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Theoretical study of the properties of X-ray
diffraction moiré fringes. III. Theoretical simulation
of previous experimental moiré images
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As a practical confirmation of a recently published X-ray moiré-fringe theory

[Yoshimura (2015). Acta Cryst. A71, 368–381], computer simulations using this

theory were conducted for previous experimental moiré images of a strained

bicrystal specimen [Yoshimura (1996). Acta Cryst. A52, 312–325]. Simulated

moiré images with a good or fairly good likeness are presented as a result of this

simulation, in which the characteristic fringe-and-band and local strain patterns

in the experimental images are reproduced well. Experimental moiré images

taken when the inclination of the lattice planes was forcedly increased in one of

the component crystals of the bicrystal specimen were also fairly well simulated

in this computation, and their fringe patterns of inclined fringes are shown to be

in accordance with the prediction by the theory. This moiré-fringe theory is thus

considered to be widely applicable to the study of moiré images. Furthermore,

the successful simulation of the previous experimental moiré images means that

a satisfactory theoretical explanation was given for the experimental images,

with respect to their characteristic global features. However, this study by the

theoretical simulation shows explicitly that some significant peculiarities in the

fringe profiles of the experimental images still remain unexplained by this

moiré-fringe theory.

1. Introduction

In Part I of this series of theoretical studies of X-ray moiré

fringes (Yoshimura, 2015), we described the basics of the

moiré-fringe theory and presented some examples of

computed plane-wave moiré images that are considered to

represent the basic characteristics of moiré images. In Part II

of this series (Yoshimura, 2019a), moiré images obtained

through computations under more practical conditions of an

incident beam with wider angular spreads were described, and

it was shown how they change with such factors as the thick-

nesses of the specimen bicrystal, the width of an interspacing

gap in the bicrystal, the angular width of the incident wave, the

curvatures in the bicrystal etc. In this paper, i.e. Part III of the

same series, theoretical simulations on the previous experi-

mental moiré images (Yoshimura, 1993, 1996a,b, 1997a,c) are

presented as a further application of this moiré-fringe theory.

The experimental moiré images were taken under a quasi-

plane-wave condition using an incident beam with a small

angulular spread, and with a strained bicrystal used as the

specimen. Comparison of simulated moiré images with the

experimental images will serve as a check of the correctness of

the moiré-fringe theory. On the other hand, this simulation

work is an attempt to provide a full theoretical description of

the experimental moiré images mentioned above, which have

long been unexplained. This theoretical work will help to
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advance the discussion on the previous moiré-image experi-

ment.

Herein, Part I, including the attached addenda-and-errata

paper (Yoshimura, 2019b), and Part II are referred to as

Papers I and II, respectively. The equations and figures in

Papers I and II are referred to as equation (I-i) and equation

(II-i), and Fig. I-i and Fig. II-i, with i indicating the number of

the equation or figure.

2. Description of this computer simulation work

2.1. Experiment to produce and record moiré images

2.1.1. Experiment setup. For an introduction to the moiré

images which are the subjects of the simulation work, the

experiment and the specimen crystal with which the moiré

images were taken are outlined below, though they were

described in the previous papers (e.g. Yoshimura, 1996a).

The experiment setup and details of the specimen crystal

are shown in Fig. 1. The experiment was conducted using

synchrotron radiation at Station BL-15C (the station name

at the time) at the Photon Factory, KEK, Japan in

1989. Synchrotron X-rays (�-polarized) which were mono-

chromated and collimated by the Si 111 and Si 220 (m)

monochromators struck the specimen crystal Si 220 (s). The

wavelength of the incident beam was centred at �o = 0.072 nm,

and is considered to have a small spread of �� ¼ 10�3�o as a

result of the monochromatization by the successive diffraction

by Si 111 and Si 220 (m) [see Fig. 11 in Yoshimura (1996a)].

The corresponding Bragg angle �B was 10.81�, and the angular

width of the incident beam was 0.3400, which was narrowed by

the highly asymmetric diffraction at the monochromator Si

220 (m). For the diffraction at the specimen crystal, the 220

reflection was used in symmetric Laue geometry, the specimen

being set in a parallel setting with the upstream Si 220 (m)

monochromator. The beam was incident on the crystal surface

at an angle of 8.4� from the horizontal [see Fig. 1(a)], and the

specimen crystal was accordingly inclined by 2.4� from the

vertical. Moiré images were taken at the peak position of the

rocking curves for the diffracted beam, at a distance of 54–

64 mm from the specimen. To record the diffracted images,

single-coated X-ray films were specially prepared from

conventional-type high-resolution films (Fuji type No. 50, with

an undeveloped grain size of 0.3 mm). The exposure time was

25–35 s. The moiré images were simultaneously recorded onto

eight to 12 films. Between the specimen and films, very thin Pt

wires were stretched. The purpose of the simultaneous

recording and the wire stretch was described in the previous

papers (e.g. Yoshimura, 1996a).

2.1.2. Specimen crystal. The specimen crystal was a

monolithic bicrystal, the details of which are sketched out in

Fig. 1(b). It was composed of a bicrystal part having an

interspacing gap above the lateral cut (along the x axis) at a

height of 8 mm from the bottom, and a single-plate part below

the lateral cut. The reciprocal-lattice-vector difference �g to

produce the moiré fringes was mainly introduced through a

minute relative rotation about the z axis between the two

component crystals of the bicrystal. The crystal surface was

parallel to the (111) plane, with the diffracting lattice plane

ð110Þ perpendicular to it (symmetric Laue geometry). The

thicknesses of the front (incident-beam side) and rear

(outgoing-beam side) crystals, and of the gap layer, were re-

measured using a dial gauge to determine their exact values,

after splitting the bicrystal into two single-plate crystals during

this simulation work. (The reported thicknesses in the

previous papers were estimated from the X-ray absorption

rate.) The orientations of the interspacing gap surfaces were

found to be slightly rotated by 0.37� (about the y axis) from

the exact (111) plane, based on an X-ray orientation

measurement. According to the definition given in Fig. I-3 in

Paper I, this tilt angle is represented as � = �0.37� =

�0.00646 rad. The thickness of the front crystal was 1605 mm,

and that of the rear crystal 1517 mm. These values slightly

increase or decrease in the x direction, reaching a total
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Figure 1
(a) General view of the experiment setup. Si 220 (s), specimen; g,
diffraction vector; Ko and Kg, wavevectors of transmitted and of
diffracted waves, respectively; the incident beam is �-polarized
(horizontally polarized). P, thin platinum wire stretched in a rigid frame;
F, X-ray films, set perpendicularly to the Ko beam; LðþÞ and Lð�Þ,
pulling weight for causing a forced rotation of the rear component crystal.
The dashed line HL indicates the horizontal direction. The y axis is
directed to a horizontal direction, the x axis is parallel to the diffraction
vector g, and the z axis is perpendicular to the crystal surfaces. The ðx; yÞ
coordinate system is the same in the incidence surface of the front
component crystal and in the exit surface of the rear component crystal;
its origin is placed at the cross-marked position near the �x-side edges of
the component crystals, as shown in (b); the origin of the z coordinate is
placed on the exit surface of the rear crystal. (b) Detailed drawing of the
specimen bicrystal. Dimensions are given in mm. Circular curves � and !
about the y axis illustrate, respectively, the diffraction angle (incident
glancing angle to the diffracting lattice plane) and the ! rotation [�!1;2,
�!1o;2o; see equations (4a) and (4b) in the text] of the component
crystals; circular curve � about the z axis illustrates the � rotation (��,
��m etc.; see Sections 2.1.3, 2.2.1 etc.) of the component crystals. In every
circular curve the arrow indicates the positive direction of the rotation.



variation of 40–60 mm within the entire specimen width along

the x axis. The thicknesses also varied in the y direction by

10–20 mm. The variation in the crystal thicknesses in the

x direction was consistent with the misorientation of

the ap space above (� = �0.37�). By subtracting the two

crystal thicknesses above from the total bicrystal thickness

3365 � 5 mm, the width of the gap space was estimated to be

243 mm.

In addition, near the midpoint within the entire x dimension

of the specimen on the inner surface of the front crystal, an

abrupt step-like thickness change of about 20 mm was found,

which is considered to have been made while sawing the

specimen for the gap space. Regarding this change in thick-

ness, a noticeable feature in the moiré images will be shown

later in Fig. 2(b). Although such small thickness variations

were unexpectedly found, the computer simulation was

conducted with the model that the two component crystals

and the gap space are of a uniform thickness, ignoring

their small variations. The small misorientation above � =

�0.37� of the inner gap surfaces was considered only in

the calculation of the moiré-interference phase in equation

(8). As with the outer surfaces, the inner gap surfaces of the

bicrystal were polished and etched to remove the stresses and

strains.

2.1.3. Relative rotations between the component crystals
and other strains in the specimen crystal. (i) The two

component crystals were minutely rotated about the z axis by

gravity, accompanied by an elastic bend at their supporting

sites, and a fringe pattern of rotation moiré was expected to be

produced owing to the difference between their rotation

angles. The moiré experiment was planned to produce moiré

fringes with a spacing of 0.4–0.6 mm. The adjustment to the

target fringe spacing was attained by attaching a balancer

weight of 0.236 gf (gram-force) to an upper position on the

front crystal [hatched portion in Fig. 1(b)] by gluing (using

Araldite). Although it had been implicitly thought that the

rotation (��1m) of the front crystal did not exceed that (��2m)

of the rear crystal in this adjustment, it was found in the

present study that the weight of the front crystal with the

balancing weight slightly exceeded the weight of the rear

crystal. This was known from the measurement of the weight

of the two component crystals after splitting the bicrystal.

According to this reassessment, the sense of the relative

rotation between the two component crystals about the z axis,

which provides the main component of the reciprocal-lattice-

vector difference for moiré fringes, was presumed to be

��m � ��2m ���1m < 0 (��1m;��2m > 0). The correctness

of this presumption is reconfirmed through the description of

the moiré images in Section 3.1.3.

(ii) In addition to the ��1m and ��2m rotations about the z

axis in the respective component crystals, the rear crystal was

forcedly rotated about the y axis by a minute angle, when

recording some of the moiré images [Figs. 6(a) and 7(a)]. The

forced rotation was made by gluing a thin wire onto the edge

of the rear crystal, the two opposite ends of which were

connected to a pulling weight [L(+) or L(�) in Fig. 1]. The

purpose of the forced rotation of the rear crystal is described

in Section 4.1.1.

(iii) The fixing of the balancing weight and the fine wire to

the crystal edges, as described above, induced strain (lattice

contraction) in the specimen, causing a local modulation of

the moiré-fringe pattern, which was an unwelcome result.

