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The general problem of finding a global rotation that transforms a given set of

spatial coordinates and/or orientation frames (the ‘test’ data) into the best

possible alignment with a corresponding set (the ‘reference’ data) is reviewed.

For 3D point data, this ‘orthogonal Procrustes problem’ is often phrased in

terms of minimizing a root-mean-square deviation (RMSD) corresponding to a

Euclidean distance measure relating the two sets of matched coordinates. This

article focuses on quaternion eigensystem methods that have been exploited to

solve this problem for at least five decades in several different bodies of scientific

literature, where they were discovered independently. While numerical methods

for the eigenvalue solutions dominate much of this literature, it has long been

realized that the quaternion-based RMSD optimization problem can also be

solved using exact algebraic expressions based on the form of the quartic

equation solution published by Cardano in 1545; focusing on these exact

solutions exposes the structure of the entire eigensystem for the traditional 3D

spatial-alignment problem. The structure of the less-studied orientation-data

context is then explored, investigating how quaternion methods can be extended

to solve the corresponding 3D quaternion orientation-frame alignment (QFA)

problem, noting the interesting equivalence of this problem to the rotation-

averaging problem, which also has been the subject of independent literature

threads. The article concludes with a brief discussion of the combined 3D

translation–orientation data alignment problem. Appendices are devoted to a

tutorial on quaternion frames, a related quaternion technique for extracting

quaternions from rotation matrices and a review of quaternion rotation-

averaging methods relevant to the orientation-frame alignment problem. The

supporting information covers novel extensions of quaternion methods to the

4D Euclidean spatial-coordinate alignment and 4D orientation-frame alignment

problems, some miscellaneous topics, and additional details of the quartic

algebraic eigenvalue problem.

1. Context

Aligning matched sets of spatial point data is a universal

problem that occurs in a wide variety of applications. In

addition, generic objects such as protein residues, parts of

composite object models, satellites, cameras, or camera-

calibrating reference objects are not only located at points in

three-dimensional space, but may also need 3D orientation

frames to describe them effectively for certain applications.

We are therefore led to consider both the Euclidean spatial-

coordinate alignment problem and the orientation-frame

alignment problem on the same footing.

Our purpose in this article is to review, and in some cases to

refine, clarify and extend, the possible quaternion-based

approaches to the optimal alignment problem for matched sets

of translated and/or rotated objects in 3D space, which could

be referred to in its most generic sense as the ‘generalized

orthogonal Procrustes problem’ (Golub & van Loan, 1983).

We also devote some attention to identifying the surprising
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breadth of domains and literature where the various approa-

ches, including particularly quaternion-based methods, have

appeared; in fact the number of times in which quaternion-

related methods have been described independently without

cross-disciplinary references is rather interesting, and exposes

some challenging issues that scientists, including the author,

have faced in coping with the wide dispersion of both histor-

ical and modern scientific literature relevant to these subjects.

We present our study on two levels. The first level, the

present main article, is devoted to a description of the 3D

spatial and orientation alignment problems, emphasizing

quaternion methods, with an historical perspective and a

moderate level of technical detail that strives to be accessible.

The second level, comprising the supporting information,

treats novel extensions of the quaternion method to the 4D

spatial and orientation alignment problems, along with many

other technical topics, including analysis of algebraic quartic

eigenvalue solutions and numerical studies of the applicability

of certain common approximations and methods.

In the following, we first review the diverse bodies of

literature regarding the extraction of 3D rotations that opti-

mally align matched pairs of Euclidean point data sets. It is

important for us to remark that we have repeatedly become

aware of additional literature in the course of this work and it

is entirely possible that other worthy references have been

overlooked; if so, we apologize for any oversights and hope

that the literature that we have found to review will provide an

adequate context for the interested reader. We then introduce

our own preferred version of the quaternion approach to the

spatial-alignment problem, often described as the root-mean-

square-deviation (RMSD) minimization problem, and we will

adopt that terminology when convenient; our intent is to

consolidate a range of distinct variants in the literature into

one uniform treatment, and, given the wide variations in

symbolic notation and terminology, here we will adopt terms

and conventions that work well for us personally. Following a

technical introduction to quaternions, we treat the quaternion-

based 3D spatial-alignment problem itself. Next we introduce

the quaternion approach to the 3D orientation-frame align-

ment (QFA) problem in a way that parallels the 3D spatial

problem, and note its equivalence to quaternion-frame

averaging methods. We conclude with a brief analysis of the

6-degree-of-freedom (6DOF) problem, combining the 3D

spatial and 3D orientation-frame measures. Appendices

include treatments of the basics of quaternion orientation

frames, an elegant method that extracts a quaternion from a

numerical 3D rotation matrix and the generalization of that

method to compute averages of rotations.

2. Summary of spatial-alignment problems, known
solutions and historical contexts

2.1. The problem, standard solutions and the quaternion
method

The fundamental problem we will be concerned with arises

when we are given a well behaved D � D matrix E and we

wish to find the optimal D-dimensional proper orthogonal

matrix Ropt that maximizes the measure trðR � EÞ. This is

equivalent to the RMSD problem, which seeks a global

rotation R that rotates an ordered set of point test data X in

such a way as to minimize the squared Euclidean differences

relative to a matched reference set Y. We will find below that

E corresponds to the cross-covariance matrix of the pair

(X, Y) of N columns of D-dimensional vectors, namely

E ¼ X � YT, though we will look at cases where E could have

almost any origin.

One solution to this problem in any dimension D uses the

decomposition of the general matrix E into an orthogonal

matrix U and a symmetric matrix S that takes the form E =

U � S = U � ðET � EÞ
1=2, giving Ropt = U�1 = ðET � EÞ

1=2
� E�1;

note that there exist several equivalent forms [see, e.g., Green

(1952) and Horn et al. (1988)]. General solutions may also be

found using singular-value-decomposition (SVD) methods,

starting with the decomposition E ¼ U � S � VT, where S is now

diagonal and U and V are orthogonal matrices, to give the

result Ropt ¼ V �D � UT, where D is the identity matrix up to a

possible sign in one element [see, e.g., Kabsch (1976, 1978),

Golub & van Loan (1983) and Markley (1988)].

In addition to these general methods based on traditional

linear algebra approaches, a significant literature exists for

three dimensions that exploits the relationship between 3D

rotation matrices and quaternions, and rephrases the task of

finding Ropt as a quaternion eigensystem problem. This

approach notes that, using the quadratic quaternion form

R(q) for the rotation matrix, one can rewrite trðR � EÞ !

q �MðEÞ � q, where the profile matrix M(E) is a traceless,

symmetric 4 � 4 matrix consisting of linear combinations of

the elements of the 3 � 3 matrix E. Finding the largest

eigenvalue �opt of M(E) determines the optimal quaternion

eigenvector qopt and thus the solution Ropt ¼ RðqoptÞ. The

quaternion framework will be our main topic here.

2.2. Historical literature overview

Although our focus is the quaternion eigensystem context,

we first note that one of the original approaches to the RMSD

task exploited the singular-value decomposition directly to

obtain an optimal rotation matrix. This solution appears to

date at least from 1966 in Schönemann’s thesis (Schönemann,

1966) and possibly Cliff (1966) later in the same journal issue;

Schönemann’s work is chosen for citation, for example, in the

earliest editions of Golub & van Loan (1983). Applications of

the SVD to alignment in the aerospace literature appear, for

example, in the context of Wahba’s problem (Wikipedia,

2018b; Wahba, 1965) and are used explicitly, e.g., in Markley

(1988), while the introduction of the SVD for the alignment

problem in molecular chemistry is generally attributed to

Kabsch (Wikipedia, 2018a; Kabsch, 1976), and in machine

vision Arun et al. (1987) is often cited.

We believe that the quaternion eigenvalue approach itself

was first noticed around 1968 by Davenport (Davenport, 1968)

in the context of Wahba’s problem, rediscovered in 1983 by

Hebert and Faugeras (Hebert, 1983; Faugeras & Hebert, 1983,
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1986) in the context of machine vision, and then found inde-

pendently a third time in 1986 by Horn (Horn, 1987).

An alternative quaternion-free approach by Horn et al.

(1988) with the optimal rotation of the form Ropt =

ðET � EÞ
1=2
� E�1 appeared in 1988, but this basic form was

apparently known elsewhere as early as 1952 (Green, 1952;

Gibson, 1960).

Much of the recent activity has occurred in the context of

the molecular alignment problem, starting from a basic

framework put forth by Kabsch (1976, 1978). So far as we can

determine, the matrix eigenvalue approach to molecular

alignment was introduced in 1988 without actually mentioning

quaternions by name in Diamond (1988) and refined to

specifically incorporate quaternion methods in 1989 by

Kearsley (1989). In 1991 Kneller (Kneller, 1991) indepen-

dently described a version of the quaternion-eigenvalue-

based approach that is widely cited as well. A concise and

useful review can be found in Flower (1999), in which the

contributions of Schönemann, Faugeras and Hebert, Horn,

Diamond, and Kearsley are acknowledged and all cited in the

same place. A graphical summary of the discovery chronology

in various domains is given in Fig. 1. Most of these treatments

mention using numerical methods to find the optimal eigen-

value, though several references, starting with Horn (1987),

point out that 16th-century algebraic methods for solving the

quartic polynomial characteristic equation, discussed in the

next section, could also be used to determine the eigenvalues.

In our treatment we will study the explicit form of these

algebraic solutions for the 3D problem (and also for 4D in the

supporting information), taking advantage of several threads

of the literature.

2.3. Historical notes on the quartic

The actual solution to the quartic equation, and thus the

solution of the characteristic polynomial of the 4D eigen-

system of interest to us, was first published in 1545 by Gero-

lamo Cardano (Wikipedia, 2019) in his book Ars Magna. The

intellectual history of this fact is controversial and narrated

with varying emphasis in diverse sources. It seems generally

agreed upon that Cardano’s student Lodovico Ferrari was the

first to discover the basic method for solving the quartic in

1540, but his technique was incomplete as it only reduced the

problem to the cubic equation, for which no solution was

publicly known at that time, and that apparently prevented

him from publishing it. The complication appears to be that

Cardano had actually learned of a method for solving the

cubic already in 1539 from Niccolò Fontana Tartaglia (legen-

darily in the form of a poem), but had been sworn to secrecy,

and so could not reveal the final explicit step needed to

complete Ferrari’s implicit solution. Where it gets contro-

versial is that at some point between 1539 and 1545, Cardano

learned that Scipione del Ferro had found the same cubic

solution as the one of Tartaglia that he had sworn not to
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Figure 1
The quaternion eigensystem method for computing the optimal rotation matching two spatial data sets was discovered independently and published
without cross-references in at least three distinct literatures. Downward arrows point to the introduction of the abstract problem and upward rays
indicate domains of publications specifically citing the quaternion method. Horn eventually appeared routinely in the crystallography citations, and
reviews such as that by Flower (1999) introduced multiple cross-field citations. Several fields have included activity on quaternion-related rotation
metrics and rotation averaging with varying degrees of cross-field awareness.



reveal, and furthermore that del Ferro had discovered his

solution before Tartaglia did. Cardano interpreted that fact as

releasing him from his oath of secrecy (which Tartaglia did not

appreciate), allowing him to publish the complete solution to

the quartic, incorporating the cubic solution into Ferrari’s

result. Sources claiming that Cardano ‘stole’ Ferrari’s solution

may perhaps be exaggerated, since Ferrari did not have access

to the cubic equations and Cardano did not conceal his

sources; exactly who ‘solved’ the quartic is thus philosophi-

cally complicated, but Cardano does seem to be the one who

combined the multiple threads needed to express the equa-

tions as a single complete formula.

Other interesting observations were made later, for

example by Descartes in 1637 (Descartes, 1637) and in 1733 by

Euler (Euler, 1733; Bell, 2008). For further descriptions, one

may consult, e.g., Abramowitz & Stegun (1970) and Boyer &

Merzbach (1991), as well as the narratives in Weisstein

(2019a,b). Additional amusing pedagogical investigations of

the historical solutions may be found in several expositions by

Nickalls (1993, 2009).

2.4. Further literature

A very informative treatment of the features of the

quaternion eigenvalue solutions was given by Coutsias, Seok

and Dill in 2004, and expanded in 2019 (Coutsias et al., 2004;

Coutsias & Wester, 2019). Coutsias et al. not only take on a

thorough review of the quaternion RMSD method, but also

derive the complete relationship between the linear algebra of

the SVD method and the quaternion eigenvalue system;

furthermore, they exhaustively enumerate the special cases

involving mirror geometries and degenerate eigenvalues that

may appear rarely, but must be dealt with on occasion. Effi-

ciency is also an area of potential interest, and Theobald et al.

in Theobald (2005) and in Liu et al. (2010) argue that among

the many variants of numerical methods that have been used

to compute the optimal quaternion eigenvalues, Horn’s

original proposal to use Newton’s method directly on the

characteristic equations of the relevant eigenvalue systems

may well be the best approach.

There is also a rich literature dealing with distance measures

among representations of rotation frames themselves, some

dealing directly with the properties of distances computed

with rotation matrices or quaternions, e.g. Huynh (2009), and

others combining discussion of the distance measures with

associated applications such as rotation averaging or

finding ‘rotational centers of mass’, e.g. Brown & Worsey

(1992), Park & Ravani (1997), Buss & Fillmore (2001),

Moakher (2002), Markley et al. (2007), and Hartley et al.

