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Many functional materials are today synthesized in the form of nanoparticles

displaying preferred orientation effects to some small or large extent. The

analysis of diffraction data of such kinds of systems is best performed in the

framework of the total scattering approach that prescinds from translation

symmetry assumptions. Therefore modified expressions were derived for the

most common total scattering functions, in particular the Debye scattering

equation (DSE) which yields the texture-averaged differential cross section as a

function of atomic coordinates and texture parameters. The modified DSE

encodes higher-order even spherical Bessel functions which account for the

texture effect. Selection rules arising from experimental geometries and

symmetries are discussed. In addition the duality of the texture effect is

introduced showing the effects of texture on both the I(Q) and GðrÞ. The paper

includes several definitions and appendices which are meant to be useful for

those involved in the development of crystallographic computing.

1. Introduction

Preferred orientation (texture) is a complex effect that bridges

powder diffraction to single-crystal diffraction. In recent years

in materials science there has been an increasing trend

towards the synthesis and subsequent analysis of materials

displaying only partial order, often in the nanometre length

scale in the form of nanoparticles (Tekumalla et al., 2019), thin

films (Rijckaert et al., 2018; Dippel et al., 2019), or fibre-

textured materials that are bone-like (Tan et al., 2019) or

wood-like (Lagerwall et al., 2014). The analysis of these kinds

of materials is best performed within the framework of the

total scattering approach that prescinds from periodicity and

therefore avoids Bragg formalism, yet provides quantitative

information on the structural parameters as well as on the size

and shape of the scattering domain (Guagliardi et al., 2015).

While intensity corrections for Bragg intensities are known

(Roe, 1965; Bunge, 1982; Popa, 1992), within the total scat-

tering approach the problem of evaluating the SðQÞ and GðrÞ

functions in the presence of texture has never been quanti-

tatively tackled. Only some generalities have been presented

in a preprint by Gong & Billinge (2018). Therefore this paper

deals with computation, via an extended Debye scattering

equation [concisely DSE in this paper; see Debye (1915)], of

1D powder diffraction patterns obtained from crystalline

powders having a non-uniform orientation distribution func-

tion (ODF hereafter). We will remain in the realm of ‘textured

powders’ or powders with a weak to strong preferred orien-

tation, but not so strong as to be better defined as mosaic

crystal sets. A complete treatment in the framework of sphe-

rical harmonics for the most common powder diffraction

geometries is presented. The differential cross section

I(Q) can be computed by an extended version of the DSE
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comprising now sums over spherical Bessel functions of all

(even) orders. Selection rules arising from symmetries and

explicit expressions for the most common experimental

geometries are given. Concerning the GðrÞ, the effects of

texture result in a fundamental indetermination which has

important consequences that we will discuss towards the end.

We will start appropriately by defining terms we use, although

some of them may be familiar to some readers, and giving a

brief recall of the part of the scattering theory relevant in this

context (Section 2); in Section 3 the definition of the analytic

problem and its solution are given. Section 4 deals with related

computation aspects. In Section 5 the effects of texture on the

pair distribution function are examined. Section 6 shows

several example calculations and finally Section 7 is devoted to

brief conclusions. Some useful mathematical functions

(Appendix A) and computing details (Appendix B) are also

reported.

1.1. Some definitions

(i) Atomic object (AO) is a set of atoms rigidly bound

together, constituting a particle, a nanoparticle, a molecule, a

nanowire, a nanocrystal (NC) etc.

(ii) Powder is an ensemble of a large number of identical

AOs constrained in a given volume and assuming all possible

orientations in space with a certain probability density. In an

ideal powder the orientation probability distribution function

is uniform and isotropic, but in reality there are many cases

where it is not so.

(iii) Symmetry is the point (or Laue) symmetry group of the

AO considered as a whole – also (and especially) when the

object is a (perhaps small) portion of a perfect crystal. In

fact, translational symmetry cannot apply to a limited object.

The crystal point-group symmetry is the maximal possible

symmetry group of the AO, even if the external shape would

be more symmetric. So, a cubic cutout of a monoclinic crystal

may be at most monoclinic, and only if one of the cube axes

coincides with the monoclinic twofold axis.

1.2. Additional considerations

It must be also clear that, while the diffraction pattern of an

ideal powder is essentially 1D (because the intensity in reci-

procal space varies only radially), a non-ideal powder, i.e. with

a non-uniform ODF (or textured powder), has full 3D

dependence in reciprocal space. In fact, in an extreme case, all

AOs might be parallel and co-aligned, and if they were to be

NC, the pattern would be essentially that of a single crystal.

This might entail the need to measure it almost like a single

crystal. We are interested mainly in the case where the

uniformity of the ODF is only lightly perturbed. Then it still

makes sense to measure the powder as such, with one of the

traditional geometries (as discussed later). The variable in the

patterns thus measured is the deflection angle 2�, or better

the transferred momentum magnitude q ¼ 2 sinð�Þ=� [or

Q ¼ 4� sinð�Þ=�], where � is the incident wavelength. As the

differential scattering cross section for textured powders is

not only a function of q but in general of the vector q, the

experimental geometry is essential in order to take into

account texture effects. In particular, we must take into

account additional symmetries arising from the sample nature

and/or special averaging means applied. In many geometries,

for instance, it is customary to rotate the sample around an

axis while the measurement is taken; this will of course affect

the texture, reducing it as a single axis rotation performs a

partial orientation averaging. Therefore, we must specialize

the concept of symmetry into two kinds: object symmetry

which is the one defined in Section 1.1 at point (iii); sample

symmetry which is the one defined just above. Clearly, the

geometric relationship between the symmetry elements of the

two kinds is important and needs to be specified.

2. Scattering theory

Take an AO composed of N atoms indexed with j ¼ 1 . . . N,

each centred at positions rj and each with isotropically vari-

able spatial distributions �jðjr� rjjÞ of scattering length

around rj. Hereafter, a vector is denoted in bold and its length

in italic (e.g. jrj ¼ r). We assume from here on that the coor-

dinate system is chosen so that the main symmetry axes are

along the coordinate axes. The scattering length density is then

�ðrÞ ¼
PN
j¼1

�jðjr� rjjÞ ¼
PN
j¼1

R
d3r0�ðr0 � rþ rjÞ�jðr

0Þ:

Its Fourier transform is easily evaluated as

FðqÞ ¼
R

d3r2�iq�r�ðrÞ

¼
PN
j¼1

expð2�iq � rjÞ
R

d3r02�iq�r0�jðr
0Þ

¼
PN
j¼1

expð2�iq � rjÞfjðqÞ

where we have set

fjðqÞ �
R

d3r0 expð2�iq � r0Þ�jðr
0Þ:

The scattering factors fj are known and tabulated functions for

all atoms and ions and for X-rays as well as for neutrons and

electrons (disregarding the weak perturbations due to the

atomic environment). The common feature is that they are

complex-valued but isotropic in reciprocal space. This is a

consequence of the isotropy in direct space of the associated

scattering length densities.

The differential elastic coherent scattering cross section IðqÞ

is now proportional to the square modulus of FðqÞ, giving

IðqÞ ¼ jFðqÞj2 ¼
PN
j¼1

expð2�iq � rjÞfjðqÞ

�����
�����

2

¼
PN

j;k¼1

fjf k exp½2�iq � ðrj � rkÞ� ð1Þ

¼
PN
j¼1

jfjj
2

ð2Þ
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þ2
PN

j> k¼1

Reðfjf kÞ cosð2�q � djkÞ ð3Þ

�2
PN

j> k¼1

Imðfjf kÞ sinð2�q � djkÞ: ð4Þ

Note that, of the three resulting terms, (i) the term in equation

(2), the self-scattering, is isotropic (depends only on q)

because (as it is often assumed) the atomic scattering length

densities are isotropic. Therefore this term does not change if

the ODF is not uniform. (ii) The term in equation (3), let us

name it principal scattering, is even in q. (iii) The term in

equation (4), for us secondary scattering, is odd in q.

We shall be neglecting in the following the secondary

scattering in expression (4). There are several reasons for that.