Although it was once considered a difficult problem to
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Figure 2
Experimental moiré images (T set No. 5). Si 220 reflection, � = 0.072 nm.
Taken with no forced rotation to the specimen, LðþÞ ¼ Lð�Þ ¼ 0. (a) O
image, (b) G image. g is the diffraction vector. The ðx; yÞ coordinates in
the presented images are the same as those on the incidence and exit
surfaces of the specimen crystal as described in the caption of Fig. 1. The
lateral width (in the x direction) of the experimental O image is extended
by 1.06 times that of the original as-recorded images by computer
processing, so as to agree with that of the G image. Vertical arrows drawn
in the images note the occurrence of pseudo moiré dislocations (see
Section 3.1.4). Smaller vertical arrows drawn to the x-coordinate axes
outside the images indicate the position of x = 5.6 mm at which the
intensity profiles in Fig. 4 were measured. The long horizontal and
vertical black lines are the shadows of the thin platinum lines stretched
between the specimen and films, as mentioned in Section 2.1.1. [Similar
black lines seen in Figs. 6(a), 7(a) and 9 are all of the same origin as
above.] The black region in the lower-left corner in the O image is the
shadow of a pillar for holding the wire of the pulling weight [see Fig. 1(a)].
For other details, see text.



estimate precisely the induced strains for simulation

computations, the problem was mostly solved through the

elasticity theory (see Appendix A). Hereafter, these local

strains from the left edges (the �x side) of the component

crystals are referred to as LEC local strains.

(iv) In addition to the strains described above, a weak

curvature strain (0.01–0.0700 mm�1) about the y axis had been

suggested to occur in the specimen crystal, from the presence

of low-contrast band images like equal-inclination fringes in

the experimental images. This curvature strain was the most

dominant strain in the specimen, as will be shown later.

(v) From the observation that the moiré-fringe spacing

increases slightly in proceeding to the top in the images [see

Figs. 2(a) and 2(b)], it had been noticed that a very weak

bending about the z axis was induced by gravity along the y

direction in the component crystals, accompanying their ��1m

and ��2m rotations. According to elasticity theory on the

bending-of-bar problem (e.g. Takeuchi, 1969), the longer

crystal (the rear crystal in this case) bends more than the

shorter one (front crystal) along their length (in the y direc-

tion), since the length of the bar works more effectively than

its weight. Such a difference in the bend deformation between

the component crystals relaxes the effect of the relative ��m

rotation so that the fringe spacing is increased.

(vi) Nicks [see Fig. 1(b)] were purposely made on the right

and left edges of each component crystal as positional marks.

They unhelpfully affected the strain distribution around them,

and thereby disturbed the local fringe pattern. This strain

disturbance was not taken into account in this simulation,

because it was limited to a very small area and was difficult to

deal with theoretically.

(vii) As mentioned in Section 2.1.1, the component crystals

were inclined from the vertical line by 2.4� in the counter-

clockwise direction during the experiment. Accordingly, a

torsional rotation by gravity is considered to have been

induced in the crystals, although no clear evidence for this

rotation was found in the present experimental images. When

the inclination from the vertical line is increased, this effect

comes to be clearly observed.

2.2. Method for computing simulated images

2.2.1. Equations for simulation computations. Computa-

tions of the simulated moiré images were conducted as an

angular integration of plane-wave image intensity, in the same

way as applied in the preceding computations described in

Paper II [see equation (II-1)]. The intensities of O (trans-

mitted-wave) and G (diffracted-wave) images were computed,

respectively, using the following equations:

Ro rb0ð Þ ¼ 1=��incð Þ
R��f

��i

h
Ioo0 rb0 ; uð Þ þ Igo0 rb0 ; uð Þ

þ Ao rb0 ; uð Þ cos �o rb0 ; uð Þ

þ Bo rb0 ; uð Þ sin �o rb0 ; uð Þ

i
d�� ð1aÞ

Rg rb0ð Þ ¼ 1=��incð Þ
R��f

��i

h
Iog0 rb0 ; uð Þ þ Igg0 rb0 ; uð Þ

þ Ag rb0 ; uð Þ cos �g rb0 ; uð Þ

þ Bg rb0 ; uð Þ sin �g rb0 ; uð Þ

i
d��: ð1bÞ

Here, the argument rb0 denotes a vector referring to a position

on the exit surface of the rear crystal; ��inc denotes the

angular width of integration ��inc ¼ ��f ���i, and in the

present case ��inc = 0.3400 = 1.648 � 10�6 rad; Ioo0 ðrb0 ; uÞ,

Igo0 ðrb0 ; uÞ, Iog0 ðrb0 ; uÞ and Igg0 ðrb0 ; uÞ represent a partial image

intensity unrelated to the moiré interference; �oðrb0 ; uÞ and

�gðrb0 ; uÞ denote the phases of a moiré-fringe interference.

The full expressions of Ioo0 ðrb0 ; uÞ, Igo0 ðrb0 ; uÞ, Aoðrb0 ; uÞ,

Boðrb0 ; uÞ and �oðrb0 ; uÞ in equation (1a) are given in

equations (I-51a)–(I-53) in the supporting information to

Paper I (Yoshimura, 2019b). The full expressions of Iog0 ðrb0 ; uÞ,

Igg0 ðrb0 ; uÞ, Agðrb0 ; uÞ, Bgðrb0 ; uÞ and �gðrb0 ; uÞ in equation (1b)

are given in equations (I-22a)–(I-23b) and (I-34) in Paper I.

The variable of integration �� denotes the deviation angle

from the exact Bragg position when the X-ray wave is incident

on the front crystal of the bicrystal (�� ¼ � � �B, � being the

incidence glancing angle to the diffracting lattice plane) (see

Appendix B for list of symbols).

The deviation parameter of diffraction u, which corre-

sponds to the deviation angle �� above, is given as follows, in

agreement with equation (I-45) in Paper I:

u ¼ K sin 2�Bð�� þ��m þ �vyÞrs

þ ð2�=dÞ½ð�d=dÞ1 sin �B ��!1 cos �B�: ð2Þ

Here, we assume symmetric Laue geometry in agreement with

the experimental condition; K is the wavenumber; ��m indi-

cates the middle position in the integration width

��m ¼ ð��i þ��f Þ=2, which hereafter is called the mid-

deviation angle (at y ¼ 0); here and hereafter, the repre-

sentation of position variable rb0 is replaced with ½x; y� (� rb0),

x and y being given in units of mm; �vy represents a variation

in the effective deviation angle owing to the vertical diver-

gence of the beam, �v being the rate of the deviation-angle

variation (= 0.02800 mm�1) (see in detail in Section 2.2.2.).

Through the addition of this angular variation �vy, ��l and

��u in the integration of equations (1a) and (1b) vary to

��l þ �vy and ��u þ �vy, respectively, and the mid-deviation

angle varies to ��m þ �vy; rs means the conversion factor

4:8481� 10�6 from arcseconds to radian. The symbol d means

the lattice spacing; ð�d=dÞ1 and �!1 denote a local variation

in the lattice spacing and a local inclination of the diffracting

lattice plane (see Fig. 1) in the front crystal, respectively.

Herein, the subscript indices 1 and 2 refer to the front and rear

crystals, respectively.

The deviation parameter with respect to diffraction in the

rear crystal is given as follows, succeeding to u in equation (2),

and in agreement with equations (I-16a) and (I-16b):

uo ¼ uþ ð2�=dÞ½ð�d=dÞ sin �B ��! cos �B� ð3aÞ
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ug ¼ u� ð2�=dÞ½ð�d=dÞ sin �B þ�! cos �B� ð3bÞ

where uo and ug are the deviation parameters with respect to

the diffraction of waves propagated in the transmitted- and

diffracted-wave directions, respectively, after emerging from

the front crystal. Here, ð�d=dÞ ¼ ð�d=dÞ2 � ð�d=dÞ1 and

�! ¼ �!2 ��!1, ð�d=dÞ2 and �!2 being a local variation in

the lattice spacing and a local inclination of the diffracting

plane in the rear crystal, respectively.

The local inclinations of the diffracting lattice plane �!1

and �!2 are given as follows:

�!1 ¼ ½�!1o þ 	ðy� ybÞ þ s1ðx� xcÞ�	s ð4aÞ

�!2 ¼ ½�!2o þ 	ðy� ybÞ þ s2ðx� xcÞ�	s: ð4bÞ

Here, �!1o and �!2o denote invariable parts of the lattice-

plane inclinations; 	ðy� ybÞ represents the torsional rotation

about the y axis presumed from the 2.4� tilt of the component

crystals, as mentioned in Section 2.1.3, and the magnitude of 	
was assumed to be 0.00300 mm�1; yb means the y coordinate of

the starting position of the torsional rotation, and was

assumed to be yb = �4.7 mm; s1 and s2 denote the strength of

the curvatures of the front and rear crystals, respectively; xc

denotes the x coordinate where the bend of the diffracting

plane due to curvatures s1 and s2 becomes zero, which was set

to be xc = 9.5 mm after trying several likely values during the

simulation computations. The variation in the lattice spacing is

only that from the LEC local strains, and was given by

ð�d=dÞ1 ¼ ð@us=@xÞ1; ð5aÞ

ð�d=dÞ2 ¼ ð@us=@xÞ2 ð5bÞ

from the solutions in the elasticity calculation (Appendix A).

Here us denotes the displacement in the x direction, and the

expression of ð@us=@xÞ1;2 is given in equation (10a).

The relative rotation �� about the z axis between the

component crystals, which is responsible for the rotation-

moiré pattern, was given as follows:

�� ¼ ��m½1� b�ðy� ybÞ
2
� þ ð��2 ���1Þ: ð6Þ

Here, ��m represents the main relative � rotation between the

component crystals of the bicrystal, as mentioned in Section

2.1.3. Its value was taken to be ��m ¼ �d /0.44 mm

(= �0.436 � 10�6 rad = �0.09000) throughout all simulation

computations in this paper, as determined from a comparison

of many simulated images with the corresponding experi-

mental images; this value corresponds to the fringe spacing of

� = 0.44 mm. The correction factor ½1� b�ðy� ybÞ
2
� is related

to the weak bending in the component crystals, as mentioned

in item (v) in Section 2.1.3; b� is an adjustment constant of the

bend strain (see further Section 3.1.4). The added rotations,

��1 and ��2 above, are the rotation of the lattice planes

caused by the LEC local strains, and are given by

��1 ¼ �ð@us=@yÞ1 ð7aÞ

��2 ¼ �ð@us=@yÞ2; ð7bÞ

here, ð@us=@yÞ1;2 are the solution of the elasticity calculation,

given in equation (10b).