(2013). The specific computations explored below in

Section 7 on optimal alignment of matched pairs of orientation

frames make extensive use of the quaternion-based and

rotation-based measures discussed in these treatments. In the

appendices, we review the details of some of these orientation-

frame-based applications.

3. Introduction

We explore the problem of finding global rotations that

optimally align pairs of corresponding lists of spatial and/or

orientation data. This issue is significant in diverse application

domains. Among these are aligning spacecraft (see, e.g.,

Wahba, 1965; Davenport, 1968; Markley, 1988; and Markley &

Mortari, 2000), obtaining correspondence of registration

points in 3D model matching (see, e.g., Faugeras & Hebert,

1983, 1986), matching structures in aerial imagery (see, e.g.,

Horn, 1987; Horn et al., 1988; Huang et al., 1986; Arun et al.,

1987; Umeyama, 1991; and Zhang, 2000), and alignment of

matched molecular and biochemical structures (see, e.g.,

Kabsch, 1976, 1978; McLachlan, 1982; Lesk, 1986; Diamond,

1988; Kearsley, 1989, 1990; Kneller, 1991; Coutsias et al., 2004;

Theobald, 2005; Liu et al., 2010; and Coutsias & Wester, 2019).

A closely related task is the alignment of multiple sets of 3D

range data, for example in digital-heritage applications (Levoy

et al., 2000); the widely used iterative closest point (ICP)

algorithm [see, e.g., Chen & Medioni (1991), Besl & McKay

(1992) and Bergevin et al. (1996), as well as Rusinkiewicz &

Levoy (2001) and Nüchter et al. (2007)] explicitly incorporates

standard alignment methods in individual steps with known

correspondences.

We note in particular the several alternative approaches of

Schönemann (1966), Faugeras & Hebert (1983), Horn (1987)

and Horn et al. (1988) that in principle produce the same

optimal global rotation to solve a given alignment problem.

While the SVD and ðET � EÞ1=2
� E�1 methods apply to any

dimension, here we will critically examine the quaternion

eigensystem decomposition approach that applies only to the

3D and 4D spatial-coordinate alignment problems, along with

the extensions to the 3D and 4D orientation-frame alignment

problems. Starting from the quartic algebraic equations for the

quaternion eigensystem arising in our optimization problem,

we direct attention to the elegant exact algebraic forms of the

eigenvalue solutions appropriate for these applications. (For

brevity, the more complicated 4D treatment is deferred to the

supporting information.)

Our extension of the quaternion approach to orientation

data exploits the fact that collections of 3D orientation frames

can themselves be expressed as quaternions, e.g. amino-acid

3D orientation frames written as quaternions (see Hanson

& Thakur, 2012), and we will refer to the corresponding

‘quaternion-frame alignment’ task as the QFA problem.

Various proximity measures for such orientation data have

been explored in the literature (see, e.g., Park & Ravani, 1997;

Moakher, 2002; Huynh, 2009; and Huggins, 2014a), and the

general consensus is that the most rigorous measure minimizes

the sums of squares of geodesic arc lengths between pairs of

quaternions. This ideal QFA proximity measure is highly

nonlinear compared to the analogous spatial RMSD measure,

but fortunately there is an often-justifiable linearization, the

chord angular distance measure. We present several alter-

native solutions exploiting this approximation that closely

parallel our spatial RMSD formulation, and point out the

relationship to the rotation-averaging problem.
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In addition, we analyze the problem of optimally aligning

combined 3D spatial and quaternion 3D-frame-triad data,

a 6DOF task that is relevant to studying molecules

with composite structure as well as to some gaming and

robotics contexts. Such rotational–translational measures have

appeared in both the computer vision and the molecular

entropy literature [see, e.g., the dual-quaternion approach of

Walker et al. (1991) as well as Huggins (2014b) and Fogolari et

al. (2016)]; after some confusion, it has been recognized that

the spatial and rotational measures are dimensionally incom-

patible, and either they must be optimized independently, or

an arbitrary context-dependent scaling parameter with the

dimension of length must appear in any combined measure for

the RMSD+QFA problem.

In the following, we organize our thoughts by first

summarizing the fundamentals of quaternions, which will be

our main computational tool. We next introduce the measures

that underlie the general spatial alignment problem, then

restrict our attention to the quaternion approach to the 3D

problem, emphasizing a class of exact algebraic solutions that

can be used as an alternative to the traditional numerical

methods. Our quaternion approach to the 3D orientation-

frame triad alignment problem is presented next, along with a

discussion of the combined spatial–rotational problem.

Appendices provide an alternative formulation of the 3D

RMSD optimization equations, a tutorial on the quaternion

orientation-frame methodology, and a summary of the method

of Bar-Itzhack (2000) for obtaining the corresponding

quaternion from a numerical 3D rotation matrix, along with a

treatment of the closely related quaternion-based rotation

averaging problem.

In the supporting information, we extend all of our 3D

results to 4D space, exploiting quaternion pairs to formulate

the 4D spatial-coordinate RMSD alignment and 4D orienta-

tion-based QFA methods. We expose the relationship between

these quaternion methods and the singular-value decomposi-

tion, and extend the 3D Bar-Itzhack approach to 4D,

showing how to find the pair of quaternions corresponding to

any numerical 4D rotation matrix. Other sections of

the supporting information explore properties of the RMSD

problem for 2D data and evaluate the accuracy of our 3D

orientation-frame alignment approximations, as well as

studying and evaluating the properties of combined measures

for aligning spatial-coordinate and orientation-frame data in

3D. An appendix is devoted to further details of the quartic

equations and forms of the algebraic solutions related to our

eigenvalue problems.

4. Foundations of quaternions

For the purposes of this paper, we take a quaternion to be a

point q = (q0, q1, q2, q3) = (q0, q) in 4D Euclidean space with

unit norm, q � q = 1, and so geometrically it is a point on the

unit 3-sphere S3 [see, e.g., Hanson (2006) for further details

about quaternions]. The first term, q0, plays the role of a real

number and the last three terms, denoted as a 3D vector q,

play the role of a generalized imaginary number, and so are

treated differently from the first: in particular the conjugation

operation is taken to be �qq ¼ ðq0;�qÞ. Quaternions possess a

multiplication operation denoted by ? and defined as follows:

q ? p ¼ QðqÞ � p ¼

q0 �q1 �q2 �q3

q1 q0 �q3 q2

q2 q3 q0 �q1

q3 �q2 q1 q0

2
6664

3
7775 �

p0

p1

p2

p3

2
6664

3
7775

¼ ðq0p0 � q � p; q0pþ p0qþ q� pÞ; ð1Þ

where the orthonormal matrix Q(q) expresses a form of

quaternion multiplication that can be useful. Note that the

orthonormality of Q(q) means that quaternion multiplication

of p by q literally produces a rotation of p in 4D Euclidean

space.

Choosing exactly one of the three imaginary components in

both q and p to be nonzero gives back the classic complex

algebra (q0 + iq1)(p0 + ip1) = (q0p0 � q1p1) + i(q0p1 + p0q1), so

there are three copies of the complex numbers embedded in

the quaternion algebra; the difference is that in general the

final term q � p changes sign if one reverses the order, making

the quaternion product order-dependent, unlike the complex

product. Nevertheless, like complex numbers, the quaternion

algebra satisfies the non-trivial ‘multiplicative norm’ relation

kqk kpk ¼ kq ? pk; ð2Þ

where kqk2
¼ q � q ¼ <ðq ? �qqÞ, i.e. quaternions are one of the

four possible Hurwitz algebras (real, complex, quaternion and

octonion).

Quaternion triple products obey generalizations of the 3D

vector identities A � (B � C) = B � (C � A) = C � (A � B),

along with A � B = �B � A. The corresponding quaternion

identities, which we will need in Section 7, are

r � ðq ? pÞ ¼ q � ðr ? �ppÞ ¼ �pp � ð�rr ? qÞ ¼ �rr � ð �pp ? �qqÞ; ð3Þ

where the complex-conjugate entries are the natural conse-

quences of the sign changes occurring only in the 3D part.

It can be shown that quadratically conjugating a vector x =

(x, y, z), written as a purely ‘imaginary’ quaternion (0, x) (with

only a 3D part), by quaternion multiplication is isomorphic to

the construction of a 3D Euclidean rotation R(q) generating

all possible elements of the special orthogonal group SO(3). If

we compute

q ? ðc; x; y; zÞ ? �qq ¼ ðc; RðqÞ � xÞ; ð4Þ

we see that only the purely imaginary part is affected, whether

or not the arbitrary real constant c = 0. The result of collecting

coefficients of the vector term is a proper orthonormal 3D

rotation matrix quadratic in the quaternion elements that

takes the form

RijðqÞ ¼ �ij q0
2 � q2ð Þ þ 2qiqj � 2�ijkq0qk

RðqÞ ¼
q0

2 þ q1
2 � q2

2 � q3
2 2q1q2 � 2q0q3 2q1q3 þ 2q0q2

2q1q2 þ 2q0q3 q0
2 � q1

2 þ q2
2 � q3

2 2q2q3 � 2q0q1

2q1q3 � 2q0q2 2q2q3 þ 2q0q1 q0
2 � q1

2 � q2
2 þ q3

2

2
4

3
5

9>>>>=
>>>>;
;

ð5Þ
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with determinant det RðqÞ ¼ ðq � qÞ3 ¼ þ1. The formula for

R(q) is technically a two-to-one mapping from quaternion

space to the 3D rotation group because R(q) = R(�q);

changing the sign of the quaternion preserves the rotation

matrix. Note also that the identity quaternion qID = ð1; 0; 0; 0Þ

� q ? �qq corresponds to the identity rotation matrix, as does

�qID ¼ ð�1; 0; 0; 0Þ. The 3 � 3 matrix R(q) is fundamental

not only to the quaternion formulation of the spatial RMSD

alignment problem, but will also be essential to the QFA

orientation-frame problem because the columns of R(q) are

exactly the needed quaternion representation of the frame

triad describing the orientation of a body in 3D space, i.e. the

columns are the vectors of the frame’s local x, y and z axes

relative to an initial identity frame.

Multiplying a quaternion p by the quaternion q to get a new

quaternion p0 ¼ q ? p simply rotates the 3D frame corre-

sponding to p by the matrix equation (5) written in terms of q.

This has non-trivial implications for 3D rotation matrices, for

which quaternion multiplication corresponds exactly to

multiplication of two independent 3 � 3 orthogonal rotation

matrices, and we find that

Rðq ? pÞ ¼ RðqÞ � RðpÞ: ð6Þ

This collapse of repeated rotation matrices to a single rotation

matrix with multiplied quaternion arguments can be

continued indefinitely.

If we choose the following specific 3-variable para-

meterization of the quaternion q preserving q � q = 1,

q ¼
�

cosð�=2Þ; n̂n1 sinð�=2Þ; n̂n2 sinð�=2Þ; n̂n3 sinð�=2Þ
�
ð7Þ

(with n̂n � n̂n ¼ 1), then RðqÞ ¼ Rð�; n̂nÞ is precisely the ‘axis-

angle’ 3D spatial rotation by an angle � leaving the direction n̂n

fixed, so n̂n is the lone real eigenvector of R(q).

4.1. The slerp

Relationships among quaternions can be studied using the

slerp, or ‘spherical linear interpolation’ (Shoemake, 1985; Jupp

& Kent, 1987), which smoothly parameterizes the points on

the shortest geodesic quaternion path between two constant

(unit) quaternions, q0 and q1, as

slerpðq0; q1; sÞ � qðsÞ½q0; q1� ¼ q0

sin
�
ð1� sÞ�

�
sin�

þ q1

sinðs�Þ

sin�
:

ð8Þ

Here cos� ¼ q0 � q1 defines the angle � between the two given

quaternions, while q(s = 0) = q0 and q(s = 1) = q1. The ‘long’

geodesic can be obtained for 1 � s � 2�/�. For small �, this

reduces to the standard linear interpolation (1 � s)q0 + sq1.

The unit norm is preserved, q(s) � q(s) = 1 for all s, so q(s) is

always a valid quaternion and R(q(s)) defined by equation (5)

is always a valid 3D rotation matrix. We note that one can

formally write equation (8) as an exponential of the form

q0 ? �qq0 ? q1ð Þ
s, but since this requires computing a logarithm

and an exponential whose most efficient reduction to a prac-

tical computer program is equation (8), this is mostly of

pedagogical interest.

In the following we will make little further use of the

quaternion’s algebraic properties, but we will extensively

exploit equation (5) to formulate elegant approaches to

RMSD problems, along with employing equation (8) to study

the behavior of our data under smooth variations of rotation

matrices.

4.2. Remark on 4D

Our fundamental formula equation (5) can be extended to

four Euclidean dimensions by choosing two distinct quater-

nions in equation (4), producing a 4D Euclidean rotation

matrix. Analogously to 3D, the columns of this matrix corre-

spond to the axes of a 4D Euclidean orientation frame. The

non-trivial details of the quaternion approach to aligning both

4D spatial-coordinate and 4D orientation-frame data are

given in the supporting information.