First, let us look at the magnitude of the scattering factor

products. In the X-ray case, we have f ¼ f ð0Þ þ f 0 þ if 00, where

f ð0Þ (real) is the true elastic scattering term, depending only on

q and at small q we have f ð0Þ � Z (the atomic number), whilst

f 0 þ if 00 constitute the anomalous scattering factor part (real

and imaginary parts), caused by the atomic electron binding,

constant with respect to q and varying only with the wave-

length. For reference and databases of atomic scattering

factors see Thompson & Vaughan (2009), Cullen et al. (1997),

Waasmaier & Kirfel (1995), Chantler et al. (2005), Chantler

(1995, 2000). In standard conditions (far from elemental

absorption edges) the ratios jf 0=f ð0Þj and jf 00=f ð0Þj are small.

Then

Reðfjf kÞ ¼ ½f
ð0Þ
j þ f 0j �½f

ð0Þ
k þ f 0k� þ f 00j f 00k ’ f

ð0Þ
j f
ð0Þ
k ;

Imðfjf kÞ ¼ ½f
ð0Þ
k þ f 0k�f

00
j � ½f

ð0Þ
j þ f 0j �f

00
k ’ f

ð0Þ
k f 00j � f

ð0Þ
j f 00k

and it is clear that the imaginary part is small. Only in special

conditions can the f 0 or f 00 become large. Second, note that if

the atomic species of the jth and kth atoms are the same

clearly Imðfjf kÞ ¼ Imðjfjj
2
Þ ¼ 0, implying that the only

contributing terms come from interatomic vectors linking

atoms of different species. In mono-atomic samples the

secondary scattering will always be zero. Third, consider the

degree of preferred orientation. We range from ideal powder

to single crystals, with many intermediates. Any even partial

ODF averaging that mixes up IðqÞ and Ið�qÞ will cancel partly

or totally the secondary scattering. When the ODF is uniform

(ideal powders), the odd sine terms average to exactly zero.

This paper deals mainly with non-ideal powders, where the

ODF is not uniform but also not as sharp as in a single crystal.

For this reason, in most cases the secondary scattering can be

neglected and one can assume that IðqÞ is an even function of

q. This has important consequences for the ODF averaging.

We mention in passing that, as it must be, the effect in single

crystals has been noted [Friedel pairs (Friedel, 1913)] and

exploited for phasing (see Bijvoet et al., 1951). Moreover, this

scattering contribution can be exploited in resonant condi-

tions, that is, whenever the wavelength can be chosen so as to

maximize it.

For completeness, we also give the inverse Fourier trans-

form of equation (1) as it represents the pair correlation of the

scattering density:

cðrÞ ¼
PN

j;k¼1

R
d3r0�jðjr

0 � djkjÞ�kðjrþ r0 � djkjÞ ð5Þ

¼
PN

j;k¼1

R
d3r0

R
d3r00�ðr00 � r0 þ djkÞ�jðr

00Þ�kðjrþ r00jÞ: ð6Þ

We now deal with evaluating the orientation average of terms

like the sum in equation (3) when the ODF is not uniform

(texture).

We shall follow the fundamental treatment of texture

expressed in the basis of spherical harmonics, as in Roe (1965)

and Bunge (1982). For a detailed comparison of these two

fundamental references see Esling et al. (1982). A new

method has recently been presented (Mason & Schuh, 2008,

2009), using the quaternion (axis–angle) parameterization

(Morawlec & Pospiech, 1989; Kazantsev et al., 2009; Karney,

2007; Bernstein et al., 2005; Bernstein & Schaeben, 2005) for

3D rotations instead of the less intuitive Euler matrices. We

will not deal with this approach in this paper. A very important

paper for the treatment of symmetry is that by Popa (1992),

refined by Popa (2008); well-known references are also

Järvinen (1993) and Von Dreele (1997). Special function

definitions are taken from Nikiforov & Uvarov (1988) and

Olver et al. (2009).

3. ODF formalism

An ODF

gð�1;�; �2Þ

is a function of three Euler angles. Let also

Eð�1;�; �2Þ

be the Euler matrix corresponding to a rotation of �1 around

the z axis, followed by a rotation of � around the y axis,

followed by a rotation of �2 around the new z axis. An ODF is

normalized to have unit average:

1 ¼
1

8�2

Z2�
0

d�1

Z�
0

sinð�Þ d�

Z2�
0

d�2 gð�1;�; �2Þ ð7Þ

so that ð8�2Þ
�1

gð�1;�; �2Þ is a probability density. The

uniform isotropic case is when gð�1;�; �2Þ ¼ 1. The ODF-

weighted average of the principal scattering, the meaningful

part of the differential cross section, as in equation (3),

becomes

IgðqÞ ¼ 2
PN

j> k¼1

Reðfjf kÞUðq; djkÞ ð8Þ

where
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Uðq; dÞ �
1

8�2

Z2�
0

d�1

Z1

�1

d cosð�Þ

Z2�
0

d�2 gð�1;�; �2Þ

� cos½2�q � E�1ð�1;�; �2Þd�: ð9Þ

3.1. Uniform isotropic ODF case – the DSE

In the uniform isotropic case (g ¼ 1), it is simple to verify

that

Uðq; dÞ ¼
sinð2�qdÞ

2�qd
¼ sincð2�qdÞ ¼ j0ð2�qdÞ ð10Þ

where

j0ðxÞ ¼ ð�=2Þ1=2 J1=2ðxÞ

x1=2
¼

sinðxÞ

x
ð11Þ

is the spherical Bessel function of 0 order [for definitions an

excellent online reference is Olver et al. (2009)]. In this

simplest, and fortunately very frequent, case, the expression of

the orientation-averaged differential cross section of our AO

is simply

IðqÞ ¼
PN
j¼1

jfjj
2
þ 2

PN
j> k¼1

Reðfjf kÞj0ð2�qdjkÞ ð12Þ

which is the well-known DSE, first presented by Debye (1915).

3.2. Arbitrary ODF case

In more complex cases we first have to make one further

simplification. If

d ¼ dd̂d ¼ d½cosð�Þ sinð�Þ; sinð�Þ sinð�Þ; cosð�Þ� ð13Þ

and

y ¼ E�1
ð�1;�; �2Þd ¼ dŷy

¼ d½cosð	Þ sinð�Þ; sinð	Þ sinð�Þ; cosð�Þ�

this still does not fully determine the Euler angles �1;�; �2. In

fact, a further rotation around ŷy is possible. This does not

affect anything, of course; therefore it is convenient to average

it out. It is possible (see Roe 1965; Bunge, 1982) to expand g in

generalized spherical harmonics (GSH), whose definition we

take from Nikiforov & Uvarov (1988):

gð�1;�; �2Þ ¼
Pþ1
l¼0

Pl

m;n¼�l

Cl;m;n exp½iðm�2 þ n�1Þ�P
mn
l ð�Þ

and we note conditions (Nadeau & Ferrari, 2003)

C0;0;0 ¼ 1; jCl;m;nj 	 2l þ 1 ð14Þ

(where the second inequality is just an upper bound, as tighter

bounds are very difficult to compute in general) and then we

execute the averaging of rotations around ŷy (cf. Roe, 1965;

Bunge, 1982):

hgid̂djŷyð	;�Þ ¼
Xþ1
l¼0

4�

2l þ 1

Xl

m;n¼�l

Cl;m;nð�1Þmþn
Y

m

l ð�; �ÞY
n
l ð�; 	Þ

where Ym
l are ordinary spherical harmonics (SPH). There are

unfortunately many definitions used in various fields; the

definition used here (and a comparison with other common

definitions) is given in Appendix A. They are complex func-

tions:

Yn
l ð�; �Þ ¼ Xm

l ½cosð�Þ� expðim�Þ

where for convenience we define

Xm
l ðuÞ ¼

2l þ 1

4�

ðl �mÞ!

ðl þmÞ!