The moiré-interference phases �oðrb0 ; uÞ and �gðrb0 ; uÞ in

equations (1a) and (1b) were given by

�o x; y; uð Þ ¼ �g x; y; uð Þ

¼ 2�=dð Þ

n
�� y� yoð Þ

� �d=dð Þ þ�! sin �½ �x
o
� 
gap ð8Þ

[see equations (I-34), (I-53) and (II-8)]. Here, the introduction

of an origin yo in the term ��ðy� yoÞ is explained in the

simulation of the fringe profiles in Fig. 5; the contribution of

the term ð�! sin �Þx is very small for the images in Figs. 2 and

3 with LðþÞ ¼ Lð�Þ ¼ 0 (Section 3.1), but becomes significant
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Figure 3
Computer-simulated moiré images corresponding to the experimental
images in Fig. 2. (a) O image, (b) G image. The meanings of vertical
arrows drawn in the images and smaller arrows outside the images are the
same as those of the corresponding arrow groups in Fig. 2. See Section 3.1
and Table 1 for the parameter values of the computation and further
explanation.



in the discussion of Figs. 6 and 7 with LðþÞ 6¼ 0 or Lð�Þ 6¼ 0

(Section 4.1). The term 
gap denotes the gap phase.

Based on the theoretical preparations as above, the

numerical integration of Roðrb0 Þ and Rgðrb0 Þ in equations (1a)

and (1b) was made with an angular step of 0.0100, using Visual

Basic .NET Version 2003 software. The computed intensity of

the moiré images was multiplied by the correction factor

Iinc ¼ 1:0þ 0:3ðx� 6:0Þ, corresponding to a non-uniformity in

the x direction in the incident-intensity distribution from the

Si 111! Si 220 (m) monochromator system (Fig. 1). The non-

uniformity was determined from a comparison of the intensity

distributions in the simulated and experimental images. The

values of the basic constants of X-ray diffraction, namely, �,

�or, �gr, �gi were calculated for �o = 0.0720 nm and other

tentatively used wavelengths, following the International

Tables for Crystallography Vol. C (Wilson, 1995). (Here, � is

the linear absorption coefficient, and �or, �gr and �gi are a real

or imaginary part of the Fourier components of dielectric

susceptibility.)

2.2.2. Effect of vertical divergence of the beam. An

unexpectedly large amount of time had to be spent to

accomplish this simulation work. A major cause was the

difficult problem imposed by the effect of a vertical divergence

of the beam. Here, a vertical divergence effect means that the

effective deviation angle varies in the vertical direction in

single-crystal X-ray diffraction in multiple-crystal arrange-

ments (Jäger, 1965, 1966; Yoshimura, 1984). When a multiple-

crystal arrangement involves a non-parallel setting as its

element, the variation of the effective deviation angle

becomes significant. In the experiment under study, the

arrangement Si 111! Si 220 (m) was of such a non-parallel

setting (see Fig. 1). The word ‘vertical’ refers herein to the y

direction. Factors affecting the magnitude of the vertical

divergence effect in synchrotron-beam diffraction are now

considered to be the source-to-specimen distance and the

magnitude of directivity or angular divergence of the beam

from the source. However, when the experiment was

conducted, the author had no recognition of the latter factor.

The ratio of the specimen size to the source-to-specimen

distance zd was sufficiently small (yd=zd ’ 1=3000, with yd and

zd being 10 mm and 30 m, respectively), and therefore the

vertical divergence effect was considered to be negligible.

However, in the inspection of the images obtained after the

experiment, an unexpected common feature was noticed in

their intensity distributions: the intensity in the G images

increases towards the +y direction, and the intensity in the O

images decreases towards the same direction [see Figs. 2(a),

2(b) and Figs. 6(a) and (7a)], although normally the image

intensity should be almost constant in the y direction, under a

constant mid-deviation angle ��m. This intensity variation

should necessarily have been taken to mean that the effective

deviation angle is varied so as to increase towards the +y

direction.

In subsequent synchrotron experiments, the vertical diver-

gence effect was more carefully and clearly ascertained as a

definite experimental fact, although the theoretical reason for

it was still unknown. In 2008, the author knew the importance

of one more factor, the directivity of the beam (e.g. Ohhashi

& Hirano, 2008), and reached a qualitative understanding

on the operation of an effective vertical divergence effect

in synchrotron-beam diffraction. As a written report, the

operation of this effect in synchrotron experiments has been

mentioned by Yoshimura & Hirano (2014). While the radia-

tion of X-rays from a laboratory source is isotropic, a

synchrotron beam has a high directivity (directional angular

divergence of 10�4 rad). Owing to this high directivity, or the

beam divergence in a very narrow angular width, the vertical

divergence effect is considered to be severe in synchrotron-

beam diffraction, in spite of the small value of the yd /zd ratio.

So far as the author knows, the much-needed exact theory

dealing with the vertical divergence with synchrotron radia-

tion has not yet been given anywhere. However, a practical

estimation of the effect can be made expediently by comparing

the diffracted intensity from a perfect crystal with a calculated

rocking curve. Through such an estimation, the effective

deviation angle is presumed to have varied by 0.3–0.400 over

the entire y dimension (= 9.2 mm) of the moiré images, in this

experiment.

Under the condition in which the deviation angle varies in

the y direction, it was not easy to compute the moiré images

that simulated well the experimental images in Figs. 2(a), 2(b),

where characteristic low-contrast vertical bands run parallel

from the bottom to the top in the images. After vain efforts, a

way to solve this difficulty was found by trying computations at

wavelengths other than the stated wavelength of �o =

0.072 nm, and through computations with the range of view of

the images extended imaginarily to broader dimensions (see

Fig. 8). Through these trials, it came to be seen that good

simulated images with long vertical bands appear in some

limited area in the extended range of view, when appropriate

values are assumed for such factors as ��m, �!1o and �!2o.

An appropriate combination of the values of the crystal

thicknesses t1 and t2, and the gap width tgap was also important.

Although the variation in the deviation angle was initially

estimated to be 0.3–0.400, as mentioned, the angular variation

of 0.2600 (= 0.02800 mm�1
� 9.2 mm) was the limit of variation

within which tolerably good simulated images can be

obtained. Although trial simulations were conducted at

different wavelengths, the final conclusive images were

computed with the initial wavelength �o ¼ 0.072 nm.

2.2.3. Determination of the senses and strengths of
curvatures in component crystals. After solving the problem

of the vertical divergence effect, we still had to continue a

time-consuming computational study. A major problem then

was to determine the senses and strengths of the curvatures s1

and s2 in the respective component crystals. As mentioned in

item (iv) in Section 2.1.3, the occurrence of the curvatures s1

and s2 is suggested from the presence of low-contrast band

patterns like equal-inclination fringes, which develop over the

entire field of view of the experimental moiré images [see Figs.

2(a), 2(b) etc.]. The occurrence of such equal-inclination

fringes in a moiré-fringe pattern, as a kind of Pendellösung

interference fringe, has been described in detail in Section

3.2.4 in Paper II; speaking exactly, the gap phase 
gap also
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takes part in the formation of the low-contrast bands in this

case, along with the equal-inclination interference phase.

Equal-inclination fringes are related to the local variation in

the image intensity [see equation (II-13)], and therefore are

related to the crystal curvatures s1 and s2, and with the lattice-

plane inclinations �!1o and �!2o, through �!1 and �!2 in

equations (4a) and (4b). The values of s1 and s2, and of �!1o

and �!2o were adjusted and determined so that the positions

and spacing of low-contrast bands agree well with those in the

experimental images.

When the work of finding the solution values of s1 and s2

started, the only clue we had was an empirical law that, with

the curvatures of js2 � s1j ’ 0.0500 mm�1, three vertical bands

are produced per	10 mm width in the x direction (in the case

of the Si 220 reflection with a wavelength of about 0.071 nm,

t1;2 ’ 1.5 mm and ��inc ’ 0:3500); this law was derived from

many simulation computations in Papers I and II. There was

no clue about the signs of s1, s2 and (s2 � s1). Therefore,

the study had to account for all possibilities of the signs of

the curvature values. Furthermore, the determination of the

values of s1 and s2 had to be made consistently through the

simulations of all the images shown in Figs. 2(a), 2(b)

[LðþÞ ¼ Lð�Þ ¼ 0], and Figs. 6(a) [L(+) = 0.2 gf] and 7(a)

[L(�) = 0.2 gf]. To find the solution of this problem, trial-and-

error computations were performed. After time-consuming

computation work, we finally arrived at a convincing conclu-

sion to the consistent values of s1 and s2. The study in an

imaginarily extended range of view of images, as mentioned in

Section 2.2.2, provided a good guidance to the solution.

Added knowledge on the relation between the low-contrast

bands and the values of s1 and s2 is shown in Fig. 8, as a result

of the present study.

3. Results of computer simulations I

3.1. Moiré images in the case of no forced rotation to the
component crystals

3.1.1. General observations of the experimental images
and solution of the corresponding simulated images. Exam-

ples of the experimental moiré images are shown in Figs. 2(a)

and 2(b). They were taken simultaneously under the same

conditions in the experiment [with LðþÞ ¼ Lð�Þ ¼ 0]. They

may be regarded as representative moiré images obtained in

the experiment under study. The images are presented in such

a way that they are viewed from the emerging-beam side. The

image contrast is reproduced in such a way that white contrast

indicates a higher intensity, which is opposite to the major

convention.

The fringe patterns in the images in Figs. 2(a) and 2(b),

roughly, are those of parallel moiré, but fringes somewhat

slope upwards or downwards proceeding to the left edge,

owing to the effect of the LEC local strain ð�d=dÞ 6¼ 0. Strong

contraction of the fringe spacing seen around y ’ 3 and

y ’ �3 (mm) near the left edge of the images shows that a

large �� rotation is induced there in connection with strong

contractions of the crystal lattice in the y direction (see

Section 3.1.3 later). Diffuse, nearly vertical band images of

weak contrast are considered to be equal-inclination inter-

ference fringes as mentioned in Sections 2.1.3 and 2.2.3. They

are positioned at x ’ 1.8, 4.3, 8 mm in the O image [Fig. 2(a)],

and at x ’ 3, 5.8, 9.2 mm in the G image [Fig. 2(b)], as

measured at the bottom of the images. Moiré fringes bend

locally near the band images, which shows that the moiré

fringes are strongly influenced there by the phase of the equal-

inclination fringes; conversely this interaction shows that the

band images are of equal-inclination fringes (see Section 3.2.4

in Paper II). In accordance with the explanation of a weak

bending about the z axis along the y direction of the compo-

nent crystals, in item (v) in Section 2.1.3, a small increase of

the fringe spacing proceeding to the top in the images is

readily seen. The short vertical arrows note the occurrence of

pseudo moiré dislocations.