5. Reviewing the 3D spatial-alignment RMSD problem

We now review the basic ideas of spatial data alignment, and

then specialize to 3D (see, e.g., Wahba, 1965; Davenport, 1968;

Markley, 1988; Markley & Mortari, 2000; Kabsch, 1976, 1978;

McLachlan, 1982; Lesk, 1986; Faugeras & Hebert, 1983;

Horn, 1987; Huang et al., 1986; Arun et al., 1987; Diamond,

1988; Kearsley, 1989, 1990; Umeyama, 1991; Kneller, 1991;

Coutsias et al., 2004; and Theobald, 2005). We will then employ

quaternion methods to reduce the 3D spatial-alignment

problem to the task of finding the optimal quaternion eigen-

value of a certain 4 � 4 matrix. This is the approach we have

discussed in the introduction, and it can be solved using

numerical or algebraic eigensystem methods. In Section 6

below, we will explore in particular the classical quartic

equation solutions for the exact algebraic form of the entire

four-part eigensystem, whose optimal eigenvalue and its

quaternion eigenvector produce the optimal global rotation

solving the 3D spatial-alignment problem.

5.1. Aligning matched data sets in Euclidean space

We begin with the general least-squares form of the RMSD

problem, which is solved by minimizing the optimization

measure over the space of rotations, which we will convert to

an optimization over the space of unit quaternions. We take as

input one data array with N columns of D-dimensional points

{yk} as the reference structure and a second array of N columns

of matched points {xk} as the test structure. Our task is to rotate

the latter in space by a global SO(D) rotation matrix RD to

achieve the minimum value of the cumulative quadratic

distance measure

SD ¼
PN
k¼1

kRD � xk � ykk
2: ð9Þ

We assume, as is customary, that any overall translational

components have been eliminated by displacing both data sets

to their centers of mass (see, e.g., Faugeras & Hebert, 1983;

Coutsias et al., 2004). When this measure is minimized with
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respect to the rotation RD, the optimal RD will rotate the test

set {xk} to be as close as possible to the reference set {yk}. Here

we will focus on 3D data sets (and, in the supporting infor-

mation, 4D data sets) because those are the dimensions that

are easily adaptable to our targeted quaternion approach. In

3D, our least-squares measure equation (9) can be converted

directly into a quaternion optimization problem using the

method of Hebert and Faugeras detailed in Appendix A.

Remark: Clifford algebras may support alternative methods

as well as other approaches to higher dimensions [see, e.g.,

Havel & Najfeld (1994) and Buchholz & Sommer (2005)].

5.2. Converting from least-squares minimization to cross-
term maximization

We choose from here onward to focus on an equivalent

method based on expanding the measure given in equation

(9), removing the constant terms, and recasting the RMSD

least-squares minimization problem as the task of maximizing

the surviving cross-term expression. This takes the general

form

�D ¼
PN
k¼1

RD � xkð Þ � yk ¼
PD

a¼1;b¼1

½RD�baEab ¼ tr RD � E; ð10Þ

where

Eab ¼
PN
k¼1

½xk�a ½yk�b ¼ X � YT
� �

ab
ð11Þ

is the cross-covariance matrix of the data, [xk] denotes the kth

column of X and the range of the indices (a, b) is the spatial

dimension D.

5.3. Quaternion transformation of the 3D cross-term form

We now restrict our attention to the 3D cross-term form of

equation (10) with pairs of 3D point data related by a proper

rotation. The key step is to substitute equation (5) for R(q)

into equation (10) and pull out the terms corresponding to

pairs of components of the quaternions q. In this way the 3D

expression is transformed into the 4 � 4 matrix M(E) sand-

wiched between two identical quaternions (not a conjugate

pair) of the form

�ðqÞ ¼ tr RðqÞ � E ¼ ðq0; q1; q2; q3Þ �MðEÞ � ðq0; q1; q2; q3Þ
T

� q �MðEÞ � q: ð12Þ

Here M(E) is the traceless, symmetric 4 � 4 matrix

MðEÞ ¼

Exx þ Eyy þ Ezz Eyz � Ezy Ezx � Exz Exy � Eyx

Eyz � Ezy Exx � Eyy � Ezz Exy þ Eyx Ezx þ Exz

Ezx � Exz Exy þ Eyx �Exx þ Eyy � Ezz Eyz þ Ezy

Exy � Eyx Ezx þ Exz Eyz þ Ezy �Exx � Eyy þ Ezz

2
6664

3
7775
ð13Þ

built from our original 3 � 3 cross-covariance matrix E

defined by equation (11). We will refer to M(E) from here on

as the profile matrix, as it essentially reveals a different

viewpoint of the optimization function and its relationship to

the matrix E. Note that in some literature matrices related to

the cross-covariance matrix E may be referred to as ‘attitude

profile matrices’ and one also may see the term ‘key matrix’

referring to M(E).

The bottom line is that if one decomposes equation (13)

into its eigensystem, the measure equation (12) is maximized

when the unit-length quaternion vector q is the eigenvector of

M(E)’s largest eigenvalue (Davenport, 1968; Faugeras &

Hebert, 1983; Horn, 1987; Diamond, 1988; Kearsley, 1989;

Kneller, 1991). The RMSD optimal-rotation problem thus

reduces to finding the maximal eigenvalue �opt of M(E) (which

we emphasize depends only on the numerical data). Plugging

the corresponding eigenvector qopt into equation (5), we

obtain the rotation matrix RðqoptÞ that solves the problem. The

resulting proximity measure relating {xk} and {yk} is simply

�opt ¼ qopt �MðEÞ � qopt

¼ qopt � �opt qopt

� �
¼ �opt

9>=
>; ð14Þ

and does not require us to actually compute qopt or RðqoptÞ

explicitly if all we want to do is compare various test data sets

to a reference structure.

Note. In the interests of conceptual and notational simpli-

city, we have made a number of assumptions. For one thing, in

declaring that equation (5) describes our sought-for rotation

matrix, we have presumed that the optimal rotation matrix

will always be a proper rotation, with det R ¼ þ1. Also, as

mentioned, we have omitted any general translation problems,

assuming that there is a way to translate each data set to an

appropriate center, e.g. by subtracting the center of mass. The

global translation optimization process is treated in Faugeras

& Hebert (1986) and Coutsias et al. (2004), and discussions

of center-of-mass alignment, scaling and point weighting are

given in much of the original literature, see, e.g., Horn (1987),

Coutsias et al. (2004), and Theobald (2005). Finally, in real

problems, structures such as molecules may appear in mirror-

image or enantiomer form, and such issues were introduced

early on by Kabsch (1976, 1978). There can also be particular

symmetries, or very close approximations to symmetries, that

can make some of our natural assumptions about the good

behavior of the profile matrix invalid, and many of these

issues, including ways to treat degenerate cases, have been

carefully studied [see, e.g., Coutsias et al. (2004) and Coutsias

& Wester (2019)]. The latter authors also point out that if a

particular data set M(E) produces a negative smallest eigen-

value �4 such that j�4j>�opt, this can be a sign of a reflected

match, and the negative rotation matrix Ropt ¼ �Rðqð�4ÞÞ may

actually produce the best alignment. These considerations

may be essential in some applications, and readers are referred

to the original literature for details.

5.4. Illustrative example

We can visualize the transition from the initial data

�ðqIDÞ ¼ tr E to the optimal alignment �ðqoptÞ ¼ �opt by

exploiting the geodesic interpolation equation (8) from the

identity quaternion qID to qopt given by
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qðsÞ ¼ slerpðqID; qopt; sÞ ð15Þ

and applying the resulting rotation matrix R(q(s)) to the test

data, ending with RðqoptÞ showing the best alignment of

the two data sets. In Fig. 2, we show a sample reference data

set in red, a sample test data set in blue connected to the

reference data set by blue lines, an intermediate partial

alignment and finally the optimally aligned pair. The yellow

arrow is the spatial part of the quaternion solution,

proportional to the eigenvector n̂n (fixed axis) of the optimal

3D rotation matrix RðqÞ ¼ Rð�; n̂nÞ, and whose length is

sinð�=2Þ, sine of half the rotation angle needed to perform

the optimal alignment of the test data with the reference data.

In Fig. 3, we visualize the optimization process in an alter-

native way, showing random samples of q = (q0, q) in S3,

separated into the ‘northern hemisphere’ 3D unit-radius ball

in (a) with q0 	 0, and the ‘southern hemisphere’ 3D unit-

radius ball in (b) with q0 � 0. (This is like representing the

Earth as two flattened discs, one showing everything above the

equator and one showing everything below the equator; the

distance from the equatorial plane is implied by the location

in the disc, with the maximum at the centers, the north and

south poles.) Either solid ball contains one unique quaternion

for every possible choice of R(q), modulo the doubling of

diametrically opposite points at q0 = 0. The values of

�ðqÞ ¼ tr RðqÞ � E are shown as scaled dots located at their

corresponding spatial (‘imaginary’) quaternion points q in the

solid balls. The yellow arrows, equivalent negatives of each

other, show the spatial part qopt of the optimal quaternion

qopt, and the tips of the arrows clearly fall in the middle of

the mirror pair of clusters of the largest values of �(q).

Note that the lower-left dots in (a) continue smoothly into

the larger lower-left dots in (b), which is the center of the

optimal quaternion in (b). Further details of such methods of
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Figure 2
(a) A typical 3D spatial reference data set. (b) The reference data in red alongside the test data in blue, with blue lines representing the Euclidean
distances connecting each test data point with its corresponding reference point. (c) The partial alignment at s = 0.75. (d) The optimal alignment for this
data set at s = 1.0. The yellow arrow is the axis of rotation specified by the optimal quaternion’s spatial components.



displaying quaternions are provided in Appendix B [see also

Hanson (2006)].

6. Algebraic solution of the eigensystem for 3D spatial
alignment

At this point, one can simply use the traditional numerical

methods to solve equation (12) for the maximal eigenvalue

�opt of M(E) and its eigenvector qopt, thus solving the 3D

spatial-alignment problem of equation (10). Alternatively, we

can also exploit symbolic methods to study the properties of

the eigensystems of 4 � 4 matrices M algebraically to provide

deeper insights into the structure of the problem, and that is

the subject of this section.

Theoretically, the algebraic form of our eigensystem is a

textbook problem following from the 16th-century-era solu-

tion of the quartic algebraic equation in, e.g., Abramowitz &

Stegun (1970). Our objective here is to explore this textbook

solution in the specific context of its application to eigensys-

tems of 4 � 4 matrices and its behavior relative to the prop-

erties of such matrices. The real, symmetric, traceless profile

matrix M(E) in equation (13) appearing in the 3D spatial

RMSD optimization problem must necessarily possess only

real eigenvalues, and the properties of M(E) permit some

particular simplifications in the algebraic solutions that we will

discuss. The quaternion RMSD literature varies widely in the

details of its treatment of the algebraic solutions, ranging from

no discussion at all, to Horn, who mentions the possibility but

does not explore it, to the work of Coutsias et al. (Coutsias et

al., 2004; Coutsias & Wester, 2019), who present an exhaustive

treatment, in addition to working out the exact details of the

correspondence between the SVD eigensystem and the

quaternion eigensystem, both of which in principle embody

the algebraic solution to the RMSD optimization problem. In

addition to the treatment of Coutsias et al., other approaches

similar to the one we will study are due to Euler (Euler, 1733;

Bell, 2008), as well as a series of papers on the quartic by

Nickalls (1993, 2009).

6.1. Eigenvalue expressions

We begin by writing down the eigenvalue expansion of the

profile matrix,

det½M � eI4� ¼ e4
þ e3p1 þ e2p2 þ ep3 þ p4 ¼ 0; ð16Þ

where e denotes a generic eigenvalue, I4 is the 4D identity

matrix and the pk are homogeneous polynomials of degree

k in the elements of M. For the special case of a traceless,

symmetric profile matrix M(E) defined by equation (13), the

pk(E) coefficients simplify and can be expressed numerically

as the following functions either of M or of E:

p1ðEÞ ¼ �tr½M� ¼ 0 ð17Þ

p2ðEÞ ¼ �
1
2 tr½M �M� ¼ �2 tr½E � ET

�

¼ �2 E2
xx þ E2

xy þ E2
xz þ E2

yx þ E2
yy þ E2

yz

�
þE2

zx þ E2
zy þ E2

zz

�
ð18Þ

p3ðEÞ ¼ �
1
3 tr M �M �M½ � ¼ �8 det½E�

¼ 8 Exx Eyz Ezy þ Eyy Exz Ezx þ Ezz Exy Eyx

� �
� 8 Exx Eyy Ezz þ Exy Eyz Ezx þ Exz Ezy Eyx

� �
ð19Þ

p4ðEÞ ¼ det½M� ¼ 2 tr½E � ET � E � ET� � tr½E � ET�
� �2

: ð20Þ
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Figure 3
The values of �ðqÞ ¼ tr RðqÞ � E ¼ q �MðEÞ � q represented by the sizes of the dots placed randomly in the ‘northern’ and ‘southern’ 3D solid balls
spanning the entire hypersphere S3 with (a) containing the q0 	 0 sector and (b) containing the q0 � 0 sector. We display the data dots at the locations of
their spatial quaternion components q = (q1, q2, q3), and we know that q0 =
(1� q � q)1/2 so the q data uniquely specify the full quaternion. Since R(q) =
R(�q), the points in each ball actually represent all possible unique rotation matrices. The spatial component of the maximal eigenvector is shown by the
yellow arrows, which clearly end in the middle of the maximum values of �(q). Note that, in the quaternion context, diametrically opposite points on the
spherical surface are identical rotations, so the cluster of larger dots at the upper right of (a) is, in the entire sphere, representing the same data as the
‘diametrically opposite’ lower-left cluster in (b), both surrounding the tips of their own yellow arrows. The smaller dots at the upper right of (b) are
contiguous with the upper-right region of (a), forming a single cloud centered on qopt, and similarly for the lower left of (a) and the lower left of (b). The
whole figure contains two distinct clusters of dots (related by q! �q) centered around 
qopt.