� �1=2

Pm
l ðuÞ ð15Þ

where the associated Legendre functions Pm
l are defined in

Section A2. It is also convenient to use the plane-wave

expansion in spherical harmonics,

cosð2�qdŷy � q̂qÞ ¼ 4�
Pþ1
p¼0

ð�1Þpj2pð2�qdÞ
P2p

m¼�2p

Y
m

2pðŷyÞY
m
2pðq̂qÞ

ð16Þ

sinð2�qdŷy � q̂qÞ ¼ 4�
Pþ1
p¼0

ð�1Þpj2pþ1ð2�qdÞ

�
X2pþ1

m¼�2p�1

Y
m

2pþ1ðŷyÞY
m
2pþ1ðq̂qÞ; ð17Þ

or [using the SPH addition theorem, see e.g. Arfken

(1985)]

cosð2�qdŷy � q̂qÞ ¼
Pþ1
p¼0

ð�1Þpð4pþ 1Þj2pð2�qdÞP2pðŷy � q̂qÞ ð18Þ

sinð2�qdŷy � q̂qÞ ¼
Pþ1
p¼0

ð�1Þpð4pþ 3Þj2pþ1ð2�qdÞP2pþ1ðŷy � q̂qÞ

ð19Þ

where, if we express q̂q in polar coordinates

q̂q ¼ ½cosð
Þ sinð�Þ; sinð
Þ sinð�Þ; cosð�Þ�;

we can write

ŷy � q̂q ¼ cosð
� �Þ sinð�Þ sinð�Þ þ cosð�Þ cosð�Þ:

Now we integrate over �; 	:

Uðq; dÞ ¼
1

4�

Z2�
0

d	

Z1

�1

d½cosð�Þ�hgid̂djŷyð	;�Þ cosð2�qdŷy � q̂qÞ

¼
Xþ1
p¼0

4�

4pþ 1
ð�1Þpj2pð2�qdÞ ð20Þ

�
X2p

m;n¼�2p

C2p;m;nð�1Þmþn
Y

m

2pðd̂dÞY
n
2pðq̂qÞ: ð21Þ

3.3. Symmetry constraints

The theory of symmetry constraints on the complex coef-

ficients Cl;m;n has been developed by Bunge (1982). A very

clear and concise derivation is also found in Popa (1992)
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(with several small imprecisions), Järvinen (1993), Von Dreele

(1997) and Popa (2008). In fact, we have already exploited the

fact that cosð2�q � djkÞ is real and centrosymmetric [i.e.

cosð2�q � djkÞ ¼ cosð�2�q � djkÞ]. We can still exploit the fact

that g, and therefore also hgid̂djŷy, is real.

Define thus the real spherical harmonics Rm
l :

m ¼ 0 : R0
l ð�; �Þ ¼ Y0

l ð�; �Þ ¼
2l þ 1

4�

� �1=2

Pl½cosð�Þ�;

m> 0; jmj 	 l : Rm
l ð�; �Þ ¼

1

21=2
½Ym

l ð�; �Þ þ Y
m

l ð�; �Þ�

¼
1

21=2
½Ym

l ð�; �Þ þ ð�1ÞmY�m
l ð�; �Þ�

¼
2l þ 1

8�

� �1=2
ðl �mÞ!

ðl þmÞ!

� �1=2

� Pm
l ½cosð�Þ� cosðm�Þ;

m< 0; jmj 	 l : Rm
l ð�; �Þ ¼

�i

21=2
½Ym

l ð�; �Þ � Y
m

l ð�; �Þ�

¼
�i

21=2
½Ym

l ð�; �Þ � ð�1ÞmY�m
l ð�; �Þ�

¼
2l þ 1

8�

� �1=2
ðl � jmjÞ!

ðl þ jmjÞ!

� �1=2

� Pjmjl ½cosð�Þ� sinðjmj�Þ: ð22Þ

In terms of the Xm
l functions [equation (15)] we have the

compact forms

m ¼ 0 : R0
l ð�; �Þ ¼ X0

l ½cosð�Þ�;

m> 0; jmj 	 l : Rm
l ð�; �Þ ¼

1

21=2
Xm

l ½cosð�Þ� cosðm�Þ;

m< 0; jmj 	 l : Rm
l ð�; �Þ ¼

1

21=2
Xm

l ½cosð�Þ� sinðjmj�Þ:

ð23Þ

Now we can rewrite

Uðq; dÞ ¼
Xþ1
p¼0

4�

4pþ 1
ð�1Þpj2pð2�qdÞ

�
X2p

m;n¼�2p

Z2p;m;nð�1Þmþn
Rm

2pðd̂dÞR
n
2pðq̂qÞ ð24Þ

where Z2p;m;n are now real coefficients.

We will expand now on symmetry conditions as from Bunge

(1982) and Popa (1992).

3.4. Sample symmetry

In the three most used experimental geometries for powder

diffraction (DS or Debye–Scherrer with rotating capillary, BB

or Bragg–Brentano with flat spinning plate, FP or flat-plate

in transmission with frontal 2D detector; see Fig. 1) we can

assume cylindrical sample symmetry. In the first two cases this

is due to the sample spinning around an axis which is then

automatically the cylindrical symmetry axis; for FP, cylindrical

symmetry ensues from integrating the Scherrer rings on the

detector (or possibly, the flat plate could be made to rotate

around the beam axis).

We always set the z axis along the cylinder axis. Then in the

three cases, as is evident from Fig. 1,

DS : q̂q ¼ ðcos �d;� sin �d; 0Þ !

 ¼ ��d

� ¼ �=2

�

BB : q̂q ¼ ð0; 0; 1Þ !

 ¼ 0

� ¼ 0

�
ð25Þ

FP : q̂q ¼ ðcos �d; 0;� sin �dÞ !

 ¼ 0

� ¼ �=2þ �d:

�
ð26Þ

Then, as for cylindrical symmetry, the only allowed value is

always n ¼ 0,
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Figure 1
(Top) Debye–Scherrer (capillary) geometry; (middle) Bragg–Brentano
(symmetric reflection) geometry; (bottom) flat-plate with frontal 2D
detector (transmission) geometry.



Uðq; dÞ ¼
Xþ1
p¼0

4�

4pþ 1
ð�1Þpj2pð2�qdÞ

�
X2p

m¼�2p

Z2p;m;0ð�1ÞmRm
2pðd̂dÞR

0
2pðq̂qÞ

¼
Xþ1
p¼0

4�

4pþ 1

� �1=2

ð�1Þpj2pð2�qdÞ

�
X2p

m¼�2p

Z2p;m;0ð�1ÞmRm
2pðd̂dÞP2p½cosð�Þ�: ð27Þ

Here we used the identity P0
l ðxÞ ¼ PlðxÞ. For the three

geometries (DS, BB, FP) here considered:

Case DS:

Uðq; dÞ ¼
Xþ1
p¼0

4�

4pþ 1

� �1=2

ð�1Þpj2pð2�qdÞ

�
X2p

m¼�2p

Z2p;m;0ð�1ÞmRm
2pðd̂dÞP2pð0Þ

¼
Xþ1
p¼0

4�

4pþ 1

� �1=2

ð�1Þpj2pð2�qdÞ

�
X2p

m¼�2p

Z2p;m;0ð�1ÞmRm
2pðd̂dÞ

�

p ¼ 0 : 1

p> 0 : 2p�1
p

� 	
1

ð�1Þp22p�1 :

(
ð28Þ

Case BB:

Uðq; dÞ ¼
Xþ1
p¼0

4�

4pþ 1

� �1=2

ð�1Þpj2pð2�qdÞ

�
X2p

m¼�2p

Z2p;m;0ð�1ÞmRm
2pðd̂dÞP2pð1Þ

¼
Xþ1
p¼0

4�

4pþ 1

� �1=2

ð�1Þpj2pð2�qdÞ

�
X2p

m¼�2p

Z2p;m;0ð�1ÞmRm
2pðd̂dÞ: ð29Þ

Case FP:

Uðq; dÞ ¼
Xþ1
p¼0

4�

4pþ 1

� �1=2

ð�1Þpj2pð2�qdÞ

�
X2p

m¼�2p

Z2p;m;0ð�1ÞmRm
2pðd̂dÞP2pðsin �dÞ

¼
Xþ1
p¼0

4�

4pþ 1

� �1=2

ð�1Þpj2pð2�qdÞ

�
X2p

m¼�2p

Z2p;m;0ð�1ÞmRm
2pðd̂dÞP2pðq�=2Þ: ð30Þ

Here we used the even parity of the even Legendre poly-

nomials P2pðxÞ ¼ P2pð�xÞ and Bragg’s law q ¼ 2 sin �d=�.

