equivalence between N and N
0
. &

Corollary 6.6. Let (H, �) be a LQG. Then there are finitely

many periodic isotopy classes of linear 3-periodic nets N

which have the LQG (H, �) with respect to some periodicity

basis.

Proof. Fix a LQG (H, �). Then a linear 3-periodic net N
0

which has the LQG (H, �) with respect to some periodicity

basis is periodically isotopic to a linear 3-periodic net M0

which has LQG (H, �) with respect to the standard basis. It

suffices to show that the set of such model netsM0 has finitely

many periodic isotopy classes. This follows since, by Theorem

6.4, their linear graph knots (for the standard basis) have

finitely many linear isotopy types and (as in the proof of the

previous proposition) a linear isotopy at the graph knot level

determines a periodic isotopy at the level of nets, simply by

periodic extension. &

In future work it will be of interest to focus on individual

topologies and to determine the finitely many periodic isotopy

classes of depth 1. Of particular interest are those with some

sense of maximal symmetry over their periodic isotopy class.

In fact we formalize this idea in Section 7.2 in connection with

homogeneous multicomponent nets.

We now note two basic examples of connected self-

entangled nets, which we regard as periodic isotopes of their

maximal symmetry embedded nets.

Example 6.7. Self-entangled diamond. The multi-node

fragment in Fig. 7 shows part of an embedded net, say N ,

whose topology is dia. That N and the usual maximum

symmetry net N dia are not periodically isotopic follows from

an examination of the catenation of cycles. Specifically the

diagram shows thatN has two disjoint 6-cycles of edges which

are linked. This property does not hold for N dia and so they

cannot be periodically isotopic.

Example 6.8. Self-entangled embeddings of cds. The

maximal symmetry netN cds (associated with cadmium sulfate)

has an underlying periodic net cds with quotient graph

H(1, 2, 1). The left-hand diagram of Fig. 8 indicates a linear

graph knot for cds and the 3-periodic extension of this

diagram defines a model embedded net which is periodically

isotopic toN cds. To be precise, define this net as the model net

Mðp1; p2Þ with p1 = (1/2, 1/2, 1/2), p2 = (1/2, 1/4, 1/2) and with

LQGðN ; bÞ ¼ H ¼ ðHð1; 2; 1Þ; �Þ where � assigns the labels,

(0, 0, 1) to the loop edge associated with p1, (1, 0, 0) to the
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Catenated 6-cycles in a self-entangled embedding of dia.



loop for p2, and the labels (0, 0, 0) and (0, 1, 0) to the two

remaining edges.

As in Section 3.1, let us now view p2 as variable point p02 =

(x, y, z) within the semi-open cube [0, 1)3. The positions of p02
together with the LQG define model nets as long as there are

no edge crossings. Let O be the set of these positions for p02.

Then, viewed as a subset of [0, 1)3 (not as a subset of the flat

3-torus) the set O decomposes as the union of five path-

connected components O1; . . . ;O5. The set O1 is the subset of

O with y < 1/2, the setO2 is the subset with y > 1/2, x > 1/2, z <

1/2 (the right-hand figure of Fig. 8 corresponds to a point in

O2), andO3 is the subset with y > 1/2, x < 1/2, z < 1/2. The sets

O4;O5 are similarly defined to O2;O3, respectively, except

that z is greater than 1/2.

Let M1; . . . ;M5 be representatives for the five path-

connected components. The net M1 ¼Mðp1; p2Þ is a model

net forN cds while the netM2 is a periodic isotope. This can be

seen once again by the different catenation properties

exhibited. Specifically, M	
cds has a 6-cycle of edges which is

linked to (penetrated by) an infinite linear subnet, whileMcds

does not have such catenation.

6.3. Entangled nets, knottedness and isotopies

The examples above concern connected self-entangled

nets and their connected graph knots on the 3-torus and there

is a natural intuitive sense in which such nets can be

‘increasingly knotted’ by moving through homotopies to

embeddings with an increasing number of edge crossings.

However, the linear graph knot association is also a helpful

perspective for multicomponent nets whose components are

not self-entangled so may be equal to, or perhaps merely

isotopic to, their individual maximal symmetry embeddings. In

this case there are intriguing possibilities for the nesting of

such ‘unknotted components’ and their associated space

groups. We address this topic in Sections 7 and 8 as well as the

attendant crystallographic issue of formulating a notion of

maximal symmetry for such multicomponent nets.

For completeness we note two further forms of isotopy

equivalence which will not be of concern to us.

(i) Relaxed periodic isotopy. The notion of periodic isotopy

equivalence in Definition 6.1 can be weakened in a number of

ways. One less strict form, which one could call relaxed peri-

odic isotopy, omits the condition (a), requiring periodic basis

continuity, and so allows a general continuous path of inter-

mediate (noncrossing) periodic nets N t. Since the continuity

requirement in (b) of the node path functions (ft) is one of

point-wise continuity on the set of nodes N 0 , it follows that

such paths of periodic embedded nets can connect embedded

nets that are not periodically isotopic. In particular, one can

construct relaxed periodic isotopies which untwist infinitely

twisted components (e.g. straightening an entangled double

helix to a pair of parallel linear strands).

(ii) Ambient isotopy. The usual definition of ambient

isotopy for a pair K1, K2 of knots (or links) in R3 requires the

existence of a path ht of homeomorphisms of R3 (the ambient

space) such that h0 is the identity map and h1(K1) = K2. Here,

for x 2 R3, we have ht(x) = h(t, x) where h : ½0; 1
 � R3
! R

3

is a continuous function. Also, the closed sets Kt = h(t, K0), for

0 � t � 1, form a path of knots (or links) between K0 and K1.

One may similarly define ambient isotopy for embedded

periodic nets (Delgado-Friedrichs & O’Keeffe, 2005). In this

case the intermediate closed sets Lt, defined by Lt ¼ htðjN 0jÞ,

are the bodies of general string-node nets Lt. We recall from

Power & Schulze (2018) that a string-node net N in the

Euclidean space Rd is a pair (N, S) of sets (whose respective

elements are the nodes and strings of N ) with the following

two properties. (a) S is a nonempty finite or countable set

whose elements are lines, closed line segments or closed semi-

infinite line segments in Rd, such that collinear strings are

disjoint. (b) N is a nonempty finite or countable set of points in

R
d given by the intersection points of strings.

It is natural to impose the further condition that these sets

are the bodies of (proper) linear 3-periodic nets, and this then

gives a definition of what might be termed locally periodic

ambient isotopy. In this case the set of restriction maps

ft ¼ htjjN 0j
define a (stricter form of) relaxed periodic isotopy.

7. Group methods and maximal symmetry isotopes

We now give some useful group-theoretic perspectives for

multicomponent frameworks, starting with the general group–

supergroup construction in Baburin (2016) for transitive nets.