Interestingly, the polynomial M(E) is arranged so that

�p2(E)/2 is the (squared) Fröbenius norm of E, and �p3(E)/8

is its determinant. Our task now is to express the four eigen-

values e = �k(p1, p2, p3, p4), k = 1, . . . , 4, usefully in terms of

the matrix elements, and also to find their eigenvectors; we are

of course particularly interested in the maximal eigenvalue

�opt.

6.2. Approaches to algebraic solutions

Equation (16) can be solved directly using the quartic

equations published by Cardano in 1545 [see, e.g., Abramo-

witz & Stegun (1970), Weisstein (2019b), and Wikipedia

(2019)], which are incorporated into the Mathematica function

Solve½myQuarticEqn½e� ¼¼ 0;e;Quartics ! True�

ð21Þ

that immediately returns a suitable algebraic formula. At this

point we defer detailed discussion of the textbook solution to

the supporting information, and instead focus on a particularly

symmetric version of the solution and the form it takes for the

eigenvalue problem for traceless, symmetric 4 � 4 matrices

such as our profile matrices M(E). For this purpose, we look

for an alternative solution by considering the following

traceless (p1 = 0) ansatz:

�1ðpÞ ¼
? ffiffiffiffiffiffiffiffiffiffi

XðpÞ
p

þ
ffiffiffiffiffiffiffiffiffiffi
YðpÞ

p
þ

ffiffiffiffiffiffiffiffiffi
ZðpÞ

p
�2ðpÞ ¼

? ffiffiffiffiffiffiffiffiffiffi
XðpÞ

p
�

ffiffiffiffiffiffiffiffiffiffi
YðpÞ

p
�

ffiffiffiffiffiffiffiffiffi
ZðpÞ

p
�3ðpÞ ¼

? ffiffiffiffiffiffiffiffiffiffi
XðpÞ

p
þ

ffiffiffiffiffiffiffiffiffiffi
YðpÞ

p
�

ffiffiffiffiffiffiffiffiffi
ZðpÞ

p
�4ðpÞ ¼

? ffiffiffiffiffiffiffiffiffiffi
XðpÞ

p
�

ffiffiffiffiffiffiffiffiffiffi
YðpÞ

p
þ

ffiffiffiffiffiffiffiffiffi
ZðpÞ

p

9>>>>=
>>>>;
: ð22Þ

This form emphasizes some additional explicit symmetry that

we will see is connected to the role of cube roots in the quartic

algebraic solutions (see, e.g., Coutsias & Wester, 2019). We can

turn it into an equation for �k(p) to be solved in terms of the

matrix parameters pk(E) as follows: First we eliminate e using

(e � �1)(e � �2)(e � �3)(e � �4) = 0 to express the matrix data

expressions pk directly in terms of totally symmetric poly-

nomials of the eigenvalues in the form (Abramowitz & Stegun,

1970)

p1 ¼ ��1 � �2 � �3 � �4

p2 ¼ �1�2 þ �1�3 þ �2�3 þ �1�4 þ �2�4 þ �3�4

p3 ¼ ��1�2�3 � �1�2�4 � �1�3�4 � �2�3�4

p4 ¼ �1�2�3�4

9>>=
>>;: ð23Þ

Next we substitute our expression equation (22) for the �k in

terms of the {X, Y, Z} functions into equation (23), yielding a

completely different alternative to equation (16) that will

also solve the 3D RMSD eigenvalue problem if we can invert

it to express {X(p), Y(p), Z(p)} in terms of the data pk(E) as

presented in equation (20):

p1 ¼ 0

p2 ¼ �2ðX þ Y þ ZÞ

p3 ¼ �8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
X Y Z
p

p4 ¼ X2 þ Y2 þ Z2 � 2 YZ þ ZX þ XYð Þ

9>>=
>>;: ð24Þ

We already see the critical property in p3 that, while p3 itself

has a deterministic sign from the matrix data, the possibly

variable signs of the square roots in equation (22) have to be

constrained so their product
ffiffiffiffiffiffiffiffiffiffiffiffiffi
X Y Z
p

agrees with the sign of

p3. Manipulating the quartic equation solutions that we can

obtain by applying the library function equation (21) to

equation (24), and restricting our domain to real traceless,

symmetric matrices (and hence real eigenvalues), we find

solutions for X(p), Y(p) and Z(p) of the following form:

Ff ð0; p2; p3; p4Þ ¼ þ
1
6 rðpÞ cosf ðpÞ � p2

� �
; ð25Þ

where the cosf ðpÞ terms differ only by a cube-root phase:

cosxðpÞ ¼ cos
argðaþ ibÞ

3

� �
;

cosyðpÞ ¼ cos
argðaþ ibÞ

3
�

2�

3

� �
; ð26Þ

coszðpÞ ¼ cos
argðaþ ibÞ

3
þ

2�

3

� �
:

Here argðaþ ibÞ ¼ atan2ðb; aÞ in the C mathematics library,

or ArcTan[a, b] in Mathematica, Ff(p) with f = (x, y, z)

corresponds to X(p), Y(p) or Z(p), and the utility functions

appearing in the equations for our traceless p1 = 0 case are

r2ð0; p2; p3; p4Þ ¼ p2
2 þ 12p4 ¼ ða

2 þ b2Þ
1=3

¼ ðaþ ibÞ1=3
ða� ibÞ1=3

að0; p2; p3; p4Þ ¼ p2
3
þ 1

2 27p3
2 � 72p2p4ð Þ

b2ð0; p2; p3; p4Þ ¼ r6ðpÞ � a2ðpÞ

¼
27

4
16p4p2

4
� 4p3

2p2
3
� 128p4

2p2
2

�
þ 144p3

2p4p2 � 27p3
4 þ 256p4

3
�

9>>>>>>>>>>>=
>>>>>>>>>>>;
:

ð27Þ

The function b2(p) has the essential property that, for real

solutions to the cubic, which imply the required real solutions

to our eigenvalue equations (Abramowitz & Stegun, 1970),

we must have b2(p) 	 0. That essential property allowed us

to convert the bare solution into terms involving {(a + ib)1/3,

(a � ib)1/3} whose sums form the manifestly real cube-root-

related cosine terms in equation (26).

6.3. Final eigenvalue algorithm

While equations (25) and (26) are well defined, square roots

must be taken to finish the computation of the eigenvalues

postulated in equation (22). In our special case of symmetric,

traceless matrices such as M(E), we can always choose the

signs of the first two square roots to be positive, but the sign of

the
ffiffiffiffi
Z
p

term is non-trivial, and in fact is the sign of det½E�. The

form of the solution in equations (22) and (25) that works

specifically for all traceless symmetric matrices such as M(E) is

given by our equations for pk(E) in equations (17)–(22), along

with equations (25), (26) and (27) provided we modify equa-

tion (22) using �ðpÞ ¼ sign ðdet½E�Þ ¼ sign ð�p3Þ as follows:
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�1ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffi
XðpÞ

p
þ

ffiffiffiffiffiffiffiffiffiffi
YðpÞ

p
þ �ðpÞ

ffiffiffiffiffiffiffiffiffi
ZðpÞ

p
�2ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffi
XðpÞ

p
�

ffiffiffiffiffiffiffiffiffiffi
YðpÞ

p
� �ðpÞ

ffiffiffiffiffiffiffiffiffi
ZðpÞ

p
�3ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffi
XðpÞ

p
þ

ffiffiffiffiffiffiffiffiffiffi
YðpÞ

p
� �ðpÞ

ffiffiffiffiffiffiffiffiffi
ZðpÞ

p
�4ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffi
XðpÞ

p
�

ffiffiffiffiffiffiffiffiffiffi
YðpÞ

p
þ �ðpÞ

ffiffiffiffiffiffiffiffiffi
ZðpÞ

p

9>>>>>=
>>>>>;
: ð28Þ

The particular order of the numerical eigenvalues in our

chosen form of the solution equation (28) is found in regular

cases to be uniformly non-increasing in numerical order for

our M(E) matrices, so �1(p) is always the leading eigenvalue.

This is our preferred symbolic version of the solution to the

3D RMSD problem defined by M(E).

Note: We have experimentally confirmed the numerical

behavior of equation (25) in equation (28) with 1 000 000

randomly generated sets of 3D cross-covariance matrices E,

along with the corresponding profile matrices M(E), produ-

cing numerical values of pk inserted into the equations for

X(p), Y(p) and Z(p). We confirmed that the sign of �(p) varied

randomly, and found that the algebraically computed values of

�k(p) corresponded to the standard numerical eigenvalues of

the matrices M(E) in all cases, to within expected variations

due to numerical evaluation behavior and expected occasional

instabilities. In particular, we found a maximum per-eigen-

value discrepancy of about 10�13 for the algebraic methods

relative to the standard numerical eigenvalue methods, and a

median difference of 10�15, in the context of machine preci-

sion of about 10�16. (Why did we do this? Because we had

earlier versions of the algebraic formulas that produced

anomalies due to inconsistent phase choices in the roots, and

felt it worthwhile to perform a practical check on the

numerical behavior of our final version of the solutions.)

6.4. Eigenvectors for 3D data

The eigenvector formulas corresponding to �k can be

generically computed by solving any three rows of

MðEÞ � v� e v½ � ¼ A½ � ¼ 0 ð29Þ

for the elements of v, e.g. v = (1, v1, v2, v3), as a function of

some eigenvalue e (of course, one must account for special

cases, e.g. if some subspace of M(E) is already diagonal). The

desired unit quaternion for the optimization problem can then

be obtained from the normalized eigenvector

qðe;EÞ ¼
v

kvk
: ð30Þ

Note that this can often have q0 < 0, and that whenever the

problem in question depends on the sign of q0, such as a slerp

starting at qID, one should choose the sign of equation (30)

appropriately; some applications may also require an element

of statistical randomness, in which case one might randomly

pick a sign for q0.

As noted by Liu et al. (2010), a very clear way of computing

the eigenvectors for a given eigenvalue is to exploit the fact

that the determinant of equation (29) must vanish, that is

det½A� ¼ 0; one simply exploits the fact that the columns of

the adjugate matrix �ij (the transpose of the matrix of cofac-

tors of the matrix [A]) produce its inverse by means of creating

multiple copies of the determinant. That is,

P4

c¼1

Aac�cb ¼ �abdet½A� � 0; ð31Þ

so we can just compute any column of the adjugate via the

appropriate set of subdeterminants and, in the absence of

singularities, that will be an eigenvector (since any of the four

columns can be eigenvectors, if one fails just try another).

In the general well behaved case, the form of v in the

eigenvector solution for any eigenvalue e = �k may be expli-

citly computed to give the corresponding quaternion (among

several equivalent alternative expressions) as

qðe;EÞ ¼

1

kvk

2ABC þ A2ex þ B2ey þ C2ez � exeyez

AðaA� bB� cCÞ � cBey � bCez � a eyez

BðbB� cC � aAÞ � aCez � cAex � b ezex

CðcC � aA� bBÞ � bAex � aBey � c exey

2
6664

3
7775; ð32Þ

where for convenience we define {ex = (e � x + y + z), ey =

(e + x � y + z), ez = (e + x + y � z)} with x = Exx, cyclic, a =

Eyz � Ezy, cyclic, and A = Eyz + Ezy, cyclic. We substitute the

maximal eigenvector qopt ¼ qð�1;EÞ into equation (5) to give

the sought-for optimal 3D rotation matrix RðqoptÞ that solves

the RMSD problem with �ðqoptÞ ¼ �1, as we noted in equation

(14).

Remark: Yet another approach to computing eigenvectors

that, surprisingly, almost entirely avoids any reference to the

original matrix, but needs only its eigenvalues and minor

eigenvalues, has recently been rescued from relative obscurity

(Denton et al., 2019). (The authors uncovered a long list of

non-cross-citing literature mentioning the result dating back at

least to 1934.) If, for a real, symmetric 4 � 4 matrix M we label

the set of four eigenvectors vi by the index i and the compo-

nents of any single such four-vector by a, the squares of each of

the sixteen corresponding components take the form

½vi�a

� �2
¼

Q3
j¼1 	iðMÞ � 	jð
aÞ
� �

Q4
k¼1;k6¼i 	iðMÞ � 	kðMÞð Þ

: ð33Þ

Here the 
a are the 3 � 3 minors obtained by removing the

ath row and column of M, and the 	j(
a) comprise the list of

three eigenvalues of each of these minors. Attempting to

obtain the eigenvectors by taking square roots is of course

hampered by the nondeterministic sign; however, since the

eigenvalues 	i(M) are known, and the overall sign of each

eigenvector vi is arbitrary, one needs to check at most eight

sign combinations to find the one for which M � vi = 	i(M)vi,

solving the problem. Note that the general formula extends to

Hermitian matrices of any dimension.

7. The 3D orientation-frame alignment problem

We turn next to the orientation-frame problem, assuming that

the data are like lists of orientations of rollercoaster cars,
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or lists of residue orientations in a protein, ordered pairwise

in some way, but without specifically considering any

spatial location or nearest-neighbor ordering information. In

D-dimensional space, the columns of any SO(D) orthonormal

D � D rotation matrix RD are what we mean by an orientation

frame, since these columns are the directions pointed to by the

axes of the identity matrix after rotating something from its

defining identity frame to a new attitude; note that no spatial

location information whatever is contained in RD, though one

may wish to choose a local center for each frame if the

construction involves coordinates such as amino-acid atom

locations (see, e.g., Hanson & Thakur, 2012).