Given the obvious constraint C0;0;0 ¼ Z0;0;0 ¼ 1, we can

extract the p ¼ 0 term and simplify the rest. We define another

quantity for convenience:

Y2pðd̂dÞ �
�

4pþ 1

� �1=2 X2p

m¼�2p

Z2p;m;0ð�1ÞmRm
2pðd̂dÞ: ð31Þ

Now we have for DS:

Uðq; dÞ ¼ j0ð2�qdÞ þ
Xþ1
p¼1

j2pð2�qdÞ
2p� 1

p

� �
1

22ðp�1Þ

� �
Y2pðd̂dÞ:

ð32Þ

For BB:

Uðq; dÞ ¼ j0ð2�qdÞ þ
Pþ1
p¼1

j2pð2�qdÞ½2ð�1Þp�Y2pðd̂dÞ: ð33Þ

For FP:

Uðq; dÞ ¼ j0ð2�qdÞ þ
Pþ1
p¼1

j2pð2�qdÞ½2ð�1ÞpP2pðq�=2Þ�Y2pðd̂dÞ:

ð34Þ

3.5. AO symmetry

If the atom cluster has additional symmetries, also the sum

over m can be reduced due to additional constraints (Bunge,

1982; Popa, 1992). Let us explore the constraints for classical

non-cubic crystal symmetries.

3.5.1. One axis. With one symmetry axis only of order

r (r ¼ 2; 3; 4; 6, for Laue groups C2h � 2=m, C3i � 3,

C4h � 4=m, C6h � 6=m, respectively), supposedly oriented

along z, we have that some of the Z2p;m;0 (p> 0) coefficients

are zero. In particular, the surviving ones are

Z2p;kr;0; k 2 Z; �2p 	 kr 	 2p:

3.5.2. Two axes. With one symmetry axis of order r

(r ¼ 2; 3; 4; 6), supposedly oriented along z, and an additional

twofold axis orthogonal to it, we have, additionally to the

former condition, that, for p> 0, if m even (m ¼ 2s),

Z2p;�jmj;0 ¼ 0

and if m odd (m ¼ 2s� 1),

Z2p;jmj;0 ¼ 0;

i.e. only the cosine terms survive when m is even (respectively,

the sine terms when m is odd). The results are summarized in

Table 1.

3.5.3. Three axes. This is the cubic case. Symmetrized

harmonics for this case are not simply an appropriate subset of

the real harmonics Rm
l ; we must form appropriate linear

combinations of them (with fixed l, of course). The original

derivation is due to von der Lage & Bethe (1947). Equation

(31) will be changed into
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Y2pðd̂dÞ �
�

4pþ 1

� �1=2XHp

�¼1

Z2p;�;0K�
2pðd̂dÞ ð35Þ

where Hp is a (small) number of allowed terms for each p.

Denote these so-called cubic harmonics as K
jl
l ð�; �Þ, where

1 	 jl 	 Nl is simply a counter. Two Laue groups belong to the

cubic case, Th � m3 and Oh � m3m. For the first, conditions

as for group D2h � mmm hold; for the second, conditions as

for group D4h � 4=mmm hold. Additionally, for both, we must

add the condition (Popa, 1992)

K
jl
l ð�; 0Þ ¼ K

jl
l ð0; �=2Þ:

For l< 4 no terms are present. For l ¼ 4, for both groups

Th � m3 and Oh � m3m, we have one term (polar angle �,
azimuth �):

K1
4 ¼

7

12

� �1=2

X0
4 ½cosð�Þ� þ

5

6

� �1=2

X4
4 ½cosð�Þ� cosð4�Þ

where the X functions are defined in equation (15). For l ¼ 6,

for Oh � m3m, we have one term (polar angle �, azimuth �):

K1
6 ¼ �

1

2ð2Þ1=2
X0

6 ½cosð�Þ� þ
7

4

� �1=2

X4
6 ½cosð�Þ� cosð4�Þ

and for group Th � m3 there is additionally

K2
6 ¼ �

11

8

� �1=2

X2
6 ½cosð�Þ� cosð2�Þ

þ
5

8

� �1=2

X6
6 ½cosð�Þ� cosð6�Þ:

For l ¼ 8, for Oh � m3m as well as for group Th � m3, we

have just one term:

K1
8 ¼
ð33Þ1=2

8
X0

8 ½cosð�Þ� þ
7

24

� �1=2

X4
8 ½cosð�Þ� cosð4�Þ

þ
65

96

� �1=2

X8
8 ½cosð�Þ� cosð8�Þ:

For l ¼ 10, for Oh � m3m, we have one term (polar angle �,
azimuth �):

K1
10 ¼ �8

6

65

� �1=2

X0
10½cosð�Þ� þ

4

ð11Þ1=2
X4

10½cosð�Þ� cosð4�Þ

þ 8
3

187

� �1=2

X8
10½cosð�Þ� cosð8�Þ

and for group Th � m3 there is additionally

K2
10 ¼ �8

3

247

� �1=2

X2
10½cosð�Þ� cosð2�Þ

� 8
6

19

� �1=2

X6
10½cosð�Þ� cosð6�Þ

þ 8
2

85

� �1=2

X10
10 ½cosð�Þ� cosð10�Þ:

For l ¼ 12, for Oh � m3m, we have two terms (polar angle �,
azimuth �):

K1
12 ¼

20

9

41

11

� �1=2

X0
12½cosð�Þ�

�
5

2

41

91

� �1=2

X4
12½cosð�Þ� cosð4�Þ

þ 10
82

12597

� �1=2

X8
12½cosð�Þ� cosð8�Þ;
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Table 1
Symmetry rules for the 11 crystallographic Laue groups plus the cylinder group.

Top part: For all non-cubic groups, where symmetry causes just a decimation of the coefficients Z2p;m;�, entries 0, + or� indicate if, for the selected |m| value (and of
course for each l = 2p > |m|), the coefficients Z2p;0;�, Z2p;jmj;�, Z2p;�jmj;�, respectively, are allowed to take nonzero values. Bottom part: For cubic groups, only linear
combinations of cubic harmonics K�

l are allowed; for each l = 2p, the possible cubic angular functions (if any) are shown.

2p ¼ l 
 jmj ¼ 0 1 2 3 4 5 6 7 8 9 10 11 12

Ci 1 Triclinic 0 � � � � � � � � � � � �

C2h 2/m Monoclinic 0 � � � � � �

D2h mmm Orthorhombic 0 + + + + + +
C3i 3 Trigonal 1 0 � � � �

D3d 3m Trigonal 2 0 � + � +
C4h 4/m Tetragonal 1 0 � � �

D4h 4/mmm Tetragonal 2 0 + + +
C6h 6/m Hexagonal 1 0 � �

D6h 6/mmm Hexagonal 2 0 + +
C1h 1/m Cylindrical 0

2p ¼ l ¼ 1 2 3 4 5 6 7 8 9 10 11 12

Th (tetrahedral) m3 Cubic I K1
4 K1

6 K1
8 K1

10 K1
12

K2
6 K2

10 K2
12

K3
12

Oh (octahedral) m3m Cubic II K1
4 K1

6 K1
8 K1

10 K1
12

K2
12



K2
12 ¼ 80

246

676039

� �1=2

X0
12½cosð�Þ�

þ 80
82

245157

� �1=2

X4
12½cosð�Þ� cosð4�Þ

þ 80
41

1771

� �1=2

X8
12½cosð�Þ� cosð8�Þ

þ
16

5

6

41

� �1=2

X12
12 ½cosð�Þ� cosð12�Þ;

and for group Th � m3 there is additionally

K3
12 ¼ 8

3

17

� �1=2

X2
12½cosð�Þ� cosð2�Þ

�
8

5

2

7

� �1=2

X6
12½cosð�Þ� cosð6�Þ

þ 8
6

209

� �1=2

X10
12 ½cosð�Þ� cosð10�Þ:

All cubic harmonics above are orthonormal.

4. Computation

The computation of the classical Debye scattering equation is

made much easier by using the Gaussian sampling method

(see Cervellino et al., 2006; Guagliardi et al., 2015). We briefly

recall its principle. Firstly, we assume that either the system is

mono-atomic, or the sum over atom pairs in equation (8) has

been split into parts corresponding to each pair of atomic

species. In this way we can factor out the possibly q-dependent

scattering length products Reðfjf kÞ, that would then be

multiplied after evaluating the partial sums over different

pairs, to be finally summed at the very end. So in this part we

will omit the scattering length products.

