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Nets are important mathematical tools that have been used as models in the analysis and

design of crystal structures since the early days of crystallography (Wells, 1977). The

notion of a net is extremely versatile and lends itself to major applications in crystal

engineering and crystal structure prediction, including metal–organic frameworks

(MOFs) and zeolites. Apart from this wide range of applicability, nets and their

embeddings are also fascinating mathematical objects in their own right and have

significant applications in mathematics itself, including in polyhedral geometry, tiling

theory, minimal surfaces and discrete symmetry, to name a few.

The underlying topological structure of a net is provided by an abstract graph G, with

finite or (usually) countably infinite vertex set and edge set, and in the infinite case

equipped with an abstract periodicity structure determined by a free abelian subgroup of

the combinatorial automorphism group of G. The infinite graphs come to life through

their 3-periodic embeddings as periodic bond-node structuresN in an ambient geometric

space, which in most applications is ordinary Euclidean 3-space R3. These embedded nets

N can have several different characteristics. In the embedding, the vertices of G are

represented by (usually distinct) points, called the vertices (or nodes) ofN , and the edges

of G are represented by what are called edges (or bonds) ofN , which usually are straight

line segments (sometimes with a specified length), possibly allowed to collide, or

sometimes are non-self-intersecting paths of various sorts. The entire embedded netN is

required to be invariant under a group of translations T of the ambient space generated

by the translations in the directions of the basis vectors from a vector-space basis, called

the periodicity basis of N . This translation group T provides a geometric representation

of the abstract periodicity structure on the underlying structure graph. In a proper linear

3-periodic net N in R3, the edges of N are noncolliding straight line segments joining

vertices of N . In applications, the vertices of an embedded net N may represent spatial

positions of atoms or of clusters of atoms, such as single metal ions or secondary building

units, and the edges may represent chemical bonds or ligands. A net can represent many

compounds.

My own interest in nets relates to discrete geometry and was inspired by the pioneering

contributions of Michael O’Keeffe and his collaborators (see, for example, Delgado-

Friedrichs et al., 2005). These included Omar Yaghi, who was a co-founder of reticular

chemistry with O’Keeffe (for which they were jointly awarded the Gregori Aminoff Prize

in Crystallography by The Royal Swedish Academy of Sciences in 2019), and Davide

Proserpio, to whom I am grateful for making me aware of the extensive works on crystal

nets and related geometric structures in the chemistry literature (and for kindly providing

the two figures). Several databases have been created to keep track of the vast amount of

information on net structure, including the Reticular Chemistry Structure Resource

(RCSR) and ToposPro. The RCSR database was constructed as a tool for the design of

new structures of crystalline materials and contains a rich collection of known crystal nets

including the most symmetric nets (http://rcsr.net and O’Keeffe et al., 2008) and homo-

geneous sphere packings (e.g. Fischer et al., 2006, and references therein). While the

RCSR database contains information on 3000+ named nets, ToposPro is a more recent

research tool for the geometrical and topological analysis of crystal structures with a

database of more than 190 000 nets (http://topcryst.com and Blatov et al., 2014). These

rapid developments in net theory provide the context for the work by Power et al. (2020).
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The article by Stephen Power, Igor Baburin and Davide

Proserpio in this issue of Acta Crystallographica Section A

studies isotopy classes of 3-periodic embedded nets in

ordinary 3-space. Their work exploits the combinatorial

structure of quotient graphs of embedded nets, as well as

realizations of quotient graphs as linear graph knots (with

linear edges) in the three-dimensional flat torus T3, to obtain

periodic isotopy classifications for various kinds of embedded

nets. Attractive features of the paper – appreciated by the

non-expert – are the detailed introduction and review of the

various notions of net-like structures that have been investi-

gated in the literature, from periodic graphs, to linear 3-

periodic nets, to crystallographic bar-joint frameworks, to

string-node nets, as well as providing rigorous definitions and

basics for key concepts used in the analysis of nets, from

connectedness, to entanglement and self-entanglement, to

isotopy equivalence, to quotient graphs, to linear graph knots.

The focus of the article is on the finer classification and

enumeration tools for periodic net embeddings beyond the

usual classification into isomorphism types. Embedded nets

can have multiple connected components, which can have

different dimensionality and be intertwined in rather sophis-

ticated ways. The article by Power et al. (2020) mainly

concerns the behavior of entangled embedded nets with

multiple connected components, as well as of self-entangled

connected embedded nets, with regards to continuous defor-

mations that avoid edge collisions or may satisfy some other

desirable property (e.g. retaining some translational symmetry

across the deformation path as formalized by the notion of

periodic isotopy). Little was previously known about the

systematic classification of entangled embedded nets into

equivalence classes under such deformations.

More specifically, Power et al. (2020) obtain periodic isotopy

classifications for various families of embedded nets with small

quotient graphs (see Fig. 1 for an example). Quotient graphs

of linear periodic embedded nets N are finite edge-labeled

multi-graphs, with integer vectors as edge labels, which

capture the action of the underlying translation group T on the

vertices and edges of N . Power et al. (2020) enumerate the 25

periodic isotopy classes of linear 3-periodic nets in R3 with

adjacency depth 1 (all coordinates of the edge-labeling integer

vectors have a modulus of at most 1). They also determine the

number of periodic isotopy classes for various families of

linear 3-periodic nets in R3 whose connected components are

embeddings of the net of the primitive cubic lattice pcu,

including in particular the family of multigrids important for

coordination polymers. Fig. 2 shows an example of a fourfold

pcu, a 4-grid.

The article by Power et al. (2020) takes a very significant

step in the directions of understanding the fascinating beha-

vior of continuously changing entangled embedded nets in

space and of describing the isotopy classes for various

important families of embedded nets. Their work features an

attractive blend of mathematical techniques from geometry,

topology and group theory, brought to bear on difficult

questions in crystal chemistry. Classification of crystal nets by

isotopy is a challenging endeavor that will attract a lot more

attention in the future.
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Figure 1
A linear graph knot on the flat 3-torus for the net srs of strontium silicide,
SrSi2, similar to an example shown in Power et al. (2020). A linear graph
knot is a geometric realization in the flat torus of the labeled quotient
graph of a linear periodic embedded net in Euclidean space. Image kindly
provided by Davide Proserpio.

Figure 2
Four translative copies of the primitive cubic lattice pcu, an example of a
‘shift-homogeneous’ 4-grid in space. Image kindly provided by Davide
Proserpio.
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