In 2D, 3D and 4D, there exist two-to-one quadratic maps

from the topological spaces S1, S3 and S3
� S3 to the rotation

matrices R2, R3 and R4. These are the quaternion-related

objects that we will use to obtain elegant representations of

the frame data-alignment problem. In 2D, a frame data

element can be expressed as a complex phase, while in 3D the

frame is a unit quaternion [see Hanson (2006) and Hanson &

Thakur (2012)]. In 4D (see the supporting information), the

frame is described by a pair of unit quaternions.

Note. Readers unfamiliar with the use of complex numbers

and quaternions to obtain elegant representations of 2D and

3D orientation frames are encouraged to review the tutorial in

Appendix B.

7.1. Overview

We focus now on the problem of aligning corresponding sets

of 3D orientation frames, just as we already studied the

alignment of sets of 3D spatial coordinates by performing

an optimal rotation. There will be more than one feasible

method. We might assume we could just define the

quaternion-frame alignment or ‘QFA’ problem by converting

any list of frame orientation matrices to quaternions [see

Hanson (2006), Hanson & Thakur (2012) and also Appendix

C] and writing down the quaternion equivalents of the RMSD

treatment in equation (9) and equation (10). However, unlike

the linear Euclidean problem, the preferred quaternion opti-

mization function technically requires a nonlinear minimiza-

tion of the squared sums of geodesic arc lengths connecting

the points on the quaternion hypersphere S3. The task of

formulating this ideal problem as well as studying alternative

approximations is the subject of its own branch of the litera-

ture, often known as the quaternionic barycenter problem or

the quaternion averaging problem (see, e.g., Brown & Worsey,

1992; Buss & Fillmore, 2001; Moakher, 2002; Markley et al.,

2007; Huynh, 2009; Hartley et al., 2013; and also Appendix D).

We will focus on L2 norms (the aformentioned sums of

squares of arc lengths), although alternative approaches to the

rotation-averaging problem, such as employing L1 norms and

using the Weiszfeld algorithm to find the optimal rotation

numerically, have been advocated, e.g., by Hartley et al.

(2011). The computation of optimally aligning rotations, based

on plausible exact or approximate measures relating collec-

tions of corresponding pairs of (quaternionic) orientation

frames, is now our task.

Choices for the forms of the measures encoding the distance

between orientation frames have been widely discussed, see,

e.g., Park & Ravani (1997), Moakher (2002), Markley et al.

(2007), Huynh (2009), Hartley et al. (2011, 2013), and Huggins

(2014a). Since we are dealing primarily with quaternions, we

will start with two measures dealing directly with the quater-

nion geometry, the geodesic arc length and the chord length,

and later on examine some advantages of starting with

quaternion-sign-independent rotation-matrix forms.

7.2. 3D geodesic arc-length distance

First, we recall that the matrix equation (5) has three

orthonormal columns that define a quadratic map from the

quaternion three-sphere S3, a smooth connected Riemannian

manifold, to a 3D orientation frame. The squared geodesic

arc-length distance between two quaternions lying on the

three-sphere S3 is generally agreed upon as the measure of

orientation-frame proximity whose properties are the closest

in principle to the ordinary squared Euclidean distance

measure equation (9) between points (Huynh, 2009), and we

will adopt this measure as our starting point. We begin by

writing down a frame–frame distance measure between two

unit quaternions q1 and q2, corresponding precisely to two

orientation frames defined by the columns of R(q1) and R(q2).

We define the geodesic arc length as an angle � on the

hypersphere S3 computed geometrically from q1 � q2 ¼ cos�.

As pointed out by Huynh (2009) and Hartley et al. (2013), the

geodesic arc length between a test quaternion q1 and a data-

point quaternion q2 of ambiguous sign [since R(+q2) =

R(�q2)] can take two values, and we want the minimum value.

Furthermore, to work on a spherical manifold instead of a

plane, we need basically to cluster the ambiguous points in a

deterministic way. Starting with the bare angle between two

quaternions on S3, � ¼ arccosðq1 � q2Þ, where we recall that �
	 0, we define a pseudometric (Huynh, 2009) for the geodesic

arc-length distance as

dgeodesicðq1; q2Þ ¼ minð�; �� �Þ: 0 � dgeodesicðq1; q2Þ �
�

2
;

ð34Þ

as illustrated in Fig. 4. An efficient implementation of this is to

take

dgeodesicðq1; q2Þ ¼ arccosðjq1 � q2jÞ: ð35Þ

We now seek to define an ideal minimizing L2 orientation-

frame measure, comparable to our minimizing Euclidean

RMSD measure, but constructed from geodesic arc lengths on

the quaternion hypersphere instead of Euclidean distances in

space. Thus to compare a test quaternion-frame data set {pk}

to a reference data set {rk}, we propose the geodesic based

least-squares measure

Sgeodesic ¼
PN
k¼1

arccos q ? pkð Þ � rk

		 		� �2

¼
PN
k¼1

arccos q � rk ? �ppkð Þ
		 		� �2

; ð36Þ
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where we have used the identities of equation (3). When

q ¼ qID, the individual measures correspond to equation (35),

and otherwise ‘q ? pk’ is the exact analog of ‘R(q) � xk’ in

equation (9), and denotes the quaternion rotation q acting on

the entire set {pk} to rotate it to a new orientation that we want

to align optimally with the reference frames {rk}. Analogously,

for points on a sphere, the arccosine of an inner product is

equivalent to a distance between points in Euclidean space.

Remark: For improved numerical behavior in the compu-

tation of the quaternion inner-product angle between two

quaternions, one may prefer to convert the arccosine to an

arctangent form, � ¼ arctanðdx; dyÞ ¼ arctanðcos �; j sin �jÞ
[remember the C math library uses the opposite argument

order atan2(dy, dx)], with the parameters

cosð�Þ ¼ j<ðq1 ? q2
�1
Þj ¼ jq1 � q2j;

j sinð�Þj ¼ =ðq1 ? q2
�1Þ



 

 ¼ �½q1�0q2 þ ½q2�0q1 � q1 � q2



 

;
which is somewhat more stable.

7.3. Adopting the solvable chord measure

Unfortunately, the geodesic arc-length measure does not fit

into the linear algebra approach that we were able to use to

obtain exact solutions for the Euclidean-data-alignment

problem treated so far. Thus we are led to investigate instead a

very close approximation to dgeodesicðq1; q2Þ that does corre-

spond closely to the Euclidean data case and does, with some

contingencies, admit exact solutions. This approximate

measure is the chord distance, whose individual distance terms

analogous to equation (35) take the form of a closely related

pseudometric (Huynh, 2009; Hartley et al., 2013),

dchordðq1; q2Þ ¼minðkq1 � q2k; kq1 þ q2kÞ:

0 � dchordðq1; q2Þ �
ffiffiffi
2
p
: ð37Þ

We compare the geometric origins for equation (35) and

equation (37) in Fig. 4. Note that the crossover point between

the two expressions in equation (37) is at �/2, so the hypote-

nuse of the right isosceles triangle at that point has length
ffiffiffi
2
p

.

The solvable approximate optimization function analogous

to kR � x � yk2 that we will now explore for the quaternion-

frame alignment problem will thus take the form that must be

minimized as

Schord ¼
PN
k¼1

�
minðkðq ? pkÞ � rkk; kðq ? pkÞ þ rkkÞ

�2
: ð38Þ

We can convert the sign ambiguity in equation (38) to a

deterministic form like equation (35) by observing, with the

help of Fig. 4, that

kq1 � q2k
2
¼ 2� 2q1 � q2; kq1 þ q2k

2
¼ 2þ 2q1 � q2: ð39Þ

Clearly (2 � 2|q1 � q2|) is always the smallest of the two values.

Thus minimizing equation (38) amounts to maximizing the

now-familiar cross-term form, which we can write as

�chordðqÞ ¼
PN

k¼1 jðq ? pkÞ � rkj

¼
PN

k¼1 jq � ðrk ? �ppkÞj

¼
PN

k¼1 jq � tkj

9>>=
>>;: ð40Þ

Here we have used the identity ðq ? pÞ � r ¼ q � ðr ? �ppÞ from

equation (3) and defined the quaternion displacement or

‘attitude error’ (Markley et al., 2007)

tk ¼ rk ? �ppk: ð41Þ

Note that we could have derived the same result using

equation (2) to show that kq ? p� rk = kq ? p� rkkpk =

kq� r ? �ppk:
There are several ways to proceed to our final result at this

point. The simplest is to pick a neighborhood in which we will

choose the samples of q that include our expected optimal
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Figure 4
Geometric context involved in choosing a quaternion distance that will result in the correct average rotation matrix when the quaternion measures are
optimized. Because the quaternion vectors represented by t and �t give the same rotation matrix, one must choose jcos �j or the minima, that is
min �; �� �ð Þ or min kq� tk; kqþ tkð Þ, of the alternative distance measures to get the correct items in the arc-length or chord measure summations. (a)
and (b) represent the cases when the first or second choice should be made, respectively.



quaternion, and adjust the sign of each data value tk toettk by

the transformation

ettk ¼ tk signðq � tkÞ ! jq � tkj ¼ q �ettk: ð42Þ

The neighborhood of q matters because, as argued by Hartley

et al. (2013), even though the allowed range of 3D rotation

angles is � 2 (��, �) [or quaternion sphere angles � 2
(��/2, �/2)], convexity of the optimization problem cannot be

guaranteed for collections outside local regions centered on

some �0 of size �0 2 (��/2, �/2) [or �0 2 (��/4, �/4)]: beyond

this range, local basins may exist that allow the mapping

equation (42) to produce distinct local variations in the

assignments of the fettkg and in the solutions for qopt. Within

considerations of such constraints, equation (42) now allows us

to take the summation outside the absolute value, and write

the quaternion-frame optimization problem in terms of

maximizing the cross-term expression

�chordðqÞ ¼
PN
k¼1

q �ettk

¼ q � VðtÞ

9>=
>;; ð43Þ

where V ¼
PN

k¼1
ettk is proportional to the mean of the

quaternion displacements fettkg, defining their chord-distance

quaternion average. V also clearly plays a role analogous to the

Euclidean RMSD profile matrix M. However, since equation
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Figure 5
3D components of a quaternion orientation data set. (a) A quaternion reference set, color-coded by the sign of q0. (b) Exact quaternion arc-length
distances (green arcs) versus chord distances (black lines) between the test points (black dots) and the reference points. (c) Part way from the starting
state to the aligned state, at s = 0.5. (d) The final best alignment at s = 1.0. The yellow arrow is the direction of the quaternion eigenvector; when scaled,
the length is the sine of half the optimal rotation angle.



(43) is linear in q, we have the remarkable result that, as noted

in the treatment of Hartley et al. (2013) regarding the

quaternion L2 chordal-distance norm, the solution is

immediate, being simply

qopt ¼
V

kVk
; ð44Þ

since that obviously maximizes the value of �chordðqÞ. This

gives the maximal value of the measure as

�chordðqoptÞ ¼ kVk ð45Þ

and thus kVk is the exact orientation-frame analog of the

spatial RMSD maximal eigenvalue �opt, except it is far easier

to compute.

7.4. Illustrative example

Using the quaternion display method described in

Appendix B and illustrated in Fig. 12, we present in Fig. 5(a) a

representative quaternion-frame reference data set, then in

(b) we include a matching set of rotated noisy test data (small

black dots), and draw the arc and chord distances (see also Fig.

4) connecting each test-reference point pair in the quaternion
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Figure 6
3D components of the rotation-average transformation of the quaternion orientation data set, with each point denoting the displacement between each
pair of frames as a single quaternion, corresponding to the rotation taking the test frame to the reference frame. (a) The cluster of points
tk ¼ rk ? �ppk !ettk derived from the frame-matching problem using just the curved arcs in Fig. 5(b). If there were no alignment errors introduced in the
simulation, these would all be a single point. The yellow arrow is the quaternion solution to the chord-distance centroid of this cluster and is identical to
the optimal quaternion rotation transforming the test data to have the minimal chord measure relative to the reference data. (b) Choosing a less-
cluttered subset of the data in (a), we display the geodesic paths from the initial quaternion displacementsettk to the origin-centered set with minimal
chord-measure distance relative to the origin. This is the result of applying the inverse of the quaternion qopt to eachettk. Note that the paths are curved
geodesics lying properly within the quaternion sphere. (c, d) Rotating the cluster using a slerp between the quaternion barycenter of the initial misaligned
data and the optimally aligned position, which is centered at the origin.



space. In Fig. 5(c,d), we show the results of the quaternion-

frame alignment process using conceptually the same slerp

of equation (15) to transition from the raw state at

qðs ¼ 0Þ ¼ qID to q(s = 0.5) for (c) and qðs ¼ 1:0Þ ¼ qopt for

(d). The yellow arrow is the axis of rotation specified by the

spatial part of the optimal quaternion.