This method underlies various algorithms for construction and

enumeration. In this direction we also define maximal

symmetry periodic isotopes in terms of extremal group–

supergroup indices of the components. Finally, turning

towards generically, or randomly, nested components, we

indicate the role of Burnside’s lemma in counting all periodic

isotopes for classes of shift-homogeneous nets.

7.1. Group–supergroup constructions

Let N ¼ N 1 [ . . . [ N n be a linear 3-periodic net which is

a disjoint union of connected linear 3-periodic nets in R3. Let

G be the space group of N and assume that it acts transitively

on the n components of N . Thus N is a transitively homo-

geneous net, or is of transitive type.
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Figure 8
Linear graph knots for distinct periodic isotopes of cds for which (a) the
covering net is not self-entangled and (b) the covering net is self-
entangled.



Let g1 = id, the identity element of G, and note that for each

i = 2, . . . , n there is an element gi 2 G with giN 1 ¼ N i. Also,

let Hi 	 G be the subgroup of elements g with g � N i ¼ N i,

for i = 1, . . . , n.

Lemma 7.1. The cosets of H1 in G are g1H1, . . . , gnH1.

Proof. The cosets giH1 are distinct, since their elements map

N 1 to the distinct subnetsN i. On the other hand, if g 2G then

gN 1 ¼ N j for some j and so g�1
j gN 1 ¼ N 1; g�1

j g 2 H1,

g 2 gjH and gH1 = gjH1. &

Write stabðv; GÞ to indicate the subgroup of G which fixes

the node v ofN and similarly define the stabilizer group of an

edge e of N .

Lemma 7.2. Let v (respectively, e) be a node (respectively,

edge) of N i for some i. Then

stabðv; GÞ ¼ stabðv; HiÞ; stabðe; GÞ ¼ stabðe; HiÞ:

Proof. It suffices to show that if g fixes an element (vertex or

edge) of N i then gN i ¼ N i. Observe that N i is the maximal

connected subnet of N containing the element. Also, for any

subnet M the image g � M is connected if and only if M is

connected, and so the lemma follows. &

These lemmas feature in the proof of the following theorem

(Baburin, 2016).

Theorem 7.3. If g 2 G is a mirror element then g 2 H1.

The significance of this result is that it shows that the

construction of a transitive-type entangled net N with a

connected component M requires the space group SðN Þ to

be free of mirror symmetries which are not in SðMÞ. In fact

this necessary condition is frequently a sufficient condition

and this leads to effective constructions of novel entangled

nets where these nets have components giM with multiplicity

equal to the index of SðMÞ in SðN Þ.

7.2. Maximal symmetry periodic isotopes

LetN be a multicomponent embedded 3-periodic net in R3

with space group SðN Þ and let N 1;N 2; . . . ;N i; . . . ;N n be

representatives of the equivalence classes of the components

of N for the translation subgroup of SðN Þ. Also, as in the

previous section, let Hi be the setwise stabilizer of N i in

SðN Þ. Regarding Hi as a subgroup of AutðGðN iÞÞ (cf. Section

2.2) we may compute the indices mi ¼ jAutðGðN iÞÞ : Hij.

Here we restrict our scope to crystallographic nets N i (Klee,

2004) and therefore the indices are always finite. These indices

evidently coincide when SðN Þ is transitive on the components

of N and this is our primary focus.

We say that SðN Þ is a maximal symmetry space group for

the periodic isotopy class of N if the nondecreasing rearran-

gement mðSðN ÞÞ of m1, . . . , mn, which we call the multi-

index of SðN Þ, is minimal for the lexicographic order when

taken over all groups SðN
0
Þ where N

0
is periodically isotopic

to N . In this case we refer to N as a maximal symmetry

periodic isotope and we write SmaxðN Þ for this space group,

noting that Smaxð�Þ is only defined for such minimal multi-

index embedded nets. We note that a maximal symmetry

proper embedding of a multicomponent net need not be

unique, as might be already the case for (connected) single-

component nets (cf. Section 2.2).

In the same way one may define maximal symmetry groups

for periodic homotopy and one may consider other equiva-

lence relations depending on the matter at hand but these

issues shall not concern us here.

We note that a maximal symmetry embedding for periodic

isotopy is related to the concept of an ideal geometry of a knot

(Evans et al., 2015, and references therein) that is required to

minimize some energy function. However, as well as a certain

arbitrariness in the choice of energy function and the possi-

bility of overlooking a global minimum, the result of optimi-

zation depends on the imposed periodic boundary conditions.

Thus the determination of maximal translational symmetry

embeddings remains problematic in the search for an ideal

geometry of a multicomponent periodic net. In contrast, our

definition, being essentially group-theoretic, aims to capture

isotopically intrinsic properties of embedded nets which are

independent of such constraints.

Maximizing the symmetry of interpenetrated embedded

nets is important for a number of reasons, e.g. to characterize

their transitivity properties and to derive possible distortions

which might occur in a crystal structure by examining group–

subgroup relations. Furthermore, the knowledge of a maximal

symmetry can be used to explicitly construct a deformation

path that relates an embedding with maximal symmetry to a

distorted embedding N
0

with higher multi-index. A periodic

homotopy path can be constructed relative to a common

subgroup of SmaxðN Þ and SðN
0
Þ, for example, by inter-

polating between coordinates, and this path is often crossing

free and so a periodic isotopy.

Determination of maximal symmetry is a highly nontrivial

task. The only general approach to the problem was proposed

by Baburin (2016), based on subgroup relations between

automorphism groups of connected components and a

respective HRN. Along these lines maximal symmetry

embeddings and their symmetry groups have been determined

for n-grids as in Section 8.5.

7.3. Counting periodic isotopy classes by counting orbits

Let us now consider embedded nets N with n components

on which the space group acts transitively. We are interested in

calculating the number of periodic isotopy classes for a given

topology. In the next section we solve this problem for n-fold

pcu by reducing the counting to a combinatorial calculation,

namely to a calculation of the number of orbits of a finite set of
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‘normalized’ n-pcu nets under the action of a finite group of

isometries, where the finite group is generated by cube rota-

tions and shifts.

The method is generally applicable but for a translationally

transitive n-pcu embedding a normalization of N takes a

particularly natural form in which the components have

integral coordinates. While a normalized net is not uniquely

associated with N it turns out that their multiplicity corre-

sponds to the cardinality of an orbit under the finite group

action, and so counting the number of orbits gives the count

we seek. A standard formula for counting such orbits is given

by Burnside’s lemma which states the following. Let G be a

finite group acting on a finite set X with group action x! g � x,

so that the orbit of an element z 2 X is the set {g � z : g 2 G}.