The best simulated images for the experimental images in

Figs. 2(a) and 2(b), which were obtained as a conclusive result

in this computational study, are shown in Figs. 3(a) and 3(b).

The O [Fig. 3(a)] and G [Fig. 3(b)] images were computed

under the same numerical conditions. The values of the

parameters adopted in this computation of Figs. 3(a) and 3(b)

are given in Table 1. The values of s1, s2 and �!1o, �!2o were

determined as described in Section 2.2.3, with attention paid

to the aspect of low-contrast band images. The allowable error

limit to obtain tolerably good images was about

�0.00200 mm�1 for s2 and �0.00100 mm�1 for s1. The value of

the mid-deviation angle (at y ¼ 0) ��m is involved in deter-

mining the y range of the field of view of the images, while also

being used in determining the x position of the band images.

After the values of s1, s2 and �!1o, �!2o were approximately

determined, details of the fringe-and-band pattern of the

images were adjusted by changing incrementally the values of

crystal thicknesses and the gap width t1, t2 and tgap. Through a

change of 5 mm or less in t1 and/or t2, a significant change in the

fringe-and-band pattern resulted. As a result of such fine

adjustments, the best values of t1, t2 and tgap were determined

conclusively to be t1 ¼ 1:604, t2 ¼ 1:522, and tgap ¼ 0:234 (in

mm), although they slightly disagree with the values described

in Section 2.1.2. The �t values then were �t1 ¼ 2:40 and

�t2 ¼ 2:28. The number of fringes was adjusted so as to

agree well with that in the experimental images (about

20 fringes, except the ones in the upper-left region in the

image), by adjusting the value of ��m; this value was even-

tually taken to be ��m = �d/0.44 mm = �0.09000, as stated in

Section 2.2.1.

Based on the parameter values (s1;2, �!1o;2o) given in Table

1, the inclination (�!1=rs) of the front crystal about the y axis

is presumed to have varied from �0.100 (at x ’ �1:0) to +1.000

(x ’ 12:0), and that of the rear crystal (�!2=rs) is presumed to
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Table 1
Parameters used for computing simulated images. (I).

��m s1 s2 �!1o �!2o ��m

Figs. 3(a),
3(b)

�0.0900 0 0.0150 0 mm�1 0.0640 0 mm�1 0.060 0 0.270 0 �0.030 0



have varied from �0.400 (x ’ �1:0) to +0.400 (x ’ 12:0). These

variations with the x position in the (�!1=rs) and (�!2=rs)

angles, and the curvature values of s1; s2 > 0 in Table 1, indi-

cate that both the component crystals are curved concavely

towards theþz direction (see Fig. 1). Although the same sense

of the two curvatures once seemed inexplicable, it is under-

standable if the curvatures were caused by the sawing process

of the lateral cut in the specimen, along the x axis. With

the ��m value in Table 1, the effective deviation angle

��m þ 0:028y [the middle angle in the integration width in

equations (1a) and (1b)] is presumed to have varied from

�0.160 0 (y ¼ �4:6) to +0.1000 (y ¼ 4:6).

3.1.2. Comparison of the experimental and simulated
moiré images. Patterns of low-contrast bands. In the O

image in Fig. 3(a), roughly vertical stripes or band images are

observed at x ’ 1, 5, 8 mm, as measured at the bottom edge of

the image. In the G image in Fig. 3(b), they are seen at x ’ 3,

5.8, 8.3, 9.8 mm. Although the positions of the band images do

not exactly agree with those in the experimental images in

Figs. 2(a) and 2(b), the fringe-and-band patterns in Figs. 3(a)

and 3(b) may be considered to simulate well the fringe-and-

band patterns in the respective experimental images, on the

whole. The simulation of the band images in the O image,

however, could not be very satisfactory, since the positions of

simulated band images are displaced from the right positions,

and a step-like refraction occurs in the upwards extension of

one band. These unfavourable features in the simulated O

image could be reduced to obtain a better simulation, if we

shift the mid-deviation angle ��m to the high-angle side.

However, in this case, the simulation of the G image becomes

worse in turn. Thus, the angular ranges for the best fit in the

simulations of the O and G images did not match each other

well. In this study, obtaining a good simulation for the G image

was preferentially aimed for first.

As described in Section 3.2.4 in Paper II, and noted in the

experimental images in Section 3.1.1 in this paper, moiré

fringes in Figs. 3(a) and 3(b) also show a sharp bend in

different degrees upon crossing the band image, and the fringe

contrast drops down there. As mentioned already, the band

images are of an analogous nature to the equal-inclination

fringes. In accordance with the tentative nomenclature in

Paper II, the band images in this paper are also called low-

contrast bands (LC bands).

For a full appreciation of this simulation result, a comment

should be made on the particularly large bend of moiré fringes

seen around the LC band at x ’ 6 mm in the experimental G

image in Fig. 2(b). A good simulation for this large fringe bend

was difficult to attain in spite of the many trials [compare Fig.

3(b) with Fig. 2(b)]. Consequently, the large fringe bend is

surmised to be connected with a special condition at the site in

question. The abrupt thickness change of approximately

20 mm found at nearly the same position on the inner surface

of the front crystal, as mentioned in Section 2.1.2, is presumed

to be connected with this large fringe bend. A large and abrupt

change in the Pendellösung interference phase, which would

be caused by the large change in thickness, is surmised to have

made the fringe bend so large. In the corresponding O image

[Fig. 2(a)] and in other images shown later [Figs. 6(a) and

7(a)], no corresponding special image is seen in the area in

question, suggesting that the large fringe bend was not due to

strain.

3.1.3. Comparison of the experimental and simulated
moiré images. Influence of the LEC local strains. The distur-

bance of the moiré patterns in the experimental images [Figs.

2(a), 2(b)], caused by the LEC local strains, may be assessed as

being pretty well simulated in Figs. 3(a), 3(b), based on a

general inspection. The expressions of the strain components

used in the simulation computation are given in equations

(10a)–(10d) in Appendix A. Owing to a lack of space, the

strain curves are not shown herein. The values of the strains

were, for example, ð@vs=@yÞ1 = �0.86 � 10�6 and ð@us=@xÞ1 =

ð�d=dÞ1 = 0.094 � 10�6 at x = �1.0, y = 3.4 (mm) in the front

crystal (vs is the displacement in the y direction); and at x =

0.0, y = 3.4 (mm), ð@vs=@yÞ1 =�0.46� 10�6, ð@us=@xÞ1 =�0.049

� 10�6 and ð@us=@yÞ1 =���1 =�0.26� 10�6. The curves (not

shown) for the LEC local strains as a function of the x coor-

dinate change considerably with the y position; as easily seen,

in y> yo1 (= 2.4 mm), ð@us=@yÞ1 < 0, and y 
 yo1, ð@us=@yÞ1 � 0

(for the meaning of yo1, see Fig. 10 in Appendix A). The local

strains attenuate rapidly with the distance from the left edge

of the crystal, but still have a magnitude nearly equal to or

larger than 0.1 � 10�6 rad in the central region (x ’ 5 mm) of

the specimen, and have a magnitude of 0.05 � 10�6 rad ’

0.0100 near the right edge of the specimen. In the rear crystal

the local strains were estimated for example as follows:

ð@vs=@yÞ2 = �0.031 � 10�6, ð@us=@xÞ2 = ð�d=dÞ2 = �0.0089

� 10�6 and ð@us=@yÞ2 = ���2 = 0.032 � 10�6 at x = 0.0, y =

�3.0 (mm). The influence of the local strain in the rear crystal

is limited to an area close to the left edge (x 
 1 mm).

Table 2 shows an example [at x = 0.0, y = 3.4 (mm)] in which

the value of ð��2 ���1Þ was determined from those of LEC

local strains, and the total � rotation, ��, and the corre-

sponding fringe spacing � ¼ jd=��j were obtained in accor-

dance with it [the value of ��2 was 0.0079 � 10�6 in this

evaluation of (��2 ���1)]. Furthermore, the results of the

two cases, where ��m = �0.44 � 10�6 is assumed and where

��m = +0.44 � 10�6 is assumed, are checked. In the former

assumption the fringe spacing should be decreased to

0.28 mm, whereas in the latter assumption it should be

increased to 1.03 mm. Since the actual fringe spacing
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Table 2
Detailed comparison of fringe spacings in the upper-left corner area
[x ’ 0:0; y ’ 3:4 (mm)] in the simulated [Fig. 3(b)] and experimental
[Fig. 2(b)] moiré images.

Comparison between the two cases when ��m = �0.44 � 10�6 (rad) is
assumed and when ��m = +0.44 � 10�6 (rad) is assumed. �� =
��m þ ð��2 ���1Þ. � (simul.) and � (exp.) denote the actually observed
fringe spacings in the simulated and experimental images, respectively.

��m

(�10�6)
ð��2 ���1Þ

(�10�6)
��
(�10�6)

jd=��mj

(mm)
jd=��j
(mm)

�ðsimul:Þ
(mm)

�ðexp :Þ
(mm)

�0.44 �0.25 �0.69 0.44 0.28 ’0.14 ’0.10
0.44 �0.25 0.19 0.44 1.03



decreases in the upper-left corner in the images, compared

with the fringe spacing (’0.44 mm) in other regions, the result

(� = 0.28 mm) of the former assumption is affirmable. Thus,

the correctness of the assumption of ��m < 0, mentioned in

Section 2.1.3, is definitely confirmed here.

However, this value 0.28 mm of fringe spacing still

disagrees significantly with the actual fringe spacing � ’
0.14 mm or � ’ 0.10 mm, which is observed in the same

corner region in the simulated [Fig. 3(b)] or experimental [Fig.

2(b)] image. When we plot a curve of the interference phase

cos½ð2�dÞ��ðyÞy� around x = 0, with �� given as a function of

position y, oscillations of almost the same spacing with � ’
0.14 mm were observed near y = 3.4 mm. This result supports

the correctness of the actual fringe spacing � ’ 0.14 mm in

the simulated images above. In this case the relative � rotation

by the LEC local strain, ½��2ðyÞ ���1ðyÞ�, can be approxi-

mated by a linear function (in the region 1:0 
 y 
 3:5),

through the calculation using equation (10b) as follows:

��2ðyÞ ���1ðyÞ ¼ ð@us=@yÞ2 � ð@us=@yÞ1

¼ �0:263� 10�6yþ 0:641� 10�6;

accordingly, the total relative � rotation in the interference

phase is given as

��ðyÞ ¼ ��m þ ½��2ðyÞ ���1ðyÞ�

¼ �0:263� 10�6yþ 0:201� 10�6

with ��m = �0.44 � 10�6; at y = 3.4, ��ðyÞ = �0.69 � 10�6 in

accord with the value in Table 2. Thus, the interference phase

in cos½ð2�=dÞ��ðyÞy� becomes a quadratic function of y, and

the phase variation with position y is accelerated so as to

produce a narrower fringe spacing than that by a simple

estimation by the formula � ¼ jd=��j. This property should

be remembered when we deal with moiré fringes from a

crystal having an inhomogeneous strain.