The rotation-averaging visualization of the optimization

process, though it has exactly the same optimal quaternion, is

quite different, since all the quaternion data collapse to a list

of single small quaternions t ¼ r ? �pp. As illustrated in Fig. 6,

with compatible sign choices, the ettk’s cluster around the

optimal quaternion, which is clearly consistent with being the

barycenter of the quaternion differences, intuitively the place

to which all the quaternion frames need to be rotated to

optimally coincide. As before, the yellow arrow is the axis of

rotation specified by the spatial part of the optimal quater-

nion. Next, Fig. 7 addresses the question of how the rigorous

arc-length measure is related to the chord-length measure that

can be treated using the same methods as the spatial RMSD

optimization. In parallel to Fig. 5(b), Fig. 7(a) shows essen-

tially the same comparison for theettk quaternion-displacement

version of the same data. In Fig. 7(b), we show the histograms

of the chord distances to a sample point, the origin in this case,

versus the arc-length or geodesic distances. They obviously

differ, but in fact for plausible simulations, the arc-length

numerical optimal quaternion barycenter differs from the

chord-length counterpart by only a fraction of a degree.

These issues are studied in more detail in the supporting

information.

Next, in Fig. 8, we display the values of �chord ¼ q � V that

parallel the RMSD version in Fig. 3. The dots show the size of

the cost �(q) at randomly sampled points across the entire S3,

with q0	 0 in (a) and q0� 0 in (b). We have all the signs of theettk chosen to be centered in an appropriate local neighborhood,

and so, unlike the quadratic Euclidean RMSD case, there is

only one value for qopt, which is in the direction of V. Finally, in

Fig. 9 we present an intuitive sketch of the convexity

constraints for the QFA optimization related to Hartley et al.

(2013). We start with a set of data in (a) [with both (q, �q)

partners] that consists of three local clouds that can be

smoothly deformed from dispersed to coinciding locations.

Fig. 9(b) and (c) both contain a uniform sample of quaternion

sample points q spread over all of quaternion space, shown as

magenta dots, with positive and negative q0 plotted on top of

each other. Then each sample q is used to compute one set of

mappings tk !ettk and the one value of qopt ¼ Vðett Þ=kVk that

results. The black arrows show the relation of qopt to each

original sample q, effectively showing us their votes for the

best quaternion average. Fig. 9(b) has the clusters positioned

far enough apart that we can clearly see that there are several

basins of attraction, with no unique solution for qopt, while in

(c), we have interpolated the three clusters to lie in the same

local neighborhood, roughly in a ball of quaternion radius � <

�/4, and we see that almost all of the black arrows vote for one

unique qopt or its equivalent negative. This seems to be a useful

exercise to gain intuition about the nature of the basins of

attraction for the quaternion-averaging problem that is

essential for quaternion-frame alignment.

7.5. Alternative matrix forms of the linear vector chord
distance

If the signs of the quaternions representing orientation

frames are well behaved, and the frame problem is our only

concern, equations (43) and (44) provide a simple solution to
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Figure 7
(a) Projecting the geodesic versus chord distances from the origin to
sampled points in a set of frame-displacement data tk ¼ rk ? �ppk !ettk.
Since the q spatial quaternion paths project to a straight line from the
origin, we use the (q0, qx, qy) coordinates instead of our standard q
coordinates to expose the curvature in the arc-length distances to the
origin. (b) Histogram of the chord-length distances to the origin (in blue)
compared to the histogram of the geodesic arc-length distances (in
yellow), sampled using a uniform distribution of random quaternions
over a portion of S3. If there were no errors, all the points would have the
same distance from the origin located at q = (1, 0, 0, 0) [red axis in (a)],
and there would be one blue spike, appearing at a slightly smaller position
than the yellow spike because arc length is always longer than chord
length. The arc-length method has a different distribution, as expected,
and produces a very slightly better barycenter. However, the optimal
quaternions for the arc-length versus chord-length measure for this
simulated data set differ by only a fraction of a degree, so drawing the
positions of the two distinct optimal quaternions would not reveal any
noticeable difference in image (a).



finding the optimal global rotation. If we are anticipating

wanting to combine a spatial profile matrix M(E) with an

orientation problem in a single 4 � 4 matrix, or we have

problems defining a consistent quaternion sign, there are two

further choices of orientation-frame measure we may

consider.

(1) Matrix form of the linear vector chord distance. The first

option uses the fact that the square of equation (43) will yield

the same extremal solution for qopt, so we can choose a

measure of the form

�chord�sq ¼ ðq � VÞðq � VÞ

¼
P3

a¼0;b¼0

qa VaVb qb

¼ q �� � q; ð46Þ

where �ab = VaVb is a 4 � 4 rank-one symmetric matrix with

det � ¼ 0, and tr � ¼
P

a Va
2 6¼ 0. The eigensystem of � is

just defined by the eigenvalue kVk2, and combination with the

spatial eigensystem can be achieved either numerically or

algebraically. The sign issues for the sampled data remain

unchanged since they appear inside the sums defining V. This

form will acquire more importance in the 4D case.

(2) Fixing the sign problem with the quadratic rotation

matrix chord distance. Our second approach has a very natural

way to eliminate sign dependence altogether from the quater-

nion chord-distance method, and has a close relationship to

�chord. This measure is constructed starting from a minimized

Fröbenius norm of the form [this approach is used by Sarlette

& Sepulchre (2009); see also, e.g., Huynh (2009), as well as

Moakher (2002), Markley et al. (2007), and Hartley et al.

(2013)]

kRðqÞ � RðpkÞ � RðrkÞk
2
Frob

and then reducing to the cross-term as usual. The cross-term

measure to be maximized, in terms of 3 � 3 (quaternion-sign-

independent) rotation matrices, then becomes

�RRR ¼
PN
k¼1

tr RðqÞ � RðpkÞ � R
�1ðrkÞ

� �
¼
PN
k¼1

tr Rðq ? pk ? �rrkÞ
� �

¼
PN
k¼1

tr RðqÞ � Rðpk ? �rrkÞ
� �

¼
PN
k¼1

tr RðqÞ � R�1ðrk ? �ppkÞ
� �

;

ð47Þ

where �rr denotes the complex conjugate or inverse quaternion.

We can verify that this is a chord distance by noting that each

relevant R � R � R term reduces to the square of an individual

chord distance appearing in �chord:

PN
k¼1

tr RðqÞ � RðpkÞ � Rð�rrkÞ
� �
¼
PN
k¼1

4 ðq ? pkÞ � rkð Þ
2
�ðq � qÞðpk � pkÞðrk � rkÞ

� �
¼
PN
k¼1

4 q � ðrk ? �ppkÞð Þ
2
�1

� �
¼ 4

P
a;b

qa

PN
k¼1

½tk�a ½tk�b

� �
qb � N

¼ 4q � Aðt ¼ r ? �ppÞ � q� N:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð48Þ

Here the non-conjugated ordinary r on the right-hand side is

not a typographical error, and the 4 � 4 matrix A(t) is the

alternative (equivalent) profile matrix that was introduced by
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Figure 8
The values of � = q � V represented by the sizes of the dots placed at a random distribution of quaternion points. We display the data dots at the
locations of their spatial quaternion components q. (a) is the northern hemisphere of S3, with q0 	 0, (b) is the southern hemisphere, with q0 � 0, and
we implicitly know that the value of q0 is 
ð1� q � qÞ1=2. The points in these two solid balls represent the entire space of quaternions, and it is important
to note that, even though R(q) = R(�q) so each ball alone actually represents all possible unique rotation matrices, our cost function covers the entire
space of quaternions, so q and�q are distinct. The spatial component of the maximal eigenvector is shown by the yellow arrow, which clearly ends in the
middle of the maximum values of �. The small cloud at the edge of (b) is simply the rest of the complete cloud around the tip of the yellow arrow, as q0

passes through the ‘equator’ at q0 = 0, going from a small positive value at the edge of (a) to a small negative value at the edge of (b).



Markley et al. (2007) and Hartley et al. (2013) for the chord-

based quaternion-averaging problem. We can therefore use

either the measure �RRR or

�A ¼ q � AðtÞ � q ð49Þ

with Aab ¼
PN

k¼1½tk�a ½tk�b as our rotation-matrix-based sign-

insensitive chord-distance optimization measure. Exactly like

our usual spatial measure, these measures must be maximized

to find the optimal q. It is, however, important to emphasize

that the optimal quaternion will differ for the �chord, �chord�sq

and �RRR � �A measures, though they will normally be very

similar (see the discussion in the supporting information).

We now recognize that the sign-insensitive measures are all

very closely related to our original spatial RMSD problem,

and all can be solved by finding the optimal quaternion

eigenvector qopt of a 4 � 4 matrix. The procedure for �chord�sq

and �A follows immediately, but it is useful to work out the

options for �RRR in a little more detail. Defining

Tk ¼ RðpkÞ � R
�1ðrkÞ ¼ Rðpk ? �rrkÞ ¼ R�1ðtkÞ, we can write our

optimization measure as
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Figure 9
The behavior of the basins of attraction for the tk !ettk map is shown here, starting in (a) with the (q,�q) pairs for three movable clusters of quaternion-
frame data, each having a well defined local quaternion average qopt ¼ Vðett Þ=kVk shown as the yellow arrows with their q!�q equivalents. Next we
merge all three samples into one data set that can be smoothly interpolated between the data being outside the � = �/4 safe zone to all being together
within that geometric boundary in quaternion space. Part (b) shows the results of taking 500 uniform samples of q and computing the set fettk g for each
sample q, placed at the magenta dots, and then computing the resulting qopt; the black arrows follow the line from the sample point to the resultant qopt.
Clearly in (b), where the clusters are in their initial widely dispersed configuration, the black arrows (the ‘votes’ for the best qoptÞ collect in several
different basins of attraction, signifying the absence of a global solution. We then interpolate all the clusters close to each other, and show the new results
of the voting in (c). Now almost all of the samplings of the full quaternion space converge to point their arrows densely to the two opposite values of qopt,
and there is just one effective basin of attraction.



�RRR ¼
PN
k¼1

tr RðqÞ � Tkð Þ ¼
P3

a¼1;b¼1

RbaðqÞTab

¼
P3

a¼0;b¼0

qa � Uabðp; rÞ � qb ¼ q � Uðp; rÞ � q; ð50Þ

where the frame-based cross-covariance matrix is simply

Tab ¼
PN

k¼1 ½Tk�ab
and U(p, r) = U(T) has the same relation to

T as M(E) has to E in equation (13).

To compute the necessary 4 � 4 numerical profile matrix U,

one need only substitute the appropriate 3D frame triads or

their corresponding quaternions for the kth frame pair and

sum over k. Since the orientation-frame profile matrix U(p, r)

is symmetric and traceless just like the Euclidean profile

matrix M, the same solution methods for the optimal quater-

nion rotation qopt will work without alteration in this case,

which is probably the preferable method for the general

problem.

7.6. Evaluation

The details of evaluating the properties of our quaternion-

frame alignment algorithms, including comparison of the

chord approximation to the arc-length measure, are available

in the supporting information. The top-level result is that,

even for quite large rotational differences, the mean difference

between the optimal quaternion using the numerical arc-

length measure and the optimal quaternion using the chord

approximation for any of the three methods is on the order of

small fractions of a degree for the random data distributions

that we examined.

8. The 3D combined point + frame alignment problem

Since we now have precise alignment procedures for both 3D

spatial coordinates and 3D frame triad data (using the exact

measure for the former and the approximate chord measure

for the latter), we can consider the full 6 degree-of-freedom

(6DOF) alignment problem for combined data from a

single structure. As always, this problem can be solved

either by numerical eigenvalue methods or in closed algebraic

form using the eigensystem formulation of both alignment

problems presented in the previous sections. While there are

clearly appropriate domains of this type, e.g. any protein

structure in the Protein Data Bank can be converted to a list of

residue centers and their local frame triads (Hanson &

Thakur, 2012), little is known at this time about the potential

value of combined alignment. To establish the most complete

possible picture, we now proceed to describe the details of our

solution to the alignment problem for combined translational

and rotational data, but we remark at the outset that the

results of the combined system are not obviously very illu-

minating.

The most straightforward approach to the combined 6DOF

measure is to equalize the scales of our spatial M(E) profile

matrix and our orientation-frame U(S) profile matrix by

imposing a unit-eigenvalue normalization, and then simply to

perform a linear interpolation modified by a dimensional

constant � to adjust the relative importance of the orientation-

frame portion:

�xf ðt; �Þ ¼ q � ð1� tÞ
MðEÞ

�x

þ t �
UðSÞ

�f

� �
� q: ð51Þ

Because of the dimensional incompatibility of �x and �f, we

treat the ratio

	2 ¼
t�

1� t

as a dimensional weight such as that adopted by Fogolari et al.

(2016) in their entropy calculations, or implicit in the weights �
and � employed in the error function of Walker et al. (1991). If

we take t to be dimensionless, then � carries the dimensional

scale information.

Given the composite profile matrix of equation (51), we can

now extract our optimal rotation solution by computing the

maximal eigenvalue as usual, either numerically or algebrai-

cally (though we may need the extension to the non-vanishing

trace case examined in the supporting information for some

choices of U). The result is a parameterized eigensystem

�optðt; �Þ
qoptðt; �Þ


ð52Þ

yielding the optimal values Rðqoptðt; �ÞÞ, �xf ¼ �optðt; �Þ based

on the data {E, S} no matter what we take as the values of the

two variables (t, �).