Then the number of distinct orbits is given by

1

jGj

X
g2G

jXgj;

where Xg denotes the set of points x with g � x = x. In this way

the problem is reduced to counting, for each symmetry

element g, the number of normalized nets which have this

symmetry.

8. Classifying multicomponent entangled nets

We next determine the number of periodic isotopy types of

various families of embedded nets (linear 3-periodic nets) in

R
3 whose components are embeddings of the net pcu. The

simplest family here consists of those nets N with n parallel

components, each being a shifted copy of the model netMpcu.

In this case we refer to N as a multigrid or n-grid. Such nets

have dimension type {3; 3} and are shift-homogeneous.

For practical purposes, both in this section and in Section 9,

we focus on the following hierarchy of four equivalence

relations for embedded nets:

(1) Nets N 0;N 1 are affinely equivalent (respectively,

orientedly affine equivalent) if they have translations N
0

0;N
0

1

with N
0

0 ¼ XN
0

1 for some invertible 3 � 3 matrix X (respec-

tively, with det X > 0).

(2) The pairs ðN 0; a0Þ; ðN 1; a1Þ, with given periodicity

bases, are strictly periodically isotopic if there is a continuous

path of embedded netsN t with an associated continuous path

of periodicity bases from a0 to a1.

(3) N 0;N 1 are periodically isotopic if they have strictly

periodically isotopic pairs for some choice of periodicity bases

a0; a1.

(4) N 0;N 1 are topologically isomorphic, or have the same

topology, if their structure graphs (underlying nets) are

isomorphic as countable graphs.

8.1. Translation-transitive n-grids

We first consider embeddings of n-grids with a strong form

of homogeneity. Specifically we give group–supergroup

methods which determine the periodic isotopy types of

translation-transitive n-grids.

Considering the translation-transitivity assumption, it

follows that the shift vectors relating parallel copies of a

single-component grid are in fact coset representatives of

some lattice with respect to the sublattice generated by the

standard periodicity basis of a connected component. The

number of cosets is equal to the index of a sublattice. This

observation gives a recipe for generating translation-transitive

n-grids, by enumerating superlattices of index n for the lattice

of a connected component while discarding the associated

n-grids which fail to be noncrossing.

A determination of index-n superlattices can be made with

the following lemma [see also Cassels (1997), Davies et al.

(1997)].

Lemma 8.1. Let n have a factorization n = p1p2p3, with 1� pi

� n, and let

L ¼

p1 0 0

q1 p2 0

r1 q2 p3

2
4

3
5

be a matrix with integral entries satisfying 0� q1 < p2, 0� q2 <

p3 and 0� r1 < p3. The rows of the inverse matrix L�1 generate

a superlattice of Z3 of index n. Moreover, every superlattice of

Z
3 of index n has such a representation.

A computational determination of the number, 
tt(n), of

periodic isotopy types can now be implemented with the

following three-step algorithm. Some of the values are

recorded in the summary Table 1. (i) Using the lemma,

generate all superlattices with index n. (ii) Discard such a

superlattice if its corresponding n-grid has edge crossings. (iii)

Reduce the resulting list to a (maximal) set of superlattices

which are pairwise inequivalent under the point group of a

primitive cubic lattice.

We have indicated that this (practical) three-step genera-

tion-and-reduction algorithm gives the number of congruence

classes of translationally transitive n-grids. That this number

also agrees with the (a priori smaller) number of periodic

isotopy classes (up to chirality) is essentially a technical issue.

This follows from Theorem 8.2 (iii) and Appendix A. More-

over, for the same reason the algorithm determines exactly the

translationally transitive n-grids which are maximal symmetry

periodic isotopes.

We remark that a similar three-step algorithm can be

applied in the case of translationally transitive embeddings of

e.g. n-fold dia, n-fold srs and other nets. We conjecture that if

connected components are crystallographic nets in their

maximal symmetry configurations, then step (iii) leads directly

to the classification into periodic isotopy classes.

8.2. A combinatorial enumeration of n-grids

We now consider the wide class of general multigrids, with

no further symmetry assumptions. The combinatorial objects

relevant to periodic isotopy type counting are given in terms

of various finite groups acting on finite sets of patterns which

we now define.
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Let T = {1, . . . , n}3, viewed as a discrete 3-torus, and let Cn

be the cyclic group of order n. In particular Cn can act on T by

cyclically permuting one of the three coordinates. Also, let R

be the rotation symmetry group of the unit cube [0, 1]3. Then

R acts on the discrete torus T in the natural way.

Let XðnÞ be the finite set of unordered n-tuples, or patterns,

{p1, . . . , pn} where the points lie in T and have distinct coor-

dinates, so that for all pairs pi, pj the difference pi � pj has

nonzero coordinates. In particular jXðnÞj ¼ ðn!Þ2. These

n-tuples in fact correspond to the coordinates of the nodes

appearing in a unit cell of the n components of a normalized

n-grid.

Finally, for n 2 N, let �(n), 	(n), 
(n), respectively, be the

number of orbits in X under the natural action of the

groups

R; Cn � Cn � Cn; Cn � Cn � Cn � R:

Recall that a linear graph knot for an embedded net N is

determined by a choice of periodicity basis a and is denoted

lgkðN ; aÞ. In the case of an n-grid N with its standard peri-

odicity basis b we refer to lgkðN ; bÞ as the standard linear

graph knot forN . Evidently lgkðN ; bÞ appears as the union of

n disjoint translates in the flat 3-torus of Kpcu.

Theorem 8.2. (i) The number of linear isotopy types of

standard linear graph knots of n-grids is 	(n). (ii) The number

of rotational isotopy types of standard linear graph knots of

n-grids is 
(n). (iii) The number of periodic isotopy classes of

n-grids is 
(n).

The proof of this theorem is given in Appendix A. The

essential argument involves a discretization in which, in (ii) for

example, the components are separately shifted by a (joint)

isotopy to an evenly spaced position. Then n nodes in a unit

cell correspond to a pattern of n coordinate distinct points in

the discrete torus {1, 2, . . . , n}3. Additionally, for (iii) one

must resolve the technical problem in Remark 11.1 in the case

of n-grids and show that the triple cyclic order of coordinates

(modulo the rotation group R) is indeed a periodic isotopy

invariant. We do this in Lemma 11.2, and the equivalence

given in Proposition 6.5 is a helpful step in the proof. We also

note that the periodic isotopy that one needs to construct in

the proof, when the cyclic orders coincide modulo R, is simply

a concatenation of a periodic isotopy of local component

translations (to achieve equal spacing), followed by an

elementary periodic isotopy induced by a path of affine

motions corresponding to a (bulk) rotation and final transla-

tion.