As to the experimental spacing � ’ 0.10 mm, almost the

same fringe spacing was simulated when a curve of

cos ½ð2�=dÞ �� ðyÞ y� was plotted, with the term

½��2ðyÞ ���1ðyÞ� multiplied by 1.6 on trial; this result shows

that the exact estimation of the LEC local strain would be

1:6� ½��2ðyÞ ���1ðyÞ�, in the upper-left corner area. The

presumed strong strain in this local area, which exceeds the

strain value estimated from the ordinary linear elasticity

theory, is surmised to be related to an effect of higher-order

elasticity.

Although the fringe spacing differs significantly between

the simulated and experimental images at x ’ 0.0 mm, the

number of fringes over the entire y range in the simulated

images in the region x � 1.0 mm agrees well with that in

the experimental images with a difference of less than one

fringe.

3.1.4. Comparison of the experimental and simulated
moiré images. Indications of other strains. Regarding the

small increase in the fringe spacing towards the top in the

images, which was noted in the observation of the experi-

mental images in Section 3.1.1, the multiplication factor in the

correction factor ½1� b�ðy� ybÞ
2
� in the equation of relative

�� rotation in equation (6) was determined to be b� =

0.003 mm�2 for the conclusive simulated images in Figs. 3(a)

and 3(b), by comparing trial simulated images with the

experimental images in Figs. 2(a) and 2(b). An easily recog-

nizable disagreement in the local fringe pattern around y = 0

on the left edge between the experimental and simulated

images would be due to the neglect of the influence of small

nicks at y = 0 in the simulation computation.

The short vertical arrows in Figs. 3(a) and 3(b) note the

occurrence of pseudo moiré dislocations (Yoshimura, 1996b;

hereafter, PMD), similar to those in the experimental images

in Figs. 2(a) and 2(b). As shown, many PMD images appear

near or on the LC bands, and their positions are different

between the O and G images. Such a characteristic of PMDs

indicates that they are not directly connected to a disorder in a

crystal lattice like real dislocations, but are connected with a

condition of the Pendellösung interference phase which is

influenced by macroscopic strain. They may be regarded as a

common feature in moiré images of a strained crystal, when

taken with a plane or quasi-plane incident wave. Disagree-

ment in the positions of the PMDs between the experimental

and simulation images strongly indicates the insufficiency of

the present simulation of the experimental images. To make a

more complete simulation of the occurrence of PMDs, a more

accurate determination needs to be given of the strain distri-

bution in the specimen.

3.2. Comparison of fringe profiles in the experimental and
simulated moiré images

3.2.1. General observations. Fig. 4 shows an example of the

fringe profiles of the experimental O and G images. The fringe

profiles were obtained by scanning the experimental images in

Figs. 2(a) and 2(b) along the y direction, at a position x =

5.6 mm. The densitometric scan was made on the recording

films with a slit size of 100 mm (x direction) � 20 mm (y

direction) using a microdensitometer (Konica PDM-5, type

B). Many profile charts were obtained in this measurement, by

scanning the entire field of the images with an interval of

0.2 mm in the x direction. Here, examples of the fringe profiles

measured are presented, in which the characteristics of the

experimental fringe profiles are well revealed. Fig. 5 shows the

corresponding fringe profiles obtained by an intensity scan on

the simulated images in Figs. 3(a) and 3(b) with a scan width of

100 mm in the x direction.

In Fig. 4(a), the intensity curve is monotonically lowered

towards the þy direction, aside from oscillatory modulations

of the fringes. This is thought to indicate that the deviation

angle increases towards the þy direction, in accordance with

the shape of the O-wave rocking curve. In other words, the

intensity curve above illustrates the effect of the vertical

divergence of the beam, as mentioned in Section 2.2.2. Then,

on the intensity curve of the G image in Fig. 4(b), a flat,

maximum-intensity region which is considered to be the peak

of the curve is formed within the region y > 2 mm. The fringe

profiles in the simulated images in Fig. 5 may be assessed as

simulating fairly well the general aspect of such profiles in the
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experimental images in Fig. 4.

However, the split profile close to a

PMD site shown at y = 2.6 mm in the

experimental O-image profile is not

successfully reproduced in the profile

of the simulated image. In the profile of

the G image in Fig. 5(b), the slope

angle of the entire intensity curve from

the �y edge to the þy edge is rather

small, compared with that in the

experimental profile curve in Fig. 4(b).

Besides, the peak of this simulated

intensity curve sits at y ’ 1 mm, being

displaced from the presumed peak

position of y > 2 mm in the experi-

mental curve. These insufficient

agreements were difficult to improve

despite much effort.

3.2.2. Origin of the coordinate in
the expression of the moiré interfer-
ence phase. The positions of the

fringes in the simulated image profiles

in Fig. 5 agree approximately with

those in the experimental image

profiles in Fig. 4. (In this discussion,

fringe profiles in the G images are

mainly considered, since the experi-

mental O-image profile involves a

disturbance from a PMD, as mentioned

above.) The approximate agreement in

the fringe position was attained by

adjusting the value of yo in the term

��ðy� yoÞ in equation (8), as yo ¼

�0.26 mm. Without introducing such

an adjustment, the fringe positions in

the simulated image profiles remained

unaligned to those in the experimental

profiles. Basically, the factor to move

the fringe position is ðy� yoÞ, and not

the deviation angle ��m (in the case of

a rotation moiré). When terms other

than ��ðy� yoÞ are hypothetically

assumed to be zero in equation (8),

yo ¼ �0.26 mm is understood to indi-

cate a position at which the two sets of

crystal lattices of the component crys-

tals coincide with each other. As a

general solution it should be written as yo ¼ �0:26þ n�

(fringe spacing) (mm). In equations (I-37b), (I-37c), the origin

of the coordinate system was taken at a point of coincidence of

two sets of crystal lattices. However, such a coordinate system

was found to be inconvenient in treating practical moiré

fringes.

The expression for the interference phase of the moiré

fringes, shown in equations (I-34), (I-37) and (I-53), and in

equation (8) in this paper, should be rewritten into a more

general form as follows:

�o x; y; uð Þ ¼ �g x; y; uð Þ ¼ ð2�=dÞ
�
��ðy� yoÞ

� ½ð�d=dÞ cos �þ�! sin ��

� fðx� xoÞ þ ðt2=2Þ½tanð�B þ �Þ

� tanð�B � �Þ�g
�
� 
gap ð9aÞ

¼ 2�=dð Þf�� y� yoð Þ � �d=dð Þ þ�! �½ �

� x� xoð Þ þ �t2

� �
g � 
gap ðwhen �j j � 1Þ: ð9bÞ
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Figure 4
Fringe profiles measured on the experimental images in Fig. 2. Scanned at x = 5.6 mm along the y
direction in the images. (a) Profile of the O image in Fig. 2(a). (b) Profile of the G image in Fig. 2(b).
Deff means the effective optical density in the densitometric measurement concerned. The (+) marks
in (a) and (b) note pointed-top profiles as a notable peculiarity, and (*) marks in (b) note false
intensity peaks from noises (mottles). For further details, see text.



Here, (x, y) are coordinates with the origin at a general

unspecified point, and (xo, yo) is a point where the two sets of

crystal lattices coincide. [In light of this phase equation, the

position of the lattice coincidence in equation (8) is under-

stood to lie at (xo, yo) = (0, yo); the term �t2 is neglected in

equation (8), since j�t2j � jx� xoj.] Furthermore, the posi-

tion (xo, yo) of the lattice coincidence in a strained specimen

will vary with the position (x, y) in question. Therefore, a point

of lattice coincidence must strictly be given as [xo(x, y),

yo(x, y)]. In this simulation, all images were calculated with the

coincidence site put at yo = �0.26 mm for all x coordinates.

3.2.3. Fringe contrast. As shown in the fringe profiles in

Figs. 4 and 5, the moiré fringes under study are of considerably

low contrast in the experimental as

well as in the simulated images.

According to the actual measurement

in Figs. 4 and 5, fringe contrast in the

experimental O and G images is V =

5.7% and V = 5.8%, respectively, in

the mean, and that in the simulated

O and G images is V = 6.0% and

V = 6.5%, respectively. The contrast

values were calculated as V =

ðImax � IminÞ=ðImax þ IminÞ, with Imax

and Imin being the maximum and

minimum intensities, respectively. The

effective optical density Deff , with

which the ordinate axis in the experi-

mental profiles is graduated, is under-

stood to be in proportion to the image

intensity, since the optical density is

not high (Deff 
 1) in the present case

[specifically, the relationship Deff =

C � Iimage holds, C and Iimage being an

appropriate proportional constant and

the image intensity equal to Roðx; yÞ or

Rgðx; yÞ, respectively]. The low fringe

contrast is a speciality of the present

experimental moiré images. As shown

in Paper II, the low fringe contrast is

considered to be due to the inter-

spacing gap in the specimen bicrystal;

the gap widths are estimated to be

243 mm, or assumed to be 234 mm,

for the experimental and simulated

images, as stated in the preceding

sections. The good agreement shown

in the fringe contrast between the

experimental and simulated images

should be noted.

3.2.4. Fringe profiles of singular
shapes in the experimental moiré
images. Unlike the approximate

agreement in the fringe contrast

described above, noteworthy differ-

ences between the experimental and

simulated images are clearly recog-

nized in the shapes of fringe profiles. The shapes of the fringe

profiles of the simulated images in Figs. 5(a) and 5(b) do not

significantly deviate from a symmetric shape, although some of

the profiles are somewhat asymmetric. In addition, profile

shapes do not abruptly change between neighbouring fringes.

Such characteristics may be considered to be an ordinary

aspect of the intensity profile obtained from the calculation of

a smooth function. On the other hand, in the entire field of the

experimental images in Figs. 4(a) and 4(b), fringe profiles with

a strongly asymmetric shape are commonly observed, and the

direction of asymmetry often switches abruptly between

neighbouring fringes. Typical examples of such asymmetric

fringe profiles are shown in a magnified scale in the insets in
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Figure 5
Fringe profiles measured in the simulated images in Fig. 3, corresponding to the experimental fringe
profiles in Fig. 4. Scanned at x = 5.6 mm along the y direction. (a) Profile of the O image in Fig. 3(a).
(b) Profile of the G image in Fig. 3(b). For details, see text.