Given an interatomic distance djk, its contribution to the

powder pattern is j0ð2�qdjkÞ. As the djk ¼ jdjkj values are a

huge number (the square of the number of atoms in the AO)

and they are all concentrated in a finite interval 0< djk <D,

with D the diameter (or maximal linear dimension) of the AO,

it pays to consider only a discrete and uniformly spaced set of

distances dm ¼ m� with appropriately chosen weights Wm

and then compute the pattern as

CðqÞ
PMmax

m¼1

Wmj0ð2�qm�Þ ð36Þ

instead of a much larger sum over terms like in equation (12).

Recalling briefly the procedure, each term is replaced by

CðqÞ
�

�ð2�Þ1=2djk

Xbdjk=�eþ�

m¼maxð0;bdjk=�e��Þ

j0ð2�qm�Þ

� exp �
ðm�� djkÞ

2

2�2�2

" #
� exp �

ðm�þ djkÞ
2

2�2�2

" #( )
: ð37Þ

Here, bxe is the nearest integer to x; CðqÞ ¼ expð2�2�2�2q2Þ is

a correction factor; � ¼ 2:701 is a numerical constant; � is

an integer (typically � = 30 to 60) such that (numerically)

exp½�ðm�þ djkÞ
2=ð2�2�2Þ� can be considered negligibly

small. The second Gaussian centred at �djk is almost always

negligible except when m is close to 0. Finally, the parameter

�, the sampling step, must be chosen so that �< 1=ð2qmaxÞ,

where qmax is the maximum momentum transfer value in

the pattern to be calculated; a numerically safe choice is

� 	 0:4=qmax. The Whittaker–Nyquist–Kotelnikov–Shannon

upper limit for the sampling step (Shannon, 1949) is also

1=ð2qmaxÞ (see Guagliardi et al., 2015; Cervellino et al., 2016).

Hence, this is the most efficient approximate method with

negligible error (practically zero). Values of � ranging from 1

to 0.03 Å cover most imaginable powder diffraction experi-

mental conditions with neutrons and X-rays. For an exhaustive

derivation see Cervellino et al. (2006). When adding more

contributions to the pattern, the q-dependent factor CðqÞ can

be omitted and left to be multiplied at the end. The contri-

butions from different distances can be summed on the

fm�; m ¼ 1; . . . ;Mmax þ �g grid and the pattern is built by

accumulation, resulting in the Wm that multiply the

j0ð2�m�qÞ contributions in equation (36).

It is clear that such computational advantage can be

preserved in the extended form. We now will explain how the

procedure must be modified.

We rewrite here the sum equation (8) [assuming equation

(10)] in a more convenient way,

PN
j6¼k¼1

j0ð2�qdjkÞ ¼
PNd

‘¼1

W‘j0ð2�qd‘Þ ð38Þ

where the set of interatomic vectors fdjkjj 6¼ kg has been split

into Nd equivalence classes of interatomic vectors having the

same length, each ‘th class defined as fdjkjj 6¼ k; djk ¼ d‘g,

‘ ¼ 1; . . . ;Nd. The j0 terms to be computed (or sampled) are

only those containing the d‘ in argument. Each of them is

weighted by W‘, each being the number of djk within the ‘th

equivalence class.

When having to compute superior orders, like in equations

(32), (33) or (34), or the functions defined in Section 3.5.3, the

same equivalence classes define the j2p terms to be computed.

Only the corresponding weights become more complex. In

fact, now they depend also on the direction vectors d̂d‘
belonging to the corresponding class, through the real SPH

Rm
2pðd̂d‘Þ. There one just needs to follow the relevant equation.

We give next, however, some indication on how to compute

economically the angular dependent terms.

4.1. Angular functions computation

Take a distance vector d‘ belonging to one of the equiva-

lence classes defined above. Let

d ¼ d½cosð�Þ sinð�Þ; sinð�Þ sinð�Þ; cosð�Þ� ¼ ðx; y; zÞ

[cf. equation (13)] given both in polar and in Cartesian coor-

dinates with respect to the appropriate reference system.

Defining for convenience

q � ðx; y; 0Þ; � ¼ x2 þ y2

 �1=2

we can write the following interrelations:

research papers

Acta Cryst. (2020). A76, 302–317 Cervellino and Frison � Texture corrections for total scattering functions 309



d ¼ x2
þ y2
þ z2


 �1=2
ð39Þ

cosð�Þ ¼
z

d
; sinð�Þ ¼ 1� cos2ð�Þ

� 
1=2
ð40Þ

cosð�Þ ¼
x

�
; sinð�Þ ¼

y

�
: ð41Þ

These are the only necessary relationships. For completeness

we give the expressions for the angular values of �; �, even if

they are not necessary:

� ¼ arccos
z

d

� 	

� ¼ arctanðy; xÞ ¼
arctan y

x


 �
� � ½signðxÞ�1�

2 if x 6¼ 0

�
2 signðyÞ if x ¼ 0

8<
:

where of course signðxÞ ¼ x=jxj.
The direct values of the angles are not necessary because in

equation (24) the spherical harmonics depend only on sines

and cosines of �; � and of their integer multiples. The latter

can be most conveniently computed by using the relations

cosðn’Þ ¼ Tn½cosð’Þ�;

sinðn’Þ ¼ sinð’ÞUn�1½cosð’Þ� ð42Þ

involving the Chebyshev polynomials of the first kind TnðxÞ

(Wolfram Research Inc., 2001a) and those of the second kind

UnðxÞ (Wolfram Research Inc., 2001b). These are very

conveniently and efficiently evaluated by recurrence relations.

This is detailed in Section B2. Moreover, Section B1 deals with

the case – frequent in this context – where only odd or even

terms must be used. So all computations can be performed

without using any direct or inverse trigonometric functions.

This enhancement is used to great effect in the DEBUSSY

software suite (Cervellino et al., 2015), greatly speeding up

computations of the DSE.

5. Direct-space direct transforms

By means of a specialized Fourier transform of a powder

diffraction pattern, it is possible to obtain a pattern in direct

space, with a single radial coordinate r, showing a sharp peak

wherever there are interatomic distances equal to r, whose

height is related to the multiplicity of the distance and the

scattering length product of the connected atoms. This is the

basis of the well-known pair distribution function (PDF)

method (Zernike & Prins, 1927; Egami & Billinge, 2003;

Billinge, 2008). The radial pattern in direct space is generally

referred to as the PDF, meaning that, in the sense roughly

sketched above, it provides a weighted representation of the

pair distances between atoms.

While different functions are commonly used for the direct-

space representation, the most frequently associated with the

PDF acronym are, since Zernike & Prins (1927),

GtðrÞ ¼ ð4�rt�1n0Þ
1

2�2

Zþ1
0

Q dQ sinðQrÞ½SðQ� 1Þ�;

t ¼ 0; 1; 2 ð43Þ

with the more usual choice of variable Q ¼ 2�q. It is most

usually used with the choice t ¼ 1 that we will assume in the

following [GðrÞ � G1ðrÞ]; and here n0 ¼ N=V is the point

density of atoms per unit volume, V being the volume occu-

pied by the AO. The SðQÞ function appearing there is just

SðQÞ ¼
IðQÞ

Nhjf j2i
; wherehjf j2i �

1

N

XN

j¼1

jfjj
2;

where IðQÞ is the isotropic averaged differential cross section

[equation (12)] expressed in the variable Q. In more detail,

SðQÞ ¼
1

Nhjf j2i

XN

j¼1

jfjj
2

þ
2

Nhjf j2i

XN

j> k¼1

Reðfjf kÞj0ðQdjkÞ

¼ 1þ
1

Nhjf j2i

XN

j 6¼k¼1

Reðfjf kÞj0ðQdjkÞ ð44Þ

so

GðrÞ ¼ n0

2

�

Zþ1
0

Q dQ sinðQrÞ
XN

j6¼k¼1

Reðfjf kÞ

Nhjf j2i
j0ðQdjkÞ ð45Þ

¼
2r

�V

XN

j6¼k¼1

Zþ1
0

Q2 dQ
Reðfjf kÞ

hjf j2i

" #
j0ðQrÞj0ðQdjkÞ: ð46Þ

In the simplest case where the term in square brackets is

independent of Q, we can extract it from the integral and

GðrÞ ¼
2r

�V

XN

j6¼k¼1

Reðfjf kÞ

hjf j2i

" # Zþ1
0

Q2 dQj0ðQrÞj0ðQdjkÞ

¼
1

V

XN

j6¼k¼1

Reðfjf kÞ

hjf j2i

" #
�ðr� djkÞ

djk

: ð47Þ

Here we use the integral from Olver et al. (2009, Equation

1.17.14):