8.3. Translational isotopy and framed n-grids

The general formulation of periodic isotopy of necessity

entails some technical complexity in the proofs. We now note

two restricted but natural n-grid contexts where the determi-

nation of the number of equivalence classes simplifies. We

omit the formal proofs. In the first of these we define a more

restricted form of isotopy while in the second context we

distinguish, or colour, one of the component grids.

Let us say that a multi-grid is aligned if its componentsMi

are translates of the model netMpcu with node set Z3.

Definition 8.3. Two aligned n-gridsM;M0 are translation-

ally isotopic if for some labelling of the components there are

continuous functions gi : ½0; 1
 ! R
3, for 1 � i � n, with gi(0)

= 0 for all i, such that

(i) for each t the embedded net

MðtÞ ¼ ðM1 þ g1ðtÞÞ [ . . . [ ðMn þ gnðtÞÞ

is a (noncrossing) linear 3-periodic net,

(ii)M¼Mð0Þ andM0
¼Mð1Þ.

This simple form of the periodic isotopy t!MðtÞ in fact

corresponds to strict periodic isotopy for these nets with

respect to the standard periodicity basis. It is a form of ‘local’

periodic isotopy in the sense that the deformation paths of the

nodes are localized in space. In particular deformation paths

incorporating bulk rotations are excluded.

Theorem 8.4. The number of translational isotopy classes of

aligned n-grids is 	(n).

For the second variation, let us define a framed n-grid to be

an (n + 1)-grid with a distinguished component, the framing

component. Thus a framed n-grid is a coloured n + 1 grid

where all but one of the components are of the same colour.

Periodic isotopy for coloured n-grids may be defined exactly

as before but with the additional requirement that the maps

(ft) respect colour.

It is evident that the cube rotation group R acts naturally on

such framed n-grids. Also, as indicated in our remarks

following Theorem 8.2, counting periodic isotopy types

reduces to counting orbits of patterns p of n + 1 coordinate-

disjoint points, p = (p1, . . . , pn+1), in the discrete torus

{1, 2, . . . , n + 1}3. However, in view of the colour preservation

we may assume, by shifting, that pn+1 lies in the R-orbit of

(1, . . . , 1), and from this it follows (varying the proof of

Theorem 8.2) that the periodic isotopy classes correspond to

the R-orbits of the n-tuples (p1, . . . , pn).

Theorem 8.5. The number of periodic isotopy classes of

framed n-grids is �(n).

8.4. Employing Burnside’s lemma

We can now make use of Burnside’s lemma to compute

values of 	(n), 
(n) and �(n). The following formula readily

shows that 	(5) = 128, 	(7) = 74088 for example.

Proposition 8.6. Let p be a prime number. Then

	ðpÞ ¼
1

p3
ððp!Þ2 þ ðp� 1Þ3p2

Þ:
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Proof. Note that a group element g = abc 6¼ 000 in

Cp � Cp � Cp with a or b or c equal to 0 does not fix any

pattern under the cyclic action on T = {1, 2, . . . , p}3 and so

jX abcj ¼ 0 in this case. Also, every pattern is fixed by the

identity element and so jX 000j ¼ ðp!Þ2. It remains to consider

the (p� 1)3 group elements abc with none of a, b, c equal to 0.

The group element 111 acts as a diagonal shift and so any

fixed pattern of nodes in T is determined by the unique node

occupying a particular face of T. Conversely any of the p2 node

locations on this face determines a unique fixed pattern for the

action of 111. Thus jX 111j ¼ p2.

Since p is prime the same argument applies to any group

element abc with none of a, b, c equal to the identity element

0, since a, b, c each have order p. There are (p � 1)3 such

elements abc and so the formula now follows from Burnside’s

lemma. &

The case of composite n is similar. In the case that each of a,

b, c have order r where r divides n the size of the fixed set X g

for g = abc is the product n2ðn� rÞ
2
ðn� 2rÞ

2 . . . r2. All other

elements except the identity have no fixed patterns. In this way

we obtain 	(4) = 12 and 	(6) = 2424.

Similarly, for the framed n-grids one may compute �(2) =

1, �(3) = 4, �(4) = 30. Evidently there is a rapid subsequent

growth rate since the Burnside lemma formula quickly leads to

the lower bound �(n) � (n!)2/(24 � n3).

8.5. Classes of embedded n-pcu

Fig. 9 gives examples of small n-grids with contrasting

transitivity properties. For more details, see the supporting

information.

In Table 1 we summarize the number of classes of n-grids

for various types of n-grid and forms of isotopy for some small

values of n with the values of 	(n) and 
(n) obtained via

Burnside’s lemma as before. The count 
t(n) is for transitive

n-grids in the sense given in Section 2.4, and for n-grids this

coincides with vertex transitivity. The count 
tt(n) is for

translation-transitive n-grids which have components that are

equivalent by translations in the space group. These counts,

which coincide if n is prime, are obtained using the group–

supergroup algorithm of Section 7.2.

Fig. 10 summarizes homogeneity and transitivity types of

multicomponent embedded nets.

9. Classifying lattice nets

9.1. Depth-1 disconnected nets with a single-vertex QG

A model netM which has adjacency depth 1 with respect to

the standard basis b is determined by a set Fe of edge repre-

sentatives [a, b] for the translational orbits of edges. In the

case that there is a single orbit for the nodes we may assume

that there is a node at the origin and choose the unique edge-

orbit representative [a, b] such that (a, b) is a subset of the

semi-open cube [0, 1)3. Such representative edges are deter-

mined up to sign by the vectors a � b, or equivalently in this

case, by the labels of the depth-1 LQGðM; bÞ. We use the

following terminology for edges in Fe. This will also be useful

in subsequent sections.

The three axial edges are denoted ax, ay, az and d1, . . . , d4

denote the four diagonal edges which are incident to (0, 0, 0),

(1, 0, 0), (1, 1, 0), (0, 1, 0), respectively. The three face diag-
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Figure 9
Four examples of shift-homogeneous n-grids with interpenetration class
according to Baburin et al. (2005), the vertex and edge transitivity [ve]
and the RCSR names where available.

Figure 10
Homogeneity and transitivity types of entangled nets.

Table 1
Counts of isotopy classes of n-grids.

n 2 3 4 5 6 7 n-grids/isotopy

	(n) 1 4 12 128 2424 74088 n-grids/translational isotopy

(n) 1 1 3 9 89 n-grids/periodic isotopy

t(n) 1 1 3 2 7 4 transitive n-grids/periodic

isotopy

tt(n) 1 1 1 2 1 4 translation-transitive n-grids/

periodic isotopy



onal edges which are incident to the origin are denoted

fx, fy, fz, corresponding to the directions (0, 1, 1), (1, 0, 1),

(1, 1, 0), while the edges gx, gy, gz are the other face diagonals,

parallel to the vectors (0, 1, �1), (1, 0, �1), (1, �1, 0),

respectively. Thus we may define any set Fe by means of an

ordered subword w of the ordered word

axayazfxfyfzgxgygzd1d2d3d4:

In view of the noncrossing condition it is elementary to see

that every model net M is affinely equivalent, simply by

rotations, to a standardized model net defined by the standard

ordered word of the form w = w1w2d1 or w1w2, where w1 is

either ax, axay, axayaz or the null word, and w2 is a face

subword with zero, one, two or three letters, of which there are

27 possibilities.