Figs. 4(a), 4(b). In addition, profiles with a pointed top, as

noted by the (+) mark, were occasionally observed, though not

too frequently. Such profiles with pointed tops have a common

feature that their shapes are nearly symmetric on the whole. A

theoretical derivation of such singular-shaped fringe profiles is

difficult to achieve based on the present moiré-fringe theory,

as is easily seen, while many other features of the experi-

mental moiré images have been successfully explained by the

same theory. To solve this problem, it would be necessary to

know the reason for the singular shapes of the fringe profiles

and to construct a new higher-level handling theory.

4. Results of computer simulations II

4.1. Moiré images of two crystals inclined to each other

4.1.1. Moiré images obtained by experiment and simula-
tion. Figs. 6(a) and 7(a) show experimental moiré images (O

image) taken when the rear crystal of the bicrystal was forc-

edly rotated by a minute angle about the y axis. The force

applied to cause the rotation was LðþÞ = 0.2 gf (= 1.96 mN) for

the image in Fig. 6(a), and Lð�Þ = 0.2 gf for the one in Fig. 7(a)

(see Fig. 1). Compared with the moiré image in Fig. 2(a) taken

with no forced rotation, the fringes slope towards the upper-

right direction [Fig. 6(a)], or towards the lower-right direction

[Fig. 7(a)]. Although it is not concerned with the present

discussion on the forced-rotation effect, Fig. 6(a) is the moiré

image which has been shown as the main data of the moiré-

image experiment in question (Yoshimura, 1996a, 1997c). A

motive for doing such an experiment with a forcedly rotated

crystal was a discussion on the moiré pattern when the two

crystals concerned are inclined to each other (Hashimoto et

al., 1961; Nagakura, 1972). Obtaining the results as shown in

Figs. 6(a) and 7(a), the author for a while had considered that

the effect of the inclination of the lattice plane on the moiré

pattern, namely the effect of �!=d as the third component of

�g, was evidenced. However, this understanding was contra-

dicted by a subsequent theoretical consideration (Yoshimura,

1997b), which shows that the effect of the lattice-plane incli-

nation on the moiré-interference phase is ð�! sin �Þx [see

equation (8)], and is impossible in symmetric Laue geometry

(� ¼ 0). Since then, it had been a question of why the fringe

pattern was changed with the ! rotation, despite a theoretical

indication otherwise. During repeated simulations in the

present work, it came to be found that the angle � for

producing sloped moiré fringes need not be so large, and an

angle of 0.5� or so suffices to make an appreciable fringe slope,

in this case of nearly rotation-moiré fringes of � ’ 0.44 mm.

The possibility of a misorientation of the inner crystal surfaces

of such an order of magnitude was not excluded in the

experiment under discussion.

As mentioned earlier in Section 2.1.2, a misorientation by

� =�0.37� from the exact (111) orientation was actually found

in the inner surfaces of the bicrystal. After a time-consuming

computational study with the value sin � = �0.00646 put into

the phase functions �oðx; y; uÞ and �gðx; y; uÞ in equation (8),

conclusive simulated images were obtained as shown in Figs.

6(b) and 7(b). The parameters for the simulated images are

given in Table 3. In this case also, the values of s2 and �!2o

were determined with main attention paid to the positions,

inclinations and spacings of LC bands, analogously to the

preceding case of Fig. 3. In addition, in this case, attention was

also paid to the running direction of moiré fringes. The values

of s1 and �!1o were taken to be the same as in the case of

Fig. 3, since no change should have occurred to the state of the

front crystal by the experiment operation (forced rotation) in

question. The values of the mid-deviation angle ��m were

adjusted through the observation of the entire view of simu-

lated images, including the aspect of LC band patterns, the

image intensity distributions etc. The values of ��m (= �d /

0.44 mm) and b� (0.003 mm�2), and the LEC local strains

ð�d=dÞ1;2 and ��1;2 were the same as in the case of Fig. 3.

It can be confirmed that the magnitudes of s2 and �!2o in

Tables 1 and 3 are in the order s2 [Fig. 6(b)] < s2 [Figs. 3(a),
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Figure 6
(a) Experimental (T set No. 8) and (b) computer-simulated moiré images
when the rear component crystal was forcedly rotated about the y axis
towards the front crystal. O image, Si 220 reflection, � = 0.072 nm. LðþÞ =
0.2 gf (= 1.96 mN) and Lð�Þ ¼ 0. For further explanation, see text and
Table 3.



3(b)] < s2 [Fig. 7(b)] and �!2o [Fig. 6(b)] > �!2o [Figs. 3(a),

3(b)] > �!2o [Fig. 7(b)], being consistent with the operation of

the forced rotation to the rear crystal in a qualitative sense.

The inclined running directions of moiré fringes in Figs. 6(b)

and 7(b) agree approximately with those in the corresponding

experimental images. The number of fringes over the entire y

range in the simulated images agrees well with that in the

experimental images with a difference of less than one fringe,

except for regions x 
 1 mm and x �9 mm in the case of Fig.

6(b), and regions x 
 1 mm and x �10 mm in the case of

Fig. 7(b). From these observations, Figs. 6(b) and 7(b) may be

assessed to simulate fairly well the experimental images in Fig.

6(a) or Fig. 7(a).

However, it should be commented that the simulation of the

LC band patterns is not good enough, particularly in Fig. 6(b),

although the images in Figs. 6(b) and 7(b) were the best

attainable results. Similarity in the band pattern, which

worsens in the upper region of the images, would probably be

related to a non-uniformity in the bend and rotation of the

crystal plate, due to application of the force LðþÞ or Lð�Þ at

an offset position on the crystal edge [see Fig. 1(b)].

4.1.2. Analysis of the slope of the fringe lines. Moiré fringes

are generally inclined at �3�–+9� to the x axis, mainly in the

positive-angle direction, in the area 3 
 x 
 8 (mm) in the

image in Fig. 6(b), and are inclined at �18�–�10� to the x axis

in the same area in Fig. 7(b). In the image in Fig. 3(a) the

corresponding slope angle is �10�–+6�; these slope angles

were manually measured on the images. According to the

phase equation in equation (8) the slope of fringes is estimated

by ðy� yoÞ=x ¼ ½ð�d=dÞ þ�! sin ��=��. However, it was

difficult to explain the fringe slopes satisfactorily by this esti-

mation only, in the present case. According to the elasticity

calculation in equation (10a), the value of �d=d is �2.8 �

10�8 to +7.3 � 10�8 within the entire y range [�4:6 
 y 
 4:6
(mm)], and is +4.4 � 10�8 at y = 0, when estimated at x =

6.0 mm. This �d=d value is unchanged throughout the

computations of Figs. 3(a), 3(b) and Figs. 6(b), 7(b). The angle

�! {= ½ð�!2o � �!1oÞ + (s2 � s1) (x� xcÞ� rs}, on the other

hand, is changed with the images concerned. It is given in

arcseconds as ð�!=rsÞ = 0.23 + 0.030x in the case of Fig. 6(b),

and ð�!=rsÞ = �1.08 + 0.055x for Fig. 7(b), using the si and

�!io values (i = 1, 2) in Table 3; for the image in Fig. 3(a),

ð�!=rsÞ = �0.26 + 0.049x. For these (�!=rs), the value of

�! sin � is �1.3 � 10�8 and 2.3 � 10�8 (rad) at x = 6.0 in the

cases of Figs. 6(b) and 7(b), respectively. The corresponding

fringe slopes are roughly estimated to be�4� and�9� to the x

axis, respectively, with �� assumed to be �d/0.44 mm. These

angles deviate significantly from the actually observed fringe

slopes.

Table 4 shows the change in the slope angle of moiré fringes

and that in the (�!=rs) angle in Figs. 6(b) and 7(b), relative to

the angles of the fringe slope and the �! inclination in Fig.

3(a). From a roughly good correspondence between the

compared angular values of the fringe slope and (�!=rs),

shown in Table 4, it may be seen at a semiquantitative level

that the change in the fringe slope in Figs. 6(b) and 7(b) is
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Table 3
Parameters used for computing simulated images. (II).

��m s1 s2 �!1o �!2o ��m

Fig. 6(b) �0.0900 0 0.0150 0 mm�1 0.0450 0 mm�1 0.060 0 0.570 0 0.700 0

Fig. 7(b) �0.0900 0 0.0150 0 mm�1 0.0700 0 mm�1 0.060 0 �0.500 0 �0.800 0

Table 4
Change in the slope angle of moiré fringes and that in the ð�!=rsÞ angle,
relative to the angle of the fringe slope and ð�!=rsÞ in Fig. 3(a).

Fig. 6(b) Fig. 7(b)

Change in the fringe-slope angles +3�–+7� �16�–�8�

Change in the ð�!=rsÞ angles (at x = 6.0 mm) +0.380 0 �0.780 0

Figure 7
(a) Experimental (T set No. 14) and (b) computer-simulated moiré
images when the rear component crystal was forcedly rotated about the y
axis towards the opposite side of the front crystal. O image, Si 220
reflection, � = 0.072 nm. LðþÞ ¼ 0 and Lð�Þ = 0.2 gf (= 1.96 mN). The
brightness in the simulated image (b) was adjusted by dividing the entire
field of the image into two partial fields, since it was difficult to suitably
adjust it within 256 graduations in the one entire field. For further
explanation, see text and Table 3.



related to the change in the (�!=rs)

angle. Based on the agreement

between the simulated and experi-

mental images mentioned in Section

4.1.1, the change in the fringe slope in

the experimental images in Figs. 6(a)

and 7(a), relative to the fringe slope in

Fig. 2(a), may also be understood in the

same way as described above for the

simulated images.

If we want to understand more fully

the fringe slope in the simulated and

experimental images, we have to take

into account the influences of the gap

phase 
gap and the Pendellösung oscil-

lation phase, as mentioned in Sections

3.2.2 and 3.2.3 in Paper II. The large-

angle slope of the fringes in Figs. 7(a)

and 7(b) is understood as being mainly

produced as a pattern of obliquely

extending fringes (see Section 3.2.2 in

Paper II), although the fringe slope

due to the term ð�! sin �Þx contributes

additively to this large-angle slope.

However, an explanation taking these

two additional phases into account is

not a simple task, and will inevitably

be lengthy. Furthermore, occurrence of

the LEC local strains, which are

involved in the estimation of �d=d and

��, and vary with the position (x; y),

makes the fringe analysis further

complicated. In this paper, the discussion of the effect of

ð�! sin �Þx on the fringe slope finishes here.