Zþ1
0

s2 dsjlðxsÞjlðx
0sÞ ¼

�

2xx0
�ðx� x0Þ; l ¼ 0; 1; 2; . . . :

One interesting side note is that, if we define a scalar product

between complex functions on Rþ ¼ ð0;þ1Þ,

hf jgi �
Rþ1
0

4�s2 dsf ðsÞgðsÞ; ð48Þ

it is easy to see that this induces a norm

kfk ¼ hf jf i1=2
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and a distance

Dðf ; gÞ ¼ kf � gk:

So if we take the space U of well-behaved complex functions

on Rþ, for instance those having finite norm and C1 on Rþ,

we can define its closure, the space of complex functionals on

U as a Riesz space. Now, we write a slightly modified integral:

hj0ð2�srÞjj0ð2�sr0Þi ¼

Zþ1
0

4�s2 dsj0ð2�srÞj0ð2�sr0Þ ¼
�ðr� r0Þ

4�rr0
:

ð49Þ

This means that the functions

j0ðQrÞ ¼
sinðQrÞ

Qr

constitute a complete orthogonal system on Rþ. In particular,

the superior orders jlðQrÞ, l> 0, can be expressed as linear

combinations of the j0ðQrÞ. Therefore there arises ambiguity

in evaluating the GðrÞ for a system with texture, because the

higher orders of spherical Bessel functions will mix up in the

GðrÞ evaluated from experimental data. A GðrÞ curve from a

textured powder will have to be carefully compared with an

atomic model including the texture parameters, and even so

the results may be ambiguous.

5.1. GðrÞ from higher-order even spherical Bessel functions

As a last point, as it is not easy to find them in the literature,

we give here expressions of the scalar product of the j0ðQrÞ

basis functions with the j2pðQrÞ even higher-order spherical

Bessel functions that appear in the texture-generalized DSE.

The only reference we could find is a paper by Maximon

(1991). From there, with a bit of bookkeeping,

hj0ð2�qrÞjj2pð2�qdÞi

¼

Zþ1
0

4�q2 dqj0ð2�qrÞj2pð2�qdÞ

¼
ð�1Þp

4�rd
�ðr� dÞ �

1

d

d

dx
P2pðxÞ

� �
x¼r=d

�ðd� rÞ

( )
: ð50Þ

The first term with the Dirac delta, apart from the sign ð�1Þp,

is identical to the result for p ¼ 0 [see equation (49)]. This

term is creating an infinitely sharp peak at r ¼ d. Real-world

samples show in fact sharp peaks, although not infinitely sharp

because of atomic form factors, uncorrelated thermal vibra-

tions and possibly disorder. Note, however, that the Dirac

delta terms encoded in the higher-order spherical Bessel

functions j2p all have the same intrinsic magnitude ð4�rdÞ
�1,

but alternating signs ð�1Þp. Therefore, the interatomic

distance peaks of the GðrÞ will change in height due to texture,

as a first-order effect; and it is very possible that, for some

combination of texture coefficients, some distance peaks might

disappear. This is the dual of a similar well-known effect on

the reciprocal-space pattern – texture modifies the Bragg peak

intensities and in some cases cancellation of some families of

peaks has been observed. See Fig. 8 for some example

calculated GðrÞ.

Another effect comes from the second term, which has as

factor a Heaviside function

�ðxÞ ¼
1 if x> 0

1=2 if x ¼ 0

0 if x< 0

8<
:

that reduces to 0 where r> d; while, on the low-r side of d

(0< r< d), we have a polynomial tail given by the first deri-

vative of a Legendre polynomial of degree 2p in r=d. This will

change the background below the interatomic distance peaks,

due to the step-like contributions from the Heaviside func-

tions. This is very evident in Fig. 8 for some example calculated

GðrÞ.

Legendre polynomials and their recursion are described in

Section A1. The first few even Legendre polynomials with

their first derivatives are listed here.

6. Example calculations and graphics

To ease understanding of concepts presented here, we have

made some example calculations, building first an ideal AO in

the form of a NC of PbS (space group Fm3m, lattice parameter

5.936 Å, rock-salt structure), with the shape of a parallelogram

of 5� 5� 15 unit cells (Fig. 2). Special attention has been

devoted to building the surface in a way that does not reduce

the overall symmetry; however, the point group of the AO as a

whole is tetragonal (due to the elongated shape), more

precisely D4h or 4=mmm.

We like to stress that this symmetry reduction has a deep

meaning. In fact, it correlates the ODF with the particle shape.

Now, given that the particle shape is often the main reason for
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Figure 2
The tetragonal prism of PbS (about 3� 3� 9 nm) used as a model AO
for graphical illustrations.



an anisotropic ODF, this is surely an advantage. Even more so

when there is also a correlation between shape and strain.

We will hereafter show patterns of PbS modified by the

ODF for the three common experimental geometries (DS, BB,

FP) illustrated in Section 3.4. Looking at Table 1, we can see

that the selection rules for 4=mmm AO symmetry allow only

coefficients Z2p;m;0 where m is a non-negative multiple of 4,

obeying m 	 l ¼ 2p, to be nonzero. The standard DSE

includes only the term (l, m) = (0, 0). With texture, higher

orders up to l = 12 are limited to (l, m) = (2, 0), (4, 0), . . . ;
(12, 0); (4, 4), (6, 4), . . . ; (12, 4); (8, 8), (10, 8), (12, 8); and

(12, 12). So, the dis-uniformity of the ODF is described by a

grand total of 15 terms up to order l = 12, which is fairly high.

We shall also here simplify the treatment of atomic form

factors. So, instead of the q-dependent expression Reðfjf kÞ for

the scattering product of the ðj; kÞ-th pair of atoms, we will use

the simpler form ZjZk, the product of the atomic numbers (82

for Pb and 16 for S). We shall also set the scale by dividing

each pattern by the self-scattering term

PN
j¼1

jfjj
2
¼
PN
j¼1

Z2
j

in order to set a common scale. That means our plots will all be

of the (modified) SðQÞ.

Firstly, just to have an impression about the superior

spherical Bessel function terms, we will compute the standard

DSE substituting j2pðxÞ ðp ¼ 1; 2; . . .Þ for j0ðxÞ ¼ sinðxÞ=x. To

be noted in Fig. 3 is the striking similarity between the

modified DSE patterns at different orders, apart from the sign

ð�1Þp.

Next, we make some true example calculations based on the

same AO, using equations (32), (33), (34). As the values of the

15 allowed coefficients Zl;m;0 (l 	 12) are arbitrary within

limits in equation (14), we evaluated, for each of the three

experimental geometries, 15 SðQÞ patterns, each one modified

by ‘switching on’ a single Zl;m;0. Each time, we both add and

subtract the chosen perturbing term, fixing the respective

coefficient Zl;m;0 ¼ �
ð2l þ 1Þ. We let 
 ¼ 1 for the DS and

FP geometry, where perturbations are weaker; we set it to 0.2

for the BB, in order to avoid huge negative intensity values. Of

course, any good refinement program would determine coef-

ficient values that reproduce the observed SðQÞ, so this is not a

problem in applications.

Observing the graphs in Figs. 4, 5, 6 we can note several

interesting features. Perhaps the most important is that texture

– at least when combined with some shape anisotropy, as in

this example – does not just modify the intensity of Bragg

peaks but changes their shape as well. Apparent peak splits

can be seen in Fig. 4(top) [DS geometry, case ðl;mÞ ¼ ð2; 0Þ],

for instance; other graphs show apparent peak shifts, broad-

ening or narrowing and profile alterations. Furthermore,

changes in the background, though relatively smaller, can be

observed as well. This point is important because shape

anisotropy very often accompanies, and likely causes, texture

in powder samples. Therefore, we believe that it is important
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Figure 4
Debye–Scherrer (capillary) geometry: red – SðQÞ without texture, orange
– the single texture component, blue – SðQÞ with component added,
green – SðQÞ with component subtracted. The component magnitude was
set as Zl;m;0 ¼ �ð2l þ 1Þ, its upper bound from equation (14). This leads
to negative intensity in some regions of the (l, m) = (8, 0) (middle) plot,
both green and blue lines, when the ð�Þ sign is used, so in reality bounds
on Zl;m;0 must be tighter. (Top) SðQÞ and its modification with the ð2; 0Þ
component; (middle) with the ð8; 0Þ component; (bottom) with the ð8; 4Þ
component.