We now determine the depth-1 embedded bouquet nets that

are disconnected, that is, which have more than one and

possibly infinitely many connected components. It turns out

that there are six embedded nets up to affine equivalence and

we now give six model nets for these types.

(i)Ma is the model net determined by Fe = {ax} and consists

of parallel copies of a 1-periodic linear subnet.

(ii)Maa is determined by the word axay and is the union of

parallel planar embeddings of sql.

(iii)Maafz
is the net for axayfz and is the union of parallel

planar embeddings of hxl.

(iv)Mfff is the net for fxfyfz and is the translation-transitive

union of two disjoint copies of an embedding of pcu.

(v) Mggd is the net for gxgyd1 and is the translation-

transitive union of three disjoint copies of an embedding of

pcu.

(vi) Md
ggg is the net for gxgygzd1 and is the translation-

transitive union of three disjoint copies of an embedding of

hex.

In the above list, and in Tables 1, 3, we use a compact

notation where the letter subscripts for the nondiagonal edges

are suppressed if they appear in alphabetical order, and where

d indicates the diagonal edge d1. Thus, the model net for w =

gxgygzd1, which could be written asMðgxgygzd1Þ, is written in

the compact form Md
ggg. Its repeating unit, or motif, is indi-

cated in Fig. 11 along with a fragment of the embedding

rotated so that the penetrating edges are vertical.

Theorem 9.1. There are six affine equivalence classes of

disconnected embedded nets with adjacency depth 1 and a

single-vertex quotient graph.

Proof. Let M be a model net of the type stated, with

generating edge set Fe with |Fe| = m. If m = 1 (respectively, m =

2) thenM is affinely equivalent toMa (respectively,Maa).

Let m = 3. Then the three edges of Fe have separate

translates, under the periodic structure, to three edges in M

which are incident to a common node. Suppose first that this

triple is coplanar. Then it determines a planar subnet,M1 say,

which is an embedding of hxl. AlsoM is equal to the union of

the translates ofM1 of the formM1 þ nb where b is a vector

of integers and n 2 Z. ThusM is affinely equivalent toMaaf .

On the other hand, if the edges of Fe are not coplanar then

M1 is an embedding of pcu. Examination shows that this

occurs withM disconnected, only for words w of the forms (i)

fff, giving two components, (ii) fgg, gfg or ggf, each of which is

of type fff after a translation and rotation, and (iii) ggd, which

gives three components.

For m � 4 the model netMd
ggg is the only net which is not

connnected. &

9.2. Connected lattice nets with depth 1

Let N1 denote the family of proper linear 3-periodic nets

with a periodic structure basis providing a depth-1 LQG with a

single vertex. We now consider the subfamily N
c
1 of connected

nets N in N1. These nets also give building block nets for

embedded nets with a double-vertex quotient graph, and for

multicomponent nets. In Theorem 9.5 and Corollary 9.6 we

classify the nets up to oriented affine isomorphism and up to

periodic isotopy, respectively, there being 19 classes for each

equivalence relation. As in the previous section it will suffice

to consider model nets. Moreover each model netM in N
c
1 is

determined by an ordered word for the edges of a repeating

unit Fe and these edges [a, b] are subsets of the unit cell [0, 1)3

except for one of their endpoints. In view of connectivity and
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Figure 11
(a) A single-vertex quadruple-edged building block for the model net
M

d
ggg. (b) A (rescaled) fragment of this net. The diagonal edge in the

building block gives a 32-penetrating edge.

Table 2
Disconnected nets with a single-vertex, depth-1, labelled quotient graph.

Model net Edge word Coordination Net/multiplicity

Ma ax 2 line1

Maa axay 4 sql1

Maafz
axayfz 6 hxl1

Mfff fxfyfz 6 pcu-c

Mggd gxgyd1 6 pcu-c3

M
d
ggg gxgygzd1 8 hex-c3



noncrossing conditions the QGðMÞ is a bouquet graph with a

single vertex and loop edges of multiplicity m = 3, 4, 5, 6 or 7

(as implied by Lemma 4.4).

To distinguish these model nets we make use of some new

readily computable local features which can be read off from

the repeating unit and which provide some readily computable

structural invariants under affine isomorphism.

Definition 9.2. The hxl-multiplicity hxlðN Þ of an embedded

netN is the number of translation classes of planar 2-periodic

subnets of N which are completely triangulated.

For the model netsM in N
c
1 this multiplicity is equal to the

number of triples of edges [a, b] in Fe whose edge vectors,

b � a, form a coplanar triple. It may also be computed from

the PS as the number of 3-cycles divided by 6. Thus the PS of

fcu is 324.436.56 and so hxlðN fcuÞ ¼ 4:
The next definition might be viewed as a strong form of

local catenation.

Definition 9.3. (i) An edge of an embedded

net is 32-penetrating if there exist two disjoint

parallel edge-cycles of length 3 and an edge

[a, b] which passes through them in the sense

that the open line segment (a, b) intersects the

convex hull of each cycle. (ii) An edge of an

embedded net is 42-penetrating if it passes

through two disjoint parallel untriangulated

parallelograms.

One can check for example that for the

model net M in N
c
1 with a defining ordered

word w there exists a 32-penetrating edge if

and only if w contains the subword gxgygzd1.

Also there exists a 42-penetrating edge if and

only if w contains d1 and precisely two of the

three letters gx, gy, gz. See Fig. 12.

We similarly define when an edge is 31-

penetrating or 41-penetrating. In fact there are

no depth-1 lattice nets with a 31-penetrating

edge. In general let us say thatN has property

3k if there are 3k-penetrating edges but no

3k+1-penetrating edges. We also define prop-

erty 4k similarly. We indicate these properties

in column 5 of Table 3.

9.3. Classification of depth-1 lattice nets

We now define 19 model nets M in N
c
1 with standard

orthonormal basis as a depth-1 periodicity basis and where in

each case the node set is the subset Z3 of R3. We do this, as in

the previous section, by specifying a defining edge word, as

listed in column 2 of Table 3. The nine nets without the strong

edge penetration property (of type 32 or 42) appear in the

RCSR whereas the other ten nets do not. This reflects the fact

that the strongly penetrated nets can be viewed as exotic

forms in reticular chemistry. Indeed, there are three new

topologies which have not been observed either in the RCSR

or the ToposPro net databases. Two of these are provided by

the model netsMggg
ad ;M

ggg
aad given in Fig. 13.