8.1. A simplified composite measure

However, upon inspection of equation (51), one wonders

what happens if we simply use the slerp defined in equation (8)

to interpolate between the separate spatial and orientation-

frame optimal quaternions. While the eigenvalues that corre-

spond to the two scaled terms M/�x and U/�f in equation (51)

are both unity, and thus differ from the eigenvalues of M and

U, the individual normalized eigenvectors qx:opt and qf :opt are

the same. Thus, if we are happy with simply using a hand-

tuned fraction of the combination of the two corresponding

rotations, we can just choose a composite rotation R(q(t))

specified by

qðtÞ ¼ slerpðqx:opt; qf :opt; tÞ ð53Þ

to study the composite 6DOF alignment problem. In fact, as

detailed in the supporting information, if we simply plug this

q(t) into equation (51) for any t (and � = 1), we find negligible

differences between the quaternions q(t) and qoptðt; 1Þ as a

function of t. We suggest in addition that any particular effect

of � 6¼ 1 could be achieved at some value of t in the inter-

polation. We thus conclude that, for all practical purposes, we

might as well use equation (53) with the parameter t adjusted

to achieve the objective of equation (51) to study composite

translational and rotational alignment similarities.

9. Conclusion

Our objective has been to explore quaternion-based treat-

ments of the RMSD data-comparison problem as developed in
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the work of Davenport (1968), Faugeras & Hebert (1983),

Horn (1987), Diamond (1988), Kearsley (1989), and Kneller

(1991), among others, and to publicize the exact algebraic

solutions, as well as extending the method to handle wider

problems. We studied the intrinsic properties of the RMSD

problem for comparing spatial-coordinate and orientation-

frame data in quaternion-accessible domains, and we exam-

ined the nature of the solutions for the eigensystems of the 3D

spatial-coordinate RMSD problem, as well as the corre-

sponding 3D quaternion orientation-frame alignment problem

(QFA). Extensions of both the spatial-coordinate and

orientation-frame alignment problems and their solutions to

4D are detailed in the supporting information. We also

examined solutions for the combined 3D spatial-coordinate

and orientation-frame RMSD problem, arguing that a simple

quaternion interpolation between the two individual solutions

may well be sufficient for most purposes.

APPENDIX A
The 3D Euclidean-space least-squares matching
function

This appendix works out the details of the long-form least-

squares distance measure for the 3D Euclidean alignment

problem using the method of Hebert and Faugeras (Hebert,

1983; Faugeras & Hebert, 1983, 1986). Starting with the 3D

Euclidean minimizing distance measure equation (9), we can

exploit equation (5) for R(q), along with equation (2), to

produce an alternative quaternion eigenvalue problem whose

minimal eigenvalue determines the eigenvector qopt specifying

the matrix that rotates the test data into closest correspon-

dence with the reference data.

Adopting the convenient notation x = (0, x1, x2, x3) for a

pure imaginary quaternion, we employ the following steps:

S3 ¼
PN
k¼1

kR3ðqÞ � xk � ykk
2

¼
PN
k¼1

kq ? xk ? �qq� ykk
2
¼
PN
k¼1

kq ? xk ? �qq� ykk
2
kqk2

¼
PN
k¼1

kq ? xk � yk ? qk2 by equation ð2Þ ð54Þ

¼
PN
k¼1

kAðxk; ykÞ � qk
2
¼
PN
k¼1

q � Ak
T � Ak � q

¼
PN
k¼1

q � Bk � q ¼ q � B � q:

Here we may write, for each k, the matrix A(xk, yk) as

Ak ¼

0 �a1 �a2 �a3

a1 0 s3 �s2

a2 �s3 0 s1

a3 s2 �s1 0

2
664

3
775

k

ð55Þ

where, with ‘a’ for ‘antisymmetric’ and ‘s’ for ‘symmetric,’

af1;2;3g ¼ fx1 � y1; x2 � y2; x3 � y3g

sf1;2;3g ¼ fx1 þ y1; x2 þ y2; x3 þ y3g

and, again for each k,

Bk ¼ Ak
T
� Ak ¼

a1
2 þ a2

2 þ a3
2 a3s2 � a2s3 a1s3 � a3s1 a2s1 � a1s2

a3s2 � a2s3 a1
2 þ s2

2 þ s3
2 a1a2 � s1s2 a1a3 � s1s3

a1s3 � a3s1 a1a2 � s1s2 a2
2 þ s1

2 þ s3
2 a2a3 � s2s3

a2s1 � a1s2 a1a3 � s1s3 a2a3 � s2s3 a3
2 þ s1

2 þ s2
2

2
6664

3
7775

k

ð56Þ

and B ¼
PN

k¼1 Bk. As using the full squared-difference mini-

mization measure equation (9) requires the global minimal

value, the solution for the optimal quaternion in equation (54)

is the eigenvector of the minimal eigenvalue of B in equation

(56). This is the approach used by Faugeras and Hebert in the

earliest application of the quaternion method to scene align-

ment that we know of. While it is important to be aware of this

alternative method, in the main text we have found it more

useful to focus on the alternate form exploiting only the non-

constant cross-term appearing in equation (9), as does most of

the recent molecular structure literature. The cross-term

requires the determination of the maximal eigenvalue rather

than the minimal eigenvalue of the corresponding data matrix.

Direct numerical calculation verifies that, though the minimal

eigenvalue of equation (56) differs from the maximal eigen-

value of the cross-term approach, the exact same optimal

eigenvector is obtained, a result that can presumably be

proven algebraically but that we will not need to pursue here.

APPENDIX B
Introduction to quaternion orientation frames

B1. What is a quaternion frame?

We will first present a bit of intuition about coordinate

frames that may help some readers with our terminology. If we

take the special case of a quaternion representing a rotation in

the 2D (x, y) plane, the 3D rotation matrix equation (5)

reduces to the standard right-handed 2D rotation

R2ð�Þ ¼
cos � � sin �
sin � cos �

� �
: ð57Þ

As shown in Fig. 10(a), we can use � to define a unit direction

in the complex plane defined by z ¼ exp i�, and then the

columns of the matrix R2(�) naturally correspond to a unique

associated 2D coordinate frame diad; an entire collection of

points z and their corresponding frame diads are depicted in

Fig. 10(b).

Starting from this context, we can get a clear intuitive

picture of what we mean by a ‘quaternion frame’ before diving

into the quaternion RMSD problem. The essential step is to

look again at equation (5) for nx = 1, and write the corre-

sponding quaternion as (a, b, 0, 0) with a2 + b2 = 1, so this is a

‘2D quaternion’, and is indistinguishable from a complex

phase like z ¼ exp i� that we just introduced. There is one
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significant difference, however, and that is that equation (5)

shows us that R2(�) takes a new form, quadratic in a and b,

R2ða; bÞ ¼
a2 � b2 �2ab

2ab a2 � b2

� �
: ð58Þ

Using either the formula (7) for qð�; n̂nÞ or just exploiting the

trigonometric double-angle formulas, we see that equation

(57) and equation (58) correspond and that

ða; bÞ ¼ cosð�=2Þ; sinð�=2Þð Þ ð59Þ

u ¼ ðaþ i bÞ ¼
ffiffiffi
z
p
¼ expði�=2Þ: ð60Þ

Our simplified 2D quaternion thus describes the square root of

the usual Euclidean frame given by the columns of R2(�). Thus

the pair (a, b) (the reduced quaternion) itself corresponds to a

frame. In Fig. 11(a), we show how a given ‘quaternion frame’,

i.e. the columns of R2(a, b), corresponds to a point u = a + ib in

the complex plane. Diametrically opposite points (a, b) and

(�a,� b) now correspond to the same frame! Fig. 11(b) shows

the corresponding frames for a large collection of points (a, b)

in the complex plane, and we see the new and unfamiliar

feature that the frames make two full rotations on the complex

circle instead of just one as in Fig. 10(b).

This is what we have to keep in mind as we now pass to

using a full quaternion to represent an arbitrary 3D frame

triad via equation (5). The last step is to notice that in Fig.

11(b) we can represent the set of frames in one half of the

complex circle, a 	 0 shown in magenta, as distinct from those

in the other half, a < 0 shown in dark blue; for any value of b,

the vertical axis, there is a pair of a’s with opposite signs and
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Figure 10
(a) Any standard 2D coordinate frame corresponds to the columns of an
ordinary rotation matrix, and is associated to the point ðcos �; sin �Þ on a
unit circle. (b) The standard 2D coordinate frames associated with a
sampling of the entire circle of points ðcos �; sin �Þ.

Figure 11
(a) The quaternion point (a, b), in contrast, corresponds via the double-
angle formula to coordinate frames that rotate twice as rapidly as (a, b)
progresses around the unit circle that is a simplified version of quaternion
space. (b) The set of 2D frames associated with the entire circle of
quaternion points (a, b); each diametrically opposite point corresponds to
an identical frame. For later use in displaying full quaternions, we show
how color coding can be used to encode the sign of one of the coordinates
on the circle.



colors. In the quaternion case, we can display quaternion

frames inside one single sphere, like displaying only the b

coordinates in Fig. 11(b) projected to the vertical axis,

realizing that if we know the sign-correlated coloring, we can

determine both the magnitude of the dependent variable a =


(1 � b2)1/2 as well as its sign. The same holds true in the

general case: if we display only a quaternion’s 3-vector part

q = (qx, qy, qz) along with a color specifying the sign of q0,

we implicitly know both the magnitude and sign of

q0 ¼ 
ð1� qx
2 � qy

2 � qz
2Þ

1=2, and such a 3D plot therefore

accurately depicts any quaternion. Another alternative

employed in the main text is to use two solid balls, one a

‘northern hemisphere’ for the q0 	 0 components and the

other a ‘southern hemisphere’ for the q0 � 0 components.

Each may be useful in different contexts.

B2. Example

We illustrate all this in Fig. 12(a), which shows a typical

collection of quaternion reference-frame data displaying only

the q components of (q0, q); the q0	 0 data are mixed with the

q0 < 0 data, but are distinguished by their color coding. In Fig.

12(b), we show the frame triads resulting from applying

equation (5) to each quaternion point and plotting the result

at the associated point q in the display.

APPENDIX C
On obtaining quaternions from rotation matrices

The quaternion RMSD profile matrix method can be used to

implement a singularity-free algorithm to obtain the (sign-

ambiguous) quaternions corresponding to numerical 3D and

4D rotation matrices. There are many existing approaches to

the 3D problem in the literature [see, e.g., Shepperd (1978),

Shuster & Natanson (1993), or Section 16.1 of Hanson (2006)].

In contrast to these approaches, Bar-Itzhack (2000) has

observed, in essence, that if we simply replace the data matrix

Eab by a numerical 3D orthogonal rotation matrix R, the

numeric quaternion q that corresponds to Rnumeric ¼ RðqÞ,

as defined by equation (5), can be found by solving our

familiar maximal quaternion eigenvalue problem. The initially

unknown optimal matrix (technically its quaternion)

computed by maximizing the similarity measure is equivalent

to a single-element quaternion barycenter problem, and the

construction is designed to yield a best approximation to R

itself in quaternion form. To see this, take S(r) to be the

sought-for optimal rotation matrix, with its own quaternion r,

that must maximize the Bar-Itzhack measure. We start with

the Fröbenius measure describing the match of two rotation

matrices corresponding to the quaternion r for the unknown

quaternion and the numeric matrix R containing the known

3 � 3 rotation matrix data:

SBI ¼ kSðrÞ � Rk2
Frob ¼ tr ½SðrÞ � R� � ½ST

ðrÞ � RT
�

� �
¼ tr I3 þ I3 � 2 SðrÞ � RT

� �� �
¼ const� 2 tr SðrÞ � RT:

Pulling out the cross-term as usual and converting to a

maximization problem over the unknown quaternion r, we

arrive at

�BI ¼ tr SðrÞ � RT ¼ r � KðRÞ � r; ð61Þ

where R is (approximately) an orthogonal matrix of numerical

data and K(R) is analogous to the profile matrix M(E). Now S

is an abstract rotation matrix and R is supposed to be a good

numerical approximation to a rotation matrix, and thus the

product T ¼ S � RT should also be a good approximation to an
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Figure 12
(a) The 3D portions of the quaternion reference-frame data q =
(q0, qx, qy, qz), using different colors for q0 	 0 and q0 < 0 in the
unseen direction. Since jq0j ¼ ð1� qx

2 � qy
2 � qz

2Þ
1=2, the complete

quaternion can in principle be determined from the 3D display. (b) The
3D orientation-frame triads for each reference point (q0, qx, qy, qz)
displayed at their associated q = (qx, qy, qz).



SO(3) rotation matrix; hence that product itself corresponds

closely to some axis n̂n and angle �, where (supposing we knew

R’s exact quaternion q)

tr SðrÞ � RTðqÞ ¼ tr Tðr ? �qqÞ ¼ tr Tð�; n̂nÞ ¼ 1þ 2 cos �:

The maximum is obviously close to T being the identity

matrix, with the ideal value at � = 0, corresponding to S � R.