Figure 3
The standard DSE-calculated SðQÞ pattern (for uniform ODF) and a few
‘higher-order’ variants where we simply substitute jlðxÞ for j0ðxÞ. It is
interesting to note the similarity, especially in the peaked regions, apart
from the alternating sign.



to have new tools such as the modified DSE presented here, in

order to account precisely for all effects of texture combined

with size and shape anisotropy.

6.1. Comparison with Bragg methods

A comparison with traditional Bragg (Rietveld) methods of

calculating a powder diffraction pattern and SPH components

is shown in Fig. 7. To do so, we computed the texture-free

pattern for one spherical NC with D = 5.4 nm using the

TOPAS software (Coelho, 2018) implementing the spherical

harmonics as in Järvinen (1993). This sphere has equivalent

volume to the rod used so far. We selected the Debye–

Scherrer geometry for this comparison.

TOPAS uses the Laue symmetry m3m � Oh (as derived

from the given cif file). Maybe it would have been possible to

force the tetragonal group onto TOPAS, but still the shape

anisotropy would have been more difficult. Therefore we

produced another simulation, using a cubic PbS NC with

7� 7� 7 unit cells and approximately the same volume as

above. We also assigned this time the m3m � Oh group as AO

symmetry. We calculated some of the corresponding cubic

harmonics (K1
4, K1

6, K1
8) with both programs. The results are

shown in Fig. 7. The patterns without texture (top) match very

nicely. Minor differences are in the diffuse background of the

total scattering pattern (top). This however can be expected

because (a) the actual shape difference (cube versus sphere)

must yield some small differences, (b) what lies ‘underneath

the Bragg peaks’ is where total scattering and Rietveld–Bragg

methods are supposed to differ. The ODF contributions (we

show only two) match very closely indeed, as can be seen in

the middle and bottom parts of the figure.

6.2. Example calculations of the GðrÞ PDF

Finally, in order to verify various points discussed in Section

5, we show (Fig. 8) the plot of one calculated GðrÞ for the same
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Figure 5
Bragg–Brentano (reflection) geometry. Same colour scheme as in Fig. 4.
The component magnitude was set as Zl;m;0 ¼ �0:2ð2l þ 1Þ, or 1/5 of its
upper bound from equation (14). Still we can see some negative intensity
in some regions of the (l, m) = (8, 0) (middle) plot, green line, when the
ð�Þ sign is used, so an even tighter bound is necessary in this case. (Top)
SðQÞ and its modification with the ð2; 0Þ component; (middle) with the
ð8; 0Þ component; (bottom) with the ð8; 4Þ component.

Figure 6
Flat-plate (transmission) geometry. Same colour scheme as in Fig. 4. Here
again we set Zl;m;0 ¼ �ð2l þ 1Þ, its upper bound from equation (14).
Negative intensity regions again indicate the need for tighter bounds on
the coefficients. (Top) SðQÞ and its modification with the ð2; 0Þ
component; (middle) with the ð8; 0Þ component; (bottom) with the
ð8; 4Þ component.



PbS NC and for the three experimental geometries. The SðQÞ

was evaluated up to Q = 60 Å�1 (fairly high), and a Gaussian

broadening of root-mean-square width 0.05 Å was added to

the interatomic distances, like a moderate Debye–Waller

factor. This is very effective in regularizing the GðrÞ, as is well

known. Similar vibrational amplitudes are common in

ordinary matter. Again, as before, we calculated the unper-

turbed SðQÞ via the DSE, then added/subtracted texture ðl;mÞ

perturbations one at a time, always with the maximum coef-

ficient allowed�ð2l þ 1Þ. We chose the lowest order of texture

whose effects were visible in the graph. It turned out that we

did not have to go far, as at ðl;mÞ ¼ ð4; 0Þ every possible effect

proposed in Section 5 is already easily visible and likely

making the analysis quite complicated. Within the �ð2l þ 1Þ

range of coefficients, several distance peaks may easily be

deleted (in our plots they become negative; therefore with

lower coefficient magnitude they must go to 0). Furthermore,

the background is rich in ramps and steps due to the expansion

of superior spherical Bessel functions in the j0ðQrÞ basis, as

explained in Section 5.

Again, from Fig. 8, we can see very well that the BB

geometry is much more affected by texture than the other

systems. This may be a useful tip when planning experiments

on samples under suspicion of preferred orientation.

7. Conclusions

We have derived extended Debye scattering equations that

encode sums over higher-order even spherical Bessel func-

tions which account for corrections to moderate texture. We

showed that, as in the Bragg scattering case, the texture effect

modifies the diffraction maxima intensities, possibly leading to

their cancellation. We extended our approach to the direct-

space transforms deriving one expression for the GðrÞ function,

showing two important facts: (i) the well-known texture effect

in reciprocal space has its dual counterpart in real space where

the height of many interatomic distance peaks will change, in

particular for some combination of texture coefficients some

distance peaks may disappear; and (ii) the contribution from

the higher-order even spherical Bessel functions will also
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Figure 7
Debye–Scherrer (capillary) geometry: top – I(Q) without texture for
different shapes as calculated by DSE (red) and Rietveld (blue); middle –
cubic K1

4 component as calculated by DSE (violet, dotted) and Rietveld
(green); bottom – cubic K1

8 component as calculated by DSE (violet,
dotted) and Rietveld (green).

Figure 8
The GðrÞ unperturbed (red) and the same perturbed by � the maximal
ð4; 0Þ perturbation [green for ð�Þ sign, blue for ðþÞ]. Plots are shifted
vertically for convenience. The separate perturbation is plotted in orange
over the unperturbed function. (Top) DS geometry; (middle) BB (note
the much higher effect); (bottom) FP.



introduce polynomial tails on the low-r side of the peaks, with

a step to 0 at r 
 d which could be difficult to model.

APPENDIX A
Texture special functions: definitions and notation

A1. Legendre polynomials

The definition of Legendre polynomials:

PlðxÞ ¼
ð�1Þl

2l l!

@l

@xl
ð1� x2Þ

l: ð51Þ

Orthogonality:

Z1

�1

dxPlðxÞPl0 ðxÞ¼

Z�
0

sinð�Þ d�Pl½cosð�Þ�Pl0 ½cosð�Þ�

¼
2

2l þ 1
�l;l0 : ð52Þ

Recurrence:

Plþ1ðxÞ ¼
2l þ 1

l þ 1
xPlðxÞ �

l

l þ 1
Pl�1ðxÞ: ð53Þ

A2. Associated Legendre functions

There are two definitions in the literature for associated

Legendre functions:

ðIÞ ðIÞPm
l ðxÞ ¼

ð�1Þmþl

2ll!
ð1� x2Þ

m=2 @
lþm

@xlþm
ð1� x2Þ

l; ð54Þ

ðIIÞ ðIIÞPm
l ðxÞ ¼

ð�1Þl

2ll!
ð1� x2

Þ
m=2 @

lþm

@xlþm
ð1� x2

Þ
l

¼ ð�1Þm ðIÞPm
l ðxÞ: ð55Þ

Definition (II) is in Edmonds (1961), Messiah (1961), Masters

& Richards-Dinger (1998), Nikiforov & Uvarov (1988), and is

most used in quantum mechanics. Here we shall adopt (I),

while using Abramowitz & Stegun’s (1972) convention:

Pm
l ðxÞ �

ðIÞPm
l ðxÞ;

PlmðxÞ �
ðIIÞPm

l ðxÞ ¼ ð�1ÞmPm
l ðxÞ: ð56Þ

In both cases,

P�m
l ðxÞ ¼ ð�1Þm

ðl �mÞ!

ðl þmÞ!
Pm

l ðxÞ ð57Þ

P0
l ðxÞ ¼ PlðxÞ; where PlðxÞ ¼

ð�1Þl

2ll!