We also record in the final column the cardinality of the

point group of the maximal symmetry net with the given

topology, which we may denote by �(pcu) etc.

Let us define an elementary affine transformation of R3 to

be a rotation, a translation or a linear map whose representing

matrix has entries 1 on the main diagonal and a single nonzero

nondiagonal entry equal to 1 or �1. These maps, such as

(x, y, z) ! (x � z, y, z), map model nets to model nets and

play a useful role in case-by-case analysis.

Remark 9.4. We note that the countable graph ilc, repre-

sented by the model net M
g
aad, can be represented in other

ways. The model net Md
fff gives one such alternative. The

topology is also made apparent by its equivalence, by

elementary transformations, with the net obtained from the

pcu model net by the addition of integer translates of the long
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Figure 12
Penetrating edges of type 32 and 42 as observed for three 10-coordinated
nets from Table 3.

Table 3
Connected nets with a single-vertex, depth-1, labelled quotient graph.

Model net Edge word hxlðMÞ Coordination Penetration Topology td10 �(-)

Mpcu axayaz 0 6 0 pcu 1561 48

M
d
pcu axayazd1 0 8 0 bcu 2331 48

M
f
pcu axayazfx 1 8 0 hex 2331 24

M
g
aad axaygxd1 0 8 41 ilc 3321 12

M
gg
ad axgxgyd1 0 8 42 8T17 4497 4

M
gygz

ad axgygzd1 0 8 42 8T21 4041 12

M
ff
pcu axayazfxfy 2 10 0 bct 3101 16

M
gd
pcu axayazgxd1 1 10 41 ile 3761 8

M
gg
aad axaygxgyd1 0 10 42 10T1539 4991 4

M
gxgz

aad axaygxgzd1 1 10 42 new 4751 4

M
ggg
ad axgxgygzd1 1 10 32 new 6095 4

M
fff
pcu axayazfxfyfz 3 12 41 ild 4201 12

M
ggg
pcu axayazgxgygz 4 12 0 fcu 3871 48

M
ggd
pcu axayazgxgyd1 2 12 42 12T1305 5191 4

M
ggf
aad axaygxgyfzd1 1 12 42 12T1657 5431 12

M
ggg
aad axaygxgygzd1 2 12 32, 41 new 6421 4

M
fffd
pcu axayazfxfyfzd1 6 14 41 bcu-x 4641 48

M
ggfd
pcu axayazgxgyfzd1 4 14 42 14T199 5631 12

M
gggd
pcu axayazgxgygzd1 4 14 32, 41 14T957 6621 12



diagonal edges with edge vector (1, 2, 1). However, in this case

the standard basis is a periodic structure basis of depth 2.

Theorem 9.5. There are 19 oriented affine equivalence

classes of connected lattice nets with depth 1.

We have obtained this classification by means of a case-by-

case proof as well as a verification by an enumeration of lattice

nets using GAP. The following interesting special case, with

two new nets, illustrates the general proof method. (See the

supporting information for the complete proof.)

Determination of the 10-coordinated connected lattice nets of

depth 1. Suppose first that a model netM in this case has three

axial edges and two face edges. Then it is straightforward to

see that it is equivalent by elementary affine transformations

to the model net Mff
pcu, for bct. Also, any model net of type

aaafd is similarly equivalent to this type. On the other hand, a

type aaagd model net has hxl-multiplicity equal to 1, rather

than 2, and so represents a new equivalence class. Its topology

is ile.

Consider next the model nets with two axial edges and no

diagonal edges. These are equivalent by elementary affine

transformations to a model net with three axial edges and so

they are equivalent to the model nets in Table 3 for bct and ile.

The same is true for the nine nets of type aawd where w is a

word in two facial edges which is not of type gg.

Thus, in the case of two axial edges it remains to consider

the types axaywd1 with w = gxgy, gxgz and gygz. Each of these

has a penetrating edge of type 42. The first two are model nets

in the list and they give new and distinct affine equivalence

classes in view of their penetration type and differing hxlðN Þ

count. The third net, for the word axaygygzd1, is a mirror image

of the first net and is orientedly affinely equivalent to it, by

Remark 5.5 for example.

It remains to consider the case of one axial edge, ax, toge-

ther with d1 and three facial edges. If there are two edges of

type fx, fy or fz then there is an elementary equivalence with a

model net with two axial edges. The same applies if there is a

single such edge. [For an explicit example consider axfxgygzd1

and check that the image of this net under the transformation

(x, y, z) ! (x, y � z, z) gives a depth-1 net with two axial

edges.]

Finally the model net for axgxgygzd1 appears in the listing

and gives a new class with penetration type 32. &

Corollary 9.6. There are 19 periodic isotopy classes of

connected linear 3-periodic nets in R3 with adjacency depth 1

and a single-vertex quotient graph.

Proof. If the connected linear 3-periodic nets N 1;N 2 are

orientedly affinely equivalent then, as previously observed,

they are periodically isotopic. Thus there are at most 19

periodic isotopy classes. On the other hand, periodically

isotopic embedded nets have structure graphs which are
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Figure 13
Motifs for the model nets (a)Mggg

ad ; (b)Mggg
aad and (c)Mgggd

pcu (14T957) which have a 32-penetrating edge.

Figure 14
Maximal symmetry embeddings of the nine model nets of Nc

1 which do
not have the 32- or 42-penetration property.



isomorphic as countable graphs. Since the 19 model nets have

nonisomorphic structure graphs the proof is complete. &

Theorem 9.5, together with the linear implementation of

graph isomorphisms indicated in Theorem 4.8, implies that the

structure graphs of the 19 model nets must be nonisomorphic

as graphs. This also follows on examining the td10 topological

density count. We remark that Table 3, without the final td10

column, almost distinguishes 19 affine equivalence classes

(and hence, by Theorem 4.8, the structure graphs) since we

have only appealed to topology density to distinguish the

curious pair M
gg
ad (8T17), M

gygz

ad (8T21). Fig. 14 shows the

maximal symmetry embeddings of the nine model nets of Nc
1

which do not have the 32- or 42-penetration property.

10. Double lattice nets and further directions

We give a brief indication of research directions in the

determination of periodic isotopy classes and periodic

isotopes for embedded nets with a double-vertex quotient

graph as well as research directions in rigidity and

flexibility.

10.1. Double lattice nets

For convenience we define a double lattice net to be an

embedded periodic net N in R3 whose set of nodes is the

union of two translationally equivalent rank-3 lattices and we

let N2 be the family of proper double lattice nets with adja-

cency depth 1.