4.2. Wide-area survey of moiré images diffracted from a
large curved bicrystal

4.2.1. Broad-band images of a curved bicrystal. To better

understand the images shown in Figs. 2, 3, 6 and 7, computed

wide-area moiré images (G image) are shown in Fig. 8, which

are imaginarily assumed to be diffracted from a large curved

bicrystal with the incidence of a laterally wide and vertically

divergent X-ray beam. Curvatures of the front and rear crys-

tals are assumed to occur about the vertical axis (y axis) in the

same way as in Figs. 2, 3 etc. The assumed arrangement for

computing diffracted images is the same as for the images in

Figs. 2, 3 etc., and the diffraction vector g is directed from left

to right in the horizontal direction, as shown in Fig. 8(a). The

two fuzzy streak- or band-like images marked with b1 and b2

in Figs. 8(a)–8(d) are partial images of strong diffraction

intensity in the entire wide-area bicrystal images, being related

to the front and rear crystals, respectively. They are hereafter

referred to as broad-band images, being distinct from the low-

contrast band images mentioned previously. Along the

abscissa axis in each figure, the x coordinate is given with

respect to the wide-area bicrystal image. The values of

(�!1=rs) and (�!2=rs) vary along this axis, relating to the

curvatures in the crystals. Strong diffraction occurs in a limited

range in (�!1=rs) or (�!2=rs), namely within a limited range

of x, and the region of strong intensity giving a broad-band

image moves along the x axis with the change in (�!1=rs) and/

or (�!2=rs). Along the ordinate axes in the figures, the y

coordinate in the wide-area bicrystal image is graduated. The

angular variation �vy (arcseconds) of the vertical divergence

of the beam and the ��m angle for indicating the angular

positions of the images in the insets are also graduated along

this axis; the values in parentheses behind the y values give the

corresponding angular graduations.

The wide-area bicrystal image in each figure was computed

for the mid-deviation angle of �vy, with ��m = 0.00 0. The

angular width of the incident beam was ��inc = 0.340, as in

the previous computations. It was assumed that ð@us=@xÞi =

ð@us=@yÞi = b� = 0, regarding the LEC local strains and the

strain of elastic bend about the z axis. The width and extending

directions of the broad bands b1 and b2 depend on the

strength and sign of the curvatures s1 and s2. The broad-band

images are horizontal (parallel to the x axis) when s1 = s2 = 0,

and the slope of their extending direction from the x axis

increases with the value of jsij (i = 1, 2). As seen from a simple

consideration of the diffraction geometry for a curved crystal,

a broad-band image slopes towards the upper-right direction
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Figure 8
Wide-area diffraction moiré images (G images) from a curved bicrystal, computed for a better and
unified understanding of the simulated and experimental moiré images in Figs. 2, 3, 6 and 7. For
further explanation, see text.



when si > 0, and slopes towards the lower-right when si < 0.

Images (a)–(c) correspond to the images in Fig. 6(b), Figs.

3(a), 3(b) and Fig. 7(b), respectively, which have been shown

earlier. Although the parameters for computing images (a)–

(c) are the same as those in Tables 1 and 3, they are mentioned

again: image (a) s2 = 0.0450 0 mm�1, �!2o = 0.5400; image (b) s2 =

0.06400 mm�1, �!2o = 0.2700; image (c) s2 = 0.07000 mm�1, �!2o

=�0.5000. Image (d) is computed with s1 = �0.01500 mm�1, s2 =

�0.07000 mm�1, �!1o = �0.1000 and �!2o = �1.0000. However,

images (a)–(d) in this Fig. 8 are all G images unlike Figs. 6(b)

and 7(b) of O images. [Furthermore �!2o = 0.5400, for Fig. 8(a)

slightly disagrees with �!2o = 0.570 for Fig. 6(b).] The image

with s1;s2 < 0 in Fig. 8(d) is added for reference to the images

with s1;s2 > 0 in Figs. 8(a)–(c).

4.2.2. Consistency in the simulations of different experi-
mental images. In Figs. 8(a)–8(d), the inset shows an

enlargement of a local region in the broad-band images, at the

angular positions indicated by the white lines. The inset image

was computed under the same conditions as the matrix broad-

band image, but at an enlarged scale and with the mid-

deviation angle of ��m þ �vðy� ylnÞ. Then, ��m indicates an

angular position on the ordinate axis, at which height the white

line is drawn, 0.7000, �0.0300, �0.8000 and �0.8000 in (a)–(d),

respectively; yln gives the position at the white lines. In Figs.

8(a) and 8(c), for the images in Figs. 6(b) and 7(b), respec-

tively, the local regions from which the inset images were

sampled lie away from the intersecting region of the two broad

bands, and the intensity of broad-band image b1 declines

significantly there. Low-contrast bands seen in the inset

images run almost parallel to the extending direction of broad-

band image b2, suggesting that the intensity of broad-band

image b2 is dominant in the total image intensity. Never-

theless, moiré fringes appearing with good contrast in the inset

images suggest that the broad-band image b1 also has a low

but significant intensity there, taking part in the formation of

the moiré fringes. Unlike these cases, the local region sampled

for the inset image in Fig. 8(b), for the images in Fig. 3(b), lies

close to the intersecting region of the two broad bands

(��m ’ 0), where they have mutually comparable intensities.

Presumably in connection with such a condition, the low-

contrast bands in the inset image stand more upright than in

the other two cases.

Based on the understanding of the characteristics of the

curved bicrystal diffracted images, described above, the choice

of positive values of s2 for both Figs. 6(b) and 7(b) is confirmed

to be certainly correct, from the extending direction of the

low-contrast bands in the experimental images in Figs. 6(a)

and 7(a). If s2 < 0, the low-contrast bands should lean towards

the opposite side, as shown in Fig. 8(d). Regarding the sign of

curvature s1, no clue is obtained about it. However, when

assuming s1 < 0 under the use of positive values of s2, no good

simulated images could be obtained despite many attempts

made by changing the values of �!1o;2o, ��m etc. From this

result, the positive value s1 = 0.01500 mm�1, as mentioned

already, is considered to be correctly evaluated. The direction

and spacing of low-contrast bands in the inset images in Figs.

8(a)–8(c) agree approximately with those in the corresponding

images in Figs. 6(b), 3(b) and 7(b), and thus the inset images

are a good substitute for the simulated images. From the

perspective of the entire wide-area bicrystal images in Figs.

8(a)–8(c), with the inset images positioned on the respective

white lines in the wide-area images, it can be seen that the

simulated images, i.e. the solutions of the simulation study, are

obtained with consistency through the assumed experiment

operation of the forced rotation of the rear component crystal.

In other words, it can be seen there that, with the change in the

forced-rotation load from LðþÞ = 0.2 gf to Lð�Þ = 0.2 gf

through the intermediate unloaded state, LðþÞ = Lð�Þ = 0, the

aspect of the wide-area bicrystal image including the inset

image changes in an understandable way, from the aspect in

(a) to that in (b), and from the aspect in (b) to that as in (c).

The mentioned consistency among the simulated images

guarantees that the computation of the simulated images and

the related characterization of the corresponding experi-

mental images are certainly correct.

5. Conclusions and supplementary remarks

The present paper concludes with the following remarks:

(i) The theoretical computations of the moiré images and

fringe profiles shown in Figs. 3, 5, 6(b) and 7(b) show, on the

whole, satisfactory simulations for the experimental moiré

images and fringe profiles which are the subject of this simu-

lation work, although some partial aspects in the experimental

images remain unsatisfactorily simulated in part. Serious

disagreement between the simulated and experimental images

suggesting a problem in the employed theory was not found,

with respect to the study of the fringe-and-band patterns in the

images. Partial insufficiencies in the simulations for the image

in Fig. 2(a) (O image) etc. and for the fringe profiles in Figs.

4(a) and 4(b) [aside from the problem described in remark (iii)

in this Section] are thought to be largely due to the insuffi-

ciency in the estimation of the LEC local strains and other

strains in the specimen crystal, and due to the disregard of the

small variations in the crystal thicknesses, as mentioned in

Section 2.1.2. To conclude, this simulation study had basically

correct consequences for the simulation of the previous

experimental moiré images in question. Conversely, this

moiré-fringe theory was verified to be correct through a check

of the experimental images. One more important factor in the

successful simulation was the success in the theoretical

analysis of the LEC local strains.

Furthermore, the necessity to pay attention to the vertical

divergence effect of the beam in synchrotron X-ray diffraction

has been described through practical examples of experi-

mental moiré topographs and their theoretical simulations

(Section 2.2.2). It was found that in the analysis of the moiré

fringes of a crystal having an inhomogeneous strain, the fringe

spacing in some cases is determined in a different way from

the simple estimation using the formula � ¼ jd=��j or

� ¼ jd2=�dj (Section 3.1.3). In the simulation of the intensity

profile of moiré fringes, it was shown that the coordinate

origin (xo; yo) in the calculation of the interference phase

needs to be introduced, so that fringe positions in the
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simulated images agree exactly with those in the experimental

images (Section 3.2.2).

(ii) It should be noted that the experimental images in Figs.

6(a) and 7(a) were reproduced almost satisfactorily in the

respective simulated images, which were computed as moiré

images when the two component crystals of a bicrystal are

inclined towards each other by a small angle �! about the y

axis. Based on this successful simulation, it was mostly

confirmed that the observed changes in the fringe slope in the

experimental moiré images were caused by the induced

lattice-plane inclination �! as just mentioned. These would

probably be the first examples of moiré images in which the

lattice-plane inclination �! is seen to take part as an element

of the third component of �g, when � 6¼ 0. However, in this

paper, the effect of �! on the fringe slopes could not be

shown very accurately, due to complications in the analysis

procedure. In view of the significance of the problem, an

accurate confirmation of the effect of �! should be carried

out, by conducting an additional experiment using an

unstrained crystal.

(iii) This simulation work was also the first attempt at a full

theoretical explanation for the previous experimental moiré

images in question. Through the good theoretical simulation

for the experimental images, as mentioned in remark (i), the

attempted explanation was made to an almost satisfactory

level, with respect to the fringe-and-band patterns of the

images.

However, peculiar features of fringe profiles such as

strongly asymmetric fringe profiles and pointed-top profiles, as

shown in Figs. 4(a) and 4(b), could not be simulated, despite

the success in the simulation of the global features of the

images. Fringe profiles of such peculiar shapes are not parti-

cularly special in the experiment under discussion, and are

commonly observed in any image. In addition to such pecu-

liarities of the fringe profiles, another noteworthy finding is the

occurrence of fine subsidiary fringes as shown in Fig. 9

(Yoshimura et al., 2001; Yoshimura & Hirano, 2009). Super-

posed on the main fringes that give the moiré pattern, they are

observed with a very weak contrast, to run along a direction

crossing the main fringes at a high angle. Such subsidiary

fringes were also commonly observed in any moiré image in

the experiment under study. If due attention is given, they can

be recognized in any of the images in Figs. 2(a), 2(b) and Figs.