@l

@xl
ð1� x2

Þ
l: ð58Þ

Orthogonality:

Z1

�1

dx PlðxÞPl0 ðxÞ ¼
2

2l þ 1
�l;l0 ð59Þ

Z1

�1

dx Pm
l ðxÞP

m
l0 ðxÞ ¼

2

2l þ 1

ðl þmÞ!

ðl �mÞ!
�l;l0 : ð60Þ

Recurrence over l:

Pm
l ðxÞ ¼

2l � 1

l �m
xPm

l�1ðxÞ �
l þm� 1

l �m
Pm

l�2ðxÞ when m< l;

ð61Þ

for m ¼ l, we complete with

Pl
lðxÞ ¼ ð�1Þlð2l � 1Þ!!ð1� x2Þ

l=2
ð2l � 1Þ!! �

Yl

j¼1

ð2j� 1Þ

����� :

A3. Spherical harmonics

Spherical harmonics can be defined in two ways, depending

on the choice for Legendre functions:

ðIÞ Ym
l ð�; �Þ ¼

2l þ 1

4�

� �1=2
ðl �mÞ!

ðl þmÞ!

� �1=2

Pm
l ½cosð�Þ� expðim�Þ

ð62Þ

ðIIÞ Ym
l ð�; �Þ ¼ ð�1Þm

2l þ 1

4�

� �1=2
ðl �mÞ!

ðl þmÞ!

� �1=2

� Plm½cosð�Þ� expðim�Þ ð63Þ

with the ð�1Þm sign appearing in (II) being the Condon–

Shortley phase, compensating for the absence of a similar

factor in the definition of Plm, as discussed above. The sphe-

rical harmonics are orthonormal with respect to both indexes:

R2�
0

d�
R�
0

sinð�Þ d�Ym
l ð�; �ÞY

m0

l0 ð�; �Þ ¼ �l;l0�m;m0 : ð64Þ

Note that Bunge (1982) defines the spherical harmonics

slightly differently. He uses the symbol 
m
l ð�; �Þ instead of

Ym
l ð�; �Þ (� � �; � � �) and


m
l ð�; �Þ ¼ expðim�Þ

ð�1Þlþm

2ll!

2l þ 1

4�

� �1=2
ðl þmÞ!

ðl �mÞ!

� �1=2

� ð1� x2
Þ
�m=2 @

l�m

@xl�m
ð1� x2

Þ
l
���

x¼cosð�Þ

from equations (14.38), (14.39) of Bunge (1982). We can use

the identity (Nikiforov & Uvarov, 1988)

@l�m

@xl�m
ð1� x2Þ

l
¼ ð�1Þmð1� x2Þ

m ðl �mÞ!

ðl þmÞ!

@lþm

@xlþm
ð1� x2Þ

l

so we can write


m
l ð�; �Þ ¼ expðim�Þ

ð�1Þl

2ll!

2l þ 1

4�

� �1=2
ðl �mÞ!

ðl þmÞ!

� �1=2

� ð1� x2
Þ

m=2 @
lþm

@xlþm
ð1� x2

Þ
l
���

x¼cosð�Þ

which leads to


m
l ð�; �Þ ¼ ð�1ÞmYm

l ð�; �Þ ¼ Y
�m

l ð�; �Þ:
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APPENDIX B
Computational wisdom

B1. General double-step recurrence

Many functions and polynomials useful in the computation

of spherical harmonics are defined recursively. In crystal-

lography, we often have to consider only the even terms of

such recurrence. As it is clearly a waste to compute the odd

terms when we are interested only in the even ones, we give

here a recipe to transform a three-term recurrence relation

into one that uses only even orders. If we have a three-term

recurrence relation

Vmþ1 ¼ amVm þ bmVm�1

we can expand Vm on the right-hand side:

Vmþ1 ¼ amðam�1Vm�1 þ bm�1Vm�2Þ þ bmVm�1

¼ ðamam�1 þ bmÞVm�1 þ ambm�1Vm�2;

then, considering also

am�2Vm�2 ¼ Vm�1 � bm�2Vm�3

and substituting,

Vmþ1 ¼ ðamam�1 þ bmÞVm�1 þ ambm�1

Vm�1 � bm�2Vm�3

am�2

¼ amam�1 þ bm þ
ambm�1

am�2

� �
Vm�1 �

ambm�1bm�2

am�2

¼
amðam�1am�2 þ bm�1Þ þ bmam�2

am�2

Vm�1

�
ambm�1bm�2

am�2

Vm�3: ð65Þ

B2. Clenshaw recurrence

Suppose we need to evaluate linear combinations of the

form

f ðxÞ ¼
PN
k¼0

ckFkðxÞ ð66Þ

where the FkðxÞ obey a three-term recurrence

Fnþ1ðxÞ ¼ 
nðxÞFnðxÞ þ �nðxÞFn�1ðxÞ ð67Þ

and the first two terms F0;F1 are known [note that a special

case of equation (66) is the evaluation of FNðxÞ, just setting

c0 ¼ . . . ¼ cN�1 ¼ 0 and cN ¼ 1].

The most efficient way to compute such linear combinations

is usually Clenshaw’s recurrence (Clenshaw (1962; Press et al.,

2007), using auxiliary functions ykðxÞ. In simple terms, we set

yNþ2ðxÞ � 0; yNþ1ðxÞ � 0;

ykðxÞ ¼ 
kðxÞykþ1ðxÞ þ �kþ1ðxÞykþ2ðxÞ þ ck;

k ¼ N;N � 1; . . . ; 1 ð68Þ

and at the end it can be shown that

f ðxÞ ¼ ½c0 þ y2ðxÞ�1ðxÞ�F0ðxÞ þ y1ðxÞF1ðxÞ: ð69Þ

This is precise and does not require evaluating the FkðxÞ first,

as only the first two are used.

In the rare cases when

jf ðxÞj � j½c0 þ y2ðxÞ�1ðxÞ�F0ðxÞj þ jy1ðxÞF1ðxÞj ð70Þ

then the opposite procedure is better:

y�2ðxÞ � 0; y�1ðxÞ � 0;

ykðxÞ ¼
�ck � 
kðxÞyk�1 þ yk�2

�kþ1ðxÞ
; k ¼ 0; 1; . . . ;N � 1

ð71Þ

and

f ðxÞ ¼ ½cN � yN�2ðxÞ�FNðxÞ � �NðxÞyN�1ðxÞFN�1ðxÞ: ð72Þ

Here of course the higher terms FNðxÞ and FN�1ðxÞ have to be

evaluated too.

B3. Recursive evaluation of spherical harmonics

Here we follow Masters & Richards-Dinger (1998). The

computation of spherical harmonics of higher orders may be

afflicted by numerical instabilities if direct formula computa-

tion is attempted. Moreover, while l-recursion-based recursive

methods may be trivial, the accompanying m-based recursion

is not and may induce large numerical errors. What follows is

the fastest and most precise way to manage such recursions.

Write

Ym
l ð�; �Þ ¼ ½sinð�Þ�mWm

l ð�Þ expðim�Þ:

We know that

Wl
l ð�Þ ¼ ð�1Þl

2l þ 1

4�

� �1=2
1

ð2lÞ!

� �1=2

ð2l � 1Þ!!

where ð2l � 1Þ!! � 2�lð2lÞ!=l! and

Wl�1
l ð�Þ ¼ ð�1Þl�1 2l þ 1

4�

� �1=2
1

ð2l � 1Þ!

� �1=2

ð2l � 1Þ!! cosð�Þ

¼ �ð2lÞ1=2 cosð�ÞWl
l ð�Þ:

Now we can give a stable downward m-recurrence for m from l

to 0, compatible with Clenshaw’s method of Section B2, as

Wm�1
l ð�Þ ¼ �

2m cosð�Þ

½ðl þmÞðl �mþ 1Þ�1=2
Wm

l ð�Þ

�
½ðl �mÞðl þmþ 1Þ�1=2 sin2

ð�Þ

½ðl þmÞðl �mþ 1Þ�1=2
Wmþ1

l ð�Þ:

The spherical harmonics (also with negative m values) are

then obtained as

Ym
l ð�; �Þ ¼ sinm

ð�Þ expðim�ÞWm
l ð�Þ;

Y�m
l ð�; �Þ ¼ ð�1Þm sinm

ð�Þ expð�im�ÞWm
l ð�Þ:
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