The double-vertex quotient graph N in N2 consists of two

bouquet graphs and a number of nonloop edges. We denote

these graphs as H(m1, m2, m3) where m1 and m3 are the loop

multiplicities, with m1 � m3 � 0, and m2 is the multiplicity of

the connecting edges. From Lemma 4.4 we have the necessary

conditions 0�m1 � 7 and 0 �m2� 8 as well as m3� 1 if m2 =

1, since, from the definition of a linear 3-periodic net, there can

be no nodes of degree 1. If N is a net in N
c
2, the subfamily of

connected nets, then we also have the additional condition

m2 � 1.

Each net N 2 N2 admits a unique threefold decomposition

N ¼ N 1 [ N 2 [ N 3 where N 1 and N 3 are the disjoint

3-periodic subnets associated with the two bouquet subgraphs

and where N 2 is the net, with the same node set as N , asso-

ciated with the subgraph with nonloop edges. The subnets

N 1;N 3 may have no edges if one or both vertices has no loop

edges. When loops are present on both vertices then the nets

N 1;N 3 are bouquet nets, and are of three possible dimension

types, namely {3; 1}, {3; 2} or {3; 3}. As we have seen earlier, for

type {3; 1} there is one affine isomorphism class of embedded

nets, for type {3; 2} there are two such classes and for type {3; 3}

there are three classes for disconnected nets and 19 classes for

connected nets.

Thus in the threefold decomposition of a net N in N2, each

of the subnets N 1; N 3 is either devoid of edges or is sepa-

rately orientedly affinely equivalent to one of the 25

model nets for N1. The relative position (parallel or inclined,

for example) of these component nets allows for considerable

diversity for the entangled net N 1 [ N 3. In particular,

while N is affinely equivalent to a general model net

M1 [M2 [M3, with standard periodic structure basis b, in

general we can only additionally arrange that one of the

subnetsM1;M3 is equal to a translate of one of the specific

25 model nets in Tables 2 and 3.

Evidently there is a considerably diversity for the periodic

isotopy classes of embedded nets with depth 1 and a double-

vertex quotient graph. We now show that there is even a

marked increase in the number of topologies for such nets.

For 1 � m � 8 define N
�
2ð0;m; 0Þ to be the family of netsN

in N2 which have a periodicity basis with a depth-1 bipartite

quotient graph H(0, m, 0) with an edge carrying the label

(0, 0, 0). The label condition here ensures the natural condi-

tion that N has an edge between the pair of representative

joints in the semi-open unit cell for the periodicity basis. In

fact this convention, which we call the unit-cell property, is the

natural convention used by Chung et al. (1984) in their

schemes for the enumeration of periodic nets.

For m = 1, 2, 3 the nets of this type are not connected. For m

= 4 it is well known that there is a unique connected topology

GðN Þ for the nets in N
�
2ð0;m; 0Þ, namely the diamond net dia

(Beukemann & Klee, 1992). For higher values of m we are

able to determine the topologies through a computational

analysis based in part on the indivisibility criterion Proposition

4.5. See also the supporting information.

Proposition 10.1. There are 117 nonisomorphic topologies

for bipartite double lattice nets with the unit-cell property,

which are connected and have adjacency depth 1. Moreover,

the numbers of m-coordinated topologies, for m = 4, 5, 6, 7

and 8, are, respectively, 1, 11, 31, 40 and 34.

10.2. Rigidity and flexibility

The analysis of infinitesimal rigidity and flexibility for

connected crystal frameworks C is a well-developed mathe-

matical topic. In its simplest form a velocity field on the node

set is assumed to be periodic with respect to a given periodicity

basis a. This is the so-called fixed lattice theory and in fact it

corresponds exactly to the rigidity theory of fixed edge-length

graph knots on a fixed flat torus for the parallelepiped defined

by the periodicity basis. In this case a finite matrix, the periodic

rigidity matrix for the pair ðC; aÞ, determines the space

of periodic infinitesimal flexes and so this matrix is a

discriminator for the (strict) periodic rigidity of C with respect

to a. On the other hand, the flexible lattice theory allows for

infinitesimal motions of the periodicity basis and so embraces

a larger finite dimensional vector space of velocity fields with a

correspondingly larger rigidity matrix (see Borcea & Streinu,

2010; Power, 2014b). Recently, necessary and sufficient

conditions have been given for infinitesimal rigidity with

respect to the infinite dimensional space of all velocity fields

(see Kastis & Power, 2019).

The fixed lattice theory also has close connections with the

analysis of rigid unit modes (RUMs) in material crystals with a
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connected bond-node net. See for example the RUM mode

analysis in the work of Badri et al. (2014), Power (2014a). In

fact this analysis also applies to disconnected crystal frame-

works with several components if there are no interaction

constraints between the components. Indeed, suppose that C

belongs to the interpenetration class and let a be a periodicity

basis for both C and each of its finitely many components Ci.

Then the RUM spectrum �ðCÞ of C, with respect to a, is the

union of the RUM spectra of its components.

A crystal framework is said to be critically coordinated, or

to be a Maxwell framework, if the quotient graph satisfies |E| =

3|V|. This is often interpreted as an equality between the total

number of constraints (provided by |E| equations) that restrict

the total number of degrees of freedom of a repeating unit of

nodes, which is 3|V|. It also implies an equality of limits of

averages over increasing volumes for these constraint/freedom

quantities. It is for such frameworks, which includes all zeolite

frameworks for example, that the RUM spectrum is typically a

nontrivial algebraic variety exhibiting detailed structure

(Dove et al., 2007; Power, 2014a; Wegner, 2007).

In the light of this it is of interest to determine the basic

Maxwell frameworks C which have a depth-1 LQG with either

one or two vertices. From Proposition 10.1 it follows that there

are 31 topologies for crystal frameworks of this type with

the unit-cell property and quotient graph H(0, 6, 0). These

remarks suggest that it would be worthwhile to augment

periodic net database resources with tools for the identifica-

tion of Maxwell lattices and the calculation of flexibility

information related to RUM spectra.

APPENDIX A
Proof of Theorem 8.2

Note first that any connected component Ki of K is deter-

mined by the position of its unique node in [0, 1)3. Thus K is

determined by the position pi = (xi, yi, zi), 1 � i � n, of its

n-tuple of nodes. Also, in view of the disjointness of compo-

nents two such nodes pi, pj have differing corresponding

coordinates in [0, 1). Consider a deformation path (ft) from K

to K0. Since the graph knots ft(K) are also graph knots of n-

grids, and edge collisions cannot occur in the deformation, it

follows that the cyclical order of the x, y and z coordinates of

the points ft(p1), . . . , ft(pn), is constant. Thus the ordered

triple of cyclic orders for the coordinates is an invariant for

linear graph knot isotopy.