6(a), 7(a), although with much worse visibility than in Fig. 9.

Although a presentation of clear subsidiary fringes on printed

papers is not easy in general, those in Fig. 9 were presented

with somewhat good visibility, owing to their original good

contrast and to a special contrast-enhancement treatment. The

cause and generating mechanism of such fine subsidiary

fringes is not known. However, they should normally also be

considered to be a record of the wavefield in the imaging

experiment. The peculiar-shaped fringe profiles and occur-

rence of fine subsidiary fringes, as described above, seem

to be beyond the treatable limit of the presented moiré-

fringe theory. The addition of some new elements to the

theoretical basics of the X-ray diffraction optics seems to be

needed.

(iv) To add more in connection with the problems

mentioned in remark (iii), one of the critical comments given

thus far on the experimental images in question was that the

result may be brought about by noise, and is unreliable unless

they were recorded on nuclear plates. The author initially

could not understand the meaning of ‘noise’, but what it

means has been suggested in later experiences. Use of X-ray

films and developing and fixing solutions results in the

occurrence of many fine mottles on the films, unless special

attention is paid in the film processing. Such mottles may be

referred to as noise in a detailed study of fringe profiles.

However, using X-ray films and processing solutions of the

same brand name (Fuji type No. 50) at the time of the

experiment, without any special attention given to the devel-

oping and fixing, not many mottles occurred. Although the

occurrence of mottles was not completely suppressed, they

were very few as can be confirmed in Figs. 2(a), 2(b) and Figs.

6(a), 7(a), and do not have a significant influence on the study

of fringe profiles.

Another critical comment was that the described peculia-

rities or abnormalities of the images were not confirmed in

reexaminations by other researchers. To answer this comment,

the author would like to draw attention to the fact that the

moiré images in question were taken under the incidence of a

quasi-plane wave with an angular width of 0.3400, and are of

considerably low fringe contrast (see Section 3.2.3). Further-

more, the thinness of the film emulsion layer recording the

images, which was as thin as 10 mm, also would possibly have

had some effect on the easy notice of the abnormalities.

Though not studied sufficiently, it has been observed that

peculiar-shaped fringe profiles and the presence of fine

subsidiary fringes become less noticeable with an increase in

the angular width of the incident wave. Possibly, these

abnormalities would not practically be observed in Lang

topography. Besides, when the fringe contrast is enhanced,
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Figure 9
Experimental moiré images showing fine subsidiary fringes, taken in the
same experiment as mentioned elsewhere in this paper. (a) O image. The
same image as in Fig. 6(a), but reproduced at a higher magnification. (b)
G image. Taken simultaneously under the same condition with the O
image in Fig. 7(a).



the abnormalities become less observable. If the experiment is

conducted under similar conditions to the previous reports

(Yoshimura, 1993, 1996a), with attention given to the points

mentioned above, similar results to those mentioned herein

should be obtained by any experimenter.

APPENDIX A
Analytical expressions of strain distributions induced
by stresses on the left edges of the specimen bicrystal

The solution of analytical expressions of the strain

distributions could be found by applying an exercise of

elasticity theory (Takeuchi, 1969; Exercise No. 64) to the

problem. Here only the results of the calculation are shown;

the process of the calculation is described in the supporting

information.

From the expressions of the displacements of strain given in

equations (S6a) and (S6b) in the supporting information,

expressions of the components of strain are obtained as

follows:
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Here, us and vs denote the displacement in the x and y

directions, respectively; Ai and Bi represent the strengths of

contraction (in the y direction) and pulling (in the x direction)

stresses, respectively (see Fig. 10); the index i, attached to the

expressions of strains ð@us=@xÞi etc. and to the constants Ai, Bi

and other symbols, indicates a reference to the component

crystal considered; i ¼ 1 refers to the front crystal and i ¼ 2 to

the rear crystal. Symbols �L and �L denote Lamé’s constants,

which were taken to be �L = 0.54 � 1011 Pa and �
L

= 0.70 �

1011 Pa. The coordinate xe is that of the left edges of the

component crystals, and was set to be xe =�1.6 mm; yoi and wi

indicate the middle position in the range where stresses Ai and

Bi work, and the width of the stressed range, respectively.

The strengths of stresses Ai were determined by comparing

the simulated images computed for various assumed values

of Ai with the standard experimental image [Fig. 2(b)].

The values with which the computed image best fits the

experimental image were approximately as follows: A1 =

�260 000 Pa and A2 = �60 000 Pa. B1 was estimated to be

478 Pa, corresponding to the balancer weight 0.236 gf. For B2,

no balancer weight was attached on the rear-crystal edge, and

therefore B2 ¼ 0. The values of yoi and wi were determined

also from the inspection of the specimen, and by seeing the

degree of fit of the simulated images with the experimental

image. As a conclusion, they were determined to be yo1 = 2.4,

yo2 = �2.3, w1 = 1.8 and w2 = 0.5 (in mm).
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Figure 10
Model of the strain fields around the left edge of the specimen crystal, for
the elasticity calculation of the LEC local strain in Appendix A. Dashed
lines indicate the edge of the specimen crystal. PðyÞ, contraction stress
due to gluing [ = Ai ðjy� yoij 
 wiÞ; = 0 ðjy� yoij>wiÞ]. QðyÞ, pulling
stress from a balancer weight [ = Bi ðjy� yoij 
 wiÞ; = 0 ðjy� yoij>wiÞ].



APPENDIX B
List of symbols
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Jäger, H. (1965). Z. Angew. Phys. 20, 73–79.
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rb0 Position vector on the exit surface of the rear component
crystal.

x; y; z Rectangular coordinates applied for the specimen crystal
and for presented moiré images by experiment and in
theoretical simulation [rb0 ¼ ðx; yÞ].

xc x coordinate at which the local inclinations of the
diffraction plane due to curvatures s1 and s2 become
zero (taken to be xc = 9.5 mm).

yo y coordinate at which the moiré phase �� ð2�=dÞ ðy� y0Þ

becomes zero, generally not coincident with the
general coordinate origin.

yb y coordinate of the starting point of a bending or a
torsional rotation of the crystal plates (assumed to be
yb = �4.7 mm).

yoi Middle position of the stress distribution of the LEC local
strain on the left edges of the front (i = 1) or rear (i = 2)
crystals.

ti Thicknesses of the front (i = 1) or rear (i = 2) component
crystals.

tgap Width of the interspacing gap between the front and rear
component crystals

ð�d=dÞi; ð�d=dÞ Relative variation in the lattice spacing in the front (i = 1)
or rear (i = 2) crystals, caused by LEC local strain;
ð�d=dÞ ¼ ð�d=dÞ2 � ð�d=dÞ1.

�� Relative rotation about the z axis between the front and
rear component crystals, which is responsible for the
rotation-moiré pattern.

��im; ��m Minute rotation about the z axis by gravity in the front
(i = 1) or rear (i = 2) crystals; ��m ¼ ��2m ���1m.

��i Added rotation of the lattice plane about the z axis in the
front (i = 1) or rear (i = 2) crystals, caused by LEC local
strain.

½1� b�ðy� ybÞ
2
� Correction factor to ��m, relating to the weak bending in

the component crystals.
�!i; �! Inclination of the diffracting lattice plane about the y axis

in the front (i = 1) or rear (i = 2) crystals; �! =
�!2 ��!1.

�!1o;�!2o Positionally invariable part in �!1 or �!2.
si Strengths of the curvatures (arcseconds mm�1) of the

diffraction plane about the y axis in the front (i = 1) or
rear (i = 2) crystals.

LðþÞ;Lð�Þ Pulling weight for causing a forced rotation of the rear
component crystal.

	ðy� ybÞ Torsional rotation of the diffracting plane about the y
axis, presumed from the 2.4� tilt of the component
crystals.

rs Conversion factor ( = 4.8481 � 10�6) from arcseconds to
radians.

� Tilt angle of the orientation of the interspacing gap
surfaces from the exact (111) orientation (measured to
be � = �0.37� = �0.00646 rad).

�o Middle wavelength (= 0.072 nm) in the wavelength
spread of the incident beam.

K Wavenumber (¼ 2�=�o).
d Lattice spacing of the ð220Þ diffracting lattice plane.
�g Reciprocal-lattice-vector difference between the front

and rear crystals of the specimen crystal, to produce
moiré fringes (for detail, see Paper I).

� Incidence glancing angle to the diffracting lattice plane.
�B Bragg angle.
�� Deviation angle of the incident beam from the exact

Bragg angle; �� ¼ � � �B.
��u;��l Deviation angles from the exact Bragg angle at,

respectively, the upper and lower limits of the angular
width of the incident beam (at y ¼ 0).

��inc Angular width (¼ ��u ���l) of the incident beam, set
to be 0.340 0 in this paper.

��m Middle position [¼ ð��l þ��uÞ=2] in the incident-beam
angular width ��inc.

�vy Variation in the effective deviation angle owing to the
vertical divergence of the beam, �v being the rate of
the variation (= 0.0280 0 mm�1).

u Deviation parameter corresponding to the deviation
angle ��, for the diffraction in the front crystal.

uo; ug Deviation parameters with respect to the diffraction of
waves propagated in the transmitted- and diffracted-
wave directions, respectively, after emerging from the
front crystal.

Roðrb0 Þ;Rgðrb0 Þ Observed intensities of the O- and G-wave diffraction
moiré images, respectively.

Ioo0 ðrb0 ; uÞ,
Igo0 ðrb0 ; uÞ

Partial image intensities which are unrelated to moiré
interference, but contribute to the total intensity (O
image) Roðrb0 Þ.

Iog0 ðrb0 ; uÞ,
Igg0 ðrb0 ; uÞ

Partial image intensities which are unrelated to moiré
interference, but contribute to the total intensity (G
image) Rgðrb0 Þ.

Aoðrb0 ; uÞ,
Boðrb0 ; uÞ

Partial image intensities which are concerned in the
formation of the O-wave moiré image.

Agðrb0 ; uÞ,
Bgðrb0 ; uÞ

Partial image intensities which are concerned in the
formation of the G-wave moiré image.

�oðrb0 ; uÞ,
�gðrb0 ; uÞ

Phases of moiré-fringe interference for the O- and G-
wave moiré images, respectively.


gap Gap phase difference (or gap phase).
� Moiré-fringe spacing.
us; vs Elastic displacements in the x and the y directions,

respectively, induced by stresses causing the LEC local
strains.

ð@us=@xÞi,
ð@us=@yÞi

Components of the LEC local strain in the front (i = 1) or
rear (i = 2) crystals, related to the displacement us.

ð@vs=@yÞi Component of the LEC local strain in the front (i = 1) or
rear (i = 2) crystals, related to the displacement vs.
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