Thus if we find the maximal quaternion eigenvalue �opt of the

profile matrix K(R) in equation (61), our closest solution is

well represented by the corresponding normalized eigenvector

ropt,

q ¼ ropt: ð62Þ

This numerical solution for q will correspond to the targeted

numerical rotation matrix, solving the problem. To complete

the details of the computation, we replace the elements Eab in

equation (13) by a general orthonormal rotation matrix with

columns X = (x1, x2, x3), Y = (y1, y2, y3) and Z = (z1, z2, z3),

scaling by 1/3, thus obtaining the special 4 � 4 profile matrix K

whose elements in terms of a known numerical matrix R =

[X|Y|Z] (transposed in the algebraic expression for K owing to

the RT) are

KðRÞ ¼

1

3

x1 þ y2 þ z3 y3 � z2 z1 � x3 x2 � y1

y3 � z2 x1 � y2 � z3 x2 þ y1 x3 þ z1

z1 � x3 x2 þ y1 �x1 þ y2 � z3 y3 þ z2

x2 � y1 x3 þ z1 y3 þ z2 �x1 � y2 þ z3

2
6664

3
7775:
ð63Þ

Determining the algebraic eigensystem of equation (63) is a

non-trivial task. However, as we know, any orthogonal 3D

rotation matrix R(q), or equivalently, RTðqÞ ¼ Rð �qqÞ, can also

be ideally expressed in terms of quaternions via equation (5),

and this yields an alternate useful algebraic form:

KðqÞ ¼

1

3

3q0
2 � q1

2 � q2
2 � q3

2 4q0q1

4q0q1 �q0
2 þ 3q1

2 � q2
2 � q3

2

4q0q2 4q1q2

4q0q3 4q1q3

2
6664

4q0q2 4q0q3

4q1q2 4q1q3

�q0
2 � q1

2 þ 3q2
2 � q3

2 4q2q3

4q2q3 �q0
2 � q1

2 � q2
2 þ 3q3

2

3
7775:
ð64Þ

This equation then allows us to quickly prove that K has the

correct properties to solve for the appropriate quaternion

corresponding to R. First we note that the coefficients pn of the

eigensystem are simply constants,

p1 ¼ 0; p2 ¼ �
2
3; p3 ¼ �

8
27; p4 ¼ �

1
27:

Computing the eigenvalues and eigenvectors using the

symbolic quaternion form, we see that the eigenvalues are

constant, with maximal eigenvalue exactly one, and the

eigenvectors are almost trivial, with the maximal eigenvector

being the quaternion q that corresponds to the (numerical)

rotation matrix:

� ¼ f1; �1
3; �

1
3; �

1
3g ð65Þ

r ¼

q0

q1

q2

q3

2
6664

3
7775;

�q1

q0

0

0

2
6664

3
7775;

�q2

0

q0

0

2
6664

3
7775;

�q3

0

0

q0

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;: ð66Þ

The first column is the quaternion ropt, with �BIðroptÞ ¼ 1.

(This would be 3 if we had not divided by 3 in the definition of

K.)

Alternate version. From the quaternion-barycenter work of

Markley et al. (2007) and the natural form of the quaternion-

extraction problem in 4D in the supporting information, we

know that equation (64) actually has a much simpler form with

the same unit eigenvalue and natural quaternion eigenvector.

If we simply take equation (64) multiplied by 3, add the

constant term I4 ¼ ðq0
2 þ q1

2 þ q2
2 þ q3

2ÞI4, and divide by 4,

we get a more compact quaternion form of the matrix, namely

K0ðqÞ ¼

q0
2 q0q1 q0q2 q0q3

q0q1 q1
2 q1q2 q1q3

q0q2 q1q2 q2
2 q2q3

q0q3 q1q3 q2q3 q3
2

2
664

3
775: ð67Þ

This has vanishing determinant and trace tr K0 ¼ 1 ¼ �p1,

with all other pk coefficients vanishing, leading to an eigen-

system identical to equation (64):

� ¼ f1; 0; 0; 0g ð68Þ

r ¼

q0

q1

q2

q3

2
6664

3
7775;

�q1

q0

0

0

2
6664

3
7775;

�q2

0

q0

0

2
6664

3
7775;

�q3

0

0

q0

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;: ð69Þ

As elegant as this is, in practice our numerical input data are

from the 3 � 3 matrix R itself, and not the quaternions, so we

will almost always just use those numbers in equation (63) to

solve the problem.

C1. Completing the solution

In typical applications, the solution is immediate, requiring

only trivial algebra. The maximal eigenvalue is always known

in advance to be unity for any valid rotation matrix, so we

need only to compute the eigenvector from the numerical

matrix equation (63) with unit eigenvalue. We simply compute

any column of the adjugate matrix of [K(R) � I4], or solve the

equivalent linear equations of the form

KðRÞ � 1  I4ð Þ �

1

v1

v2

v3

2
664

3
775 ¼ 0; q ¼ ropt ¼ normalize

1

v1

v2

v3

2
664

3
775:
ð70Þ

As always, one may need to check for degenerate special

cases.
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C2. Non-ideal cases

It is important to note, as emphasized by Bar-Itzhack, that if

there are significant errors in the numerical matrix R, then the

actual non-unit maximal eigenvalue of K(R) can be computed

numerically or algebraically as usual, and then that eigenva-

lue’s eigenvector determines the closest normalized quater-

nion to the errorful rotation matrix, which can be very useful

since such a quaternion always produces a valid rotation

matrix.

In any case, up to an overall sign, ropt is the desired

numerical quaternion q corresponding to the target numerical

rotation matrix R = R(q). In some circumstances one is

looking for a uniform statistical distribution of quaternions, in

which case the overall sign of q should be chosen randomly.

The Bar-Itzhack approach solves the problem of extracting

the quaternion of an arbitrary numerical 3D rotation matrix in

a fashion that involves no singularities and only trivial testing

for special cases, thus essentially making the traditional

methods obsolete. The extension of Bar-Itzhack’s method to

the case of 4D rotations is provided in the supporting infor-

mation.

APPENDIX D
On defining the quaternion barycenter

The notion of a Riemannian barycenter is generally associated

with the work of Grove et al. (1974), and may also be referred

to as the Karcher mean (Karcher, 1977), defined as the point

that minimizes the sum of squared geodesic distances from the

elements of a collection of fixed points on a manifold. The

general class of such optimization problems has also been

studied, e.g., by Manton (2004). We are interested here in the

case of quaternions, which we know are points on the spherical

3-manifold S3 defined by the unit-quaternion subspace of R4

restricted to q � q = 1 for any point q in R4. This subject has

been investigated by a number of authors, with Brown &

Worsey (1992) discussing the problems with this computation

in 1992, and Buss & Fillmore (2001) proposing a solution

applicable to computer-graphics 3D orientation interpolation

problems in 2001, inspired to some extent by Shoemake’s 1985

introduction of the quaternion slerp as a way to perform

geodesic orientation interpolations in 3D using equation (5)

for R(q). There are a variety of methods and studies related to

the quaternion-barycenter problem. In 2002, Moahker

published a rigorous account on averaging in the group of

rotations (Moakher, 2002), while subsequent treatments

included the work by Markley et al. (2007), focusing on

aerospace and astronomy applications, and the comprehensive

review by Hartley et al. (2013), aimed in particular at the

machine vision and robotics community, with additional

attention to conjugate rotation averaging (the ‘hand–eye

calibration’ problem in robotics) and multiple rotation aver-

aging. While we have focused on measures starting from sums

of squares that lead to closed-form optimization problems,

Hartley et al. (2011) have carefully studied the utility of the

corresponding L1 norm and the iterative Weiszfeld algorithm

for finding its optimal solution numerically.

The task at hand is basically to extend the Bar-Itzhack

algorithm to an entire collection of frames instead of a single

rotation. We need to find an optimal rotation matrix R(q) that

corresponds to the quaternion point closest to the geodesic

center of an unordered set of reference data. We already know

that the case of the ‘barycenter’ of a single orientation frame is

solved by the Bar-Itzhack algorithm of Appendix C, which

finds the quaternion closest to a single item of rotation matrix

data (the quaternion barycenter of a single rotation is itself).

For two items of data, R1 = R(q1) and R2 = R(q2), the

quaternion barycenter is determined by the slerp interpolator

to be

qðq1; q2Þbarycenter ¼ q1 ? �qq1 ? q2ð Þ
1=2
¼ slerp q1; q2;

1
2

� �
:

For three or more items, no closed form is currently known.

We start with a data set of N rotation matrices R(pk) that

are represented by the quaternions pk, and we want R(q) to be

as close as possible to the set of R(pk). That rotation matrix, or

its associated quaternion point, are the orientation-frame

analogs of the Euclidean barycenter for a set of Euclidean

points. As before, it is clear that the mathematically most

justifiable measure employs the geodesic arc length on the

quaternion sphere; but to the best of anyone’s knowledge,

there is no way to apply linear algebra to find the corre-

sponding RðqoptÞ. Achieving a numerical solution to that

problem is the task solved by Buss & Fillmore (2001), as well

as a number of others, including, e.g., Moakher (2002),

Markley et al. (2007), and Hartley et al. (2013). The problem

that we can understand algebraically is, once again, the

approximate chord measure. For the case treated in Section 7,

with the assumption that we can consistently use the quater-

nions themselves, we could find a solution using just the

Euclidean chord average V/N from V ¼
PN

k¼1 pk, so the

optimal quaternion for the measure �chord ¼ q � V was simply

qopt ¼ V=kVk.
However, if that is not an option, and we require an average

rotation that is based more directly on the sign-insensitive

rotation matrices themselves, we need to use the �RRR

method of Section 7.5. This turns out to be essentially an

extension of the Bar-Itzhack algorithm from a single rotation

to a collection of rotations, and that is the approach we present

here. Our starting point is the sign-insensitive Fröbenius

measure kMk2
¼ trðM �MTÞ, giving us the following starting

point:

SbarycenterðqÞ ¼
PN

k¼1 kRðqÞ � RðpkÞk
2

¼
PN

k¼1 tr
�
½RðqÞ � RðpkÞ� � ½R

TðqÞ � RTðpkÞ�
�

¼
PN

k¼1 tr
�
2I3 � 2RðqÞ � RTðpkÞ

�
¼
PN

k¼1

�
6� 2 tr RðqÞ � Rð �ppkÞ

�

9>>>>>=
>>>>>;
:

ð71Þ

Dropping the constants and converting as usual to maxi-

mize over the cross-term instead of minimizing the distance

measure, we define a tentative spherical barycenter as the
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maximum of the variation over the quaternion q of the

following:

�trial barycenterðqÞ ¼
1
4

PN
k¼1

tr RðqÞ � Rð �ppkÞð Þ

¼
PN
k¼1

q � KkðpÞ � q

9>>>=
>>>;; ð72Þ

where for each k = 1, . . . , N our first guess at the profile

matrix is

KkðpÞtrial ¼

1

4

3p0
2 � p1

2 � p2
2 � p3

2 4p0p1

4p0p1 �p0
2 þ 3p1

2 � p2
2 � p3

2

4p0p2 4p1p2

4p0p3 4p1p3

2
6664

4p0p2 4p0p3

4p1p2 4p1p3

�p0
2 � p1

2 þ 3p2
2 � p3

2 4p2p3

4p2p3 �p0
2 � p1

2 � p2
2 þ 3p3

2

3
7775:
ð73Þ

But if, as pointed out by Markley et al. (2007), we simply

add one copy of the identity matrix in the form

ð1=4ÞI4 ¼ ð1=4Þðp0
2 þ p1

2 þ p2
2 þ p3

2ÞI4 to the matrix K(p),

we get a much simpler matrix that we can use instead because

constants do not affect the optimization process. Our partial

profile matrix for each k = 1, . . . , N is now

KkðpÞ ¼

p0
2 p0p1 p0p2 p0p3

p0p1 p1
2 p1p2 p1p3

p0p2 p1p2 p2
2 p2p3

p0p3 p1p3 p2p3 p3
2

2
664

3
775; ð74Þ

or to be precise, after the sum over k, the profile matrix in

terms of the quaternion columns [pk] of P becomes

KðPÞab ¼
PN
k¼1

½pk�a ½pk�b ¼ P � PT
� �

ab
ð75Þ

with quaternion indices (a, b) ranging from 0 to 3. Finally, we

can write the expression for the chord-based barycentric

measure to be optimized to get qopt as

�barycenterðqÞ ¼ q � KðPÞ � q: ð76Þ

We recognize this as equation (49) of Section 7, identified

there as related to the rotation averaging problem, re-derived

here as an extension of the Bar-Itzhack method. Note that we

now have the added insight that since for the cases N = 1, 2, 3,

the rank of K(P) is known to be 1, 2, 3, respectively, the chord-

measure barycenter is computable with linear (Bar-Itzhack),

quadratic and cubic algebraic forms. For larger N, the eigen-

systems are all quartic.

We also have another option: if, for some reason, we only

have numerical 3 � 3 rotation matrices Rk and not their

associated quaternions pk, we can recast equation (72) in terms

of equation (63) for each matrix Rk and use the sum over k of

those numerical matrices to extract our optimal quaternion.

This is non-trivial because the simple eigensystem form of the

profile matrix K for the Bar-Itzhack task was valid only for one

rotation data matrix, and as soon as we start summing over

additional matrices all of that simplicity disappears, though the

eigensystem problem remains intact.

Optimizing the approximate chord measure for the ‘average

rotation’, the ‘quaternion average’, or the spherical barycenter

of the quaternion orientation-frame data set {pk} (or {Rk}) now

just reduces, as before, to finding the (normalized) eigenvector

corresponding to the largest eigenvalue of K. It is also

significant that the initial Ktrial matrix in equation (73) is

traceless, and so the traceless algebraic eigenvalue methods

would apply, while the simpler K matrix in equation (75) is not

traceless, and thus, in order to apply the algebraic eigenvalue

method, we would have to use the generalization presented in

the supporting information that includes an arbitrary trace

term.
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