Despite the constraint of coordinate distinctness we see that

K can be linearly isotopic to an n-grid graph knot K0 deter-

mined by pi
0 = (xi

0, yi
0, zi
0), 1 � i � n, where the n coordinates

xi
0 lie at the midpoints of the distinct subintervals of the form

[j/n, (j + 1)/n), 0 � j � n � 1. This spacing is achieved by

simultaneously translating the points pi in the x direction

at appropriate independent speeds while maintaining

x-coordinate distinctness. Additionally, the equal spacing of

the y and z coordinates can be achieved by similar isotopies

which locally translate in the y and z directions. The resulting

position is unique up to the cyclic permutation action of

Cn � Cn � Cn on the coordinate axes. It follows now that two

graph knots of n-grids are linearly isotopic if the cyclic order

of their coordinates coincides. Thus the set of cyclic orders is a

complete invariant for linear graph knot isotopy and (i) and

(ii) follow.

Assume next that the n-grids N and N
0

are periodically

isotopic. It will suffice to show that their linear graph knots are

rotationally linearly isotopic.

Without loss of generality we may assume that the

components have node sets that lie on translates of the lattice

Z
3 in R3. Thus, by the definition of periodic isotopy there are

periodicity bases a ¼ fa1; a2; a3g and a0 ¼ fa01; a02; a03g, with

integer entries, such that ðN ; aÞ and ðN
0
; a0Þ are strictly peri-

odically isotopic by means of a deformation path (ft) and an

associated path of bases at from a to a0. Define k1 to be a

common multiple of the x coordinates of {a1, a2, a3} and

similarly define k2, k3 for the y and z coordinates. Then there is

an implied periodic isotopy between ðN ; k � bÞ and ðN
0
; a00Þ,

for some periodicity basis a00 with integer entries. This is given

by the same periodic isotopy deformation path (ft) but with a

new associated path of bases (for lower translational

symmetry) which is determined by the initial basis k � b and

the path at. So, without loss of generality we may assume at the

outset that a ¼ k � b.

We next show that a0 is equal to k0 � b where k0 is a cyclic

permutation of k. Thus we will obtain that the linear graph

knots lgkðN 0; k � bÞ; lgkðN 1; k0 � bÞ are rotationally linearly

isotopic.

To see this consider a single component N
1
0 of the n-grid

N 0. Note that the linear graph knot lgkðN
1
0; k � bÞ has minimal

discrete length cycles c1, c2, c3 with homology classes �1, �2, �3,

respectively, equal to the standard generators of the homology

group H1ðT
3;ZÞ ¼ Z3 of the containing flat 3-torus. These

discrete lengths are k1, k2, k3. Moreover we see, from the

rectangular geometry of N
1
0, the following uniqueness prop-

erty, that if c1 and c01 are two such minimal length cycles for �1

which share a node then c1 = c01. Indeed, the minimality implies

that the edges of c1 are parallel or, equivalently, that the nodes

of c1 can only differ in the x coordinate.

Let N
1
1 be the corresponding component of N 1. In fact

N
1
1 ¼ f1ðN

1
0Þ. The linear graph knot lgkðN

1
1; a0Þ is, by defini-

tion, equal to the affine rescaling of the intersection of the

body jN
1
1j with the semi-open parallelepiped defined by the

periodicity vectors a01; a02; a03. We note that if a0 is not of the

form k0 � b then for at least one of the standard generators �i

(associated with ai
0) of the flat 3-torus homology group

H1ðT
3;ZÞ ¼ Z3, the minimal length cycles do not have the

uniqueness property. This follows from elementary geometry

since not all edges of the cycle can be parallel when a0i is not

parallel to a coordinate axis.

On the other hand, the linear isotopy between

lgkðN
1
0; k � bÞ and lgkðN

1
1; k0 � bÞ preserves the lengths of

cycles of edges and so the claim follows. Since we have shown

that lgkðN ; k � bÞ and lgkðN
0
; k � bÞ are isotopic linear graph

knots up to a rotation, it follows from the technical lemma,

Lemma 11.2, that the graph knots lgkðN ; bÞ and lgkðN
0
; k � bÞ
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are linearly isotopic up to a rotation, and so (iii) now follows

from (ii). &

Remark 11.1. Recall the notation k � a ¼ ðk1a1; k2a2; k3a3Þ

introduced in the proof of Theorem 6.2. Let us say that this

denotes the amplification by k 2 Z3
þ of the periodic structure

basis a. We pose the following general problem. If N 1;N 2 are

linear periodic nets which have a common periodic structure

basis a and if the pair ðN 1; k � aÞ is periodically isotopic to the

pair ðN 2; k � aÞ, then does it follow that N 1 and N 2 are

periodically isotopic? In view of the proposition above this is

equivalent to the corresponding problem for linear graph

knots K and their k-fold amplifications which we may write as

k � K. We expect that this is true and therefore that the

amplified knots are isotopic if and only if the unamplified

knots are isotopic. In fact one can verify this connection for

various specific classes of interest, as we do below in the case

of multigrid nets.

The following technical lemma resolves the question of

Remark 11.1 in the case of n-grids.

Lemma 11.2. Let N 0 and N 1 be shift-homogeneous n-grids

with standard linear graph knots K0 and K1 and suppose that

for some k 2 Z3 the amplified graph knots k � K0 and k � K1

are isotopic. Then K0 and K1 are strictly linearly isotopic.

Proof. Fig. 15 indicates a subgraph knot, C0 say, of one of

the components of k � K0 in the case that k = (3, 6, 5). We refer

to this as a ‘chain’. It consists of a small cube of edges attached

to three cycles of edges in the axial directions. Let p1 denote

the vertex which is common to these three cycles. The other

n� 1 components of k � K0 have similar chains which are shifts

of C0 and there is a unique such chain where the shift of p1 lies

in the semi-open small cube p1 + [0, 1)3 of the flat 3-torus. Let

p2, . . . , pn be these axial joints and let J0 = J0(p1, . . . , pn) be

the union of these chains (giving a linear subgraph knot of

k � K0).

Suppose that k � K0 and k � K1 are linearly isotopic, by the

isotopy (gt), 0 � t � 1. This restricts to a linear isotopy from J0

to a subgraph knot g1(J0) of k � K1. In this isotopy the images

under gt, for 0 < t < 1, of the n axial cycles of J0 in a specific

coordinate direction need not be linear. However, since there

can be no collisions the cyclical order for t = 0 agrees with the

cyclical orders for t = 1. It follows that g1(J0), which has the

form J0(q1, . . . , qn), is a subgraph knot of k � K1 of the same

cyclical type as the subgraph knot J0. Since K0 and K1 are also

defined by the cyclical order of p1, . . . pn and q1, . . . , qn it

follows that they are linearly isotopic. &
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Figure 15
A chain subgraph knot of k � Kpcu.
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