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On Cayley graphs of Z4
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The generating sets of Z4 have been enumerated which consist of integral four-

dimensional vectors with components �1, 0, 1 and allow Cayley graphs without

edge intersections in a straight-edge embedding in a four-dimensional Euclidean

space. Owing to computational restrictions the valency of enumerated graphs

has been fixed to 10. Up to isomorphism 58 graphs have been found and

characterized by coordination sequences, shortest cycles and automorphism

groups. To compute automorphism groups, a novel strategy is introduced that is

based on determining vertex stabilizers from the automorphism group of a

sufficiently large finite ball cut out from an infinite graph. Six exceptional, rather

‘dense’ graphs have been identified which are locally isomorphic to a five-

dimensional cubic lattice within a ball of radius 10. They could be built by either

interconnecting interpenetrated three- or four-dimensional cubic lattices and

therefore necessarily contain Hopf links between quadrangular cycles. As a

consequence, a local combinatorial isomorphism does not extend to a local

isotopy.

1. Introduction

Cayley graphs provide a helpful tool to ‘visualize a group’ and

to derive its properties (e.g. defining relations) in an essen-

tially geometric way (cf. Löh, 2017). As usual, we consider a

Cayley graph of a group G with an inverse-closed finite

generating set S (such that S = S�1
63 1) as an undirected graph

whose vertices correspond to group elements and vertices

g; h 2 G are connected by an edge whenever gs ¼ h; s 2 S.

For additive groups (e.g. for Zn, n being a positive integer) we

may write s ¼ h� g.

Cayley graphs of crystallographic groups in a Euclidean

plane were treated in detail in a well known book by Coxeter

& Moser (1980). The situation in higher dimensions (> 2) is far

from having been completely explored. Although in dimen-

sion 3 different enumeration methods indeed produced many

Cayley graphs of crystallographic groups relevant to structural

chemistry (e.g. Fischer, 1974, 1993), their potential has never

been used in full [some applications are described by Eon

(2012)]. Despite some results on lattice nets or bouquet nets

(Delgado-Friedrichs & O’Keeffe, 2009; Moreira de Oliveira &

Eon, 2014), the terms adopted by crystallographers for Cayley

graphs of Zn, complete enumerations for Z3 (under fairly

natural assumptions) have become available only recently

(Power et al., 2020). Many important properties of Cayley

graphs of Zn were derived by Kostousov (2007) which we

quote below (Section 2.1).

There exists only one (up to isomorphism) Cayley graph of

Z
4 with valency 8 that corresponds to a four-dimensional

hypercubic lattice. In this paper we provide a complete cata-

logue of Cayley graphs of Z4 with valency 10 which arise for

generating sets of integral vectors with components �1, 0, 1
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(loosely speaking, the shortest) and which are embedded in a

four-dimensional Euclidean space, i.e. free of edge crossings in

a straight-edge embedding (in other words, edges intersect at

most at common vertices). The restriction to valency 10 in the

present study is due to a significant increase in the computa-

tional demand for isomorphism checking already for the next

possible valency 12, in which case effective invariants are to be

developed to quickly distinguish non-isomorphic graphs. The

structure of graphs is characterized in terms of coordination

sequences and shortest cycles. Additionally, we apply a novel

strategy to compute automorphism groups.

2. Theoretical background and computational
methodology

2.1. Some properties of Cayley graphs of Zn

We start by summarizing important facts about Cayley

graphs of Zn. In the following, we associate Zn with an additive

group of n-dimensional integral vectors of an affine Euclidean

space Rn.

Theorem 1. [Kostousov (2007), Theorem 3, part (a), and

Proposition 3.] Let S and M be generating sets of Zn

which consist of n-dimensional integral row vectors. The

respective Cayley graphs are isomorphic iff there is a

matrix X 2 GLðn;ZÞ with |det(X)| = 1 such that M ¼ SX .

Theorem 1 provides a handy criterion for isomorphism

testing by solving a system of linear equations. We note that

isomorphism testing by computing canonical forms according

to Delgado-Friedrichs (2004) turns out to be rather expensive

in dimensions n > 3.

Theorem 2. [Kostousov (2007), Theorem 3, part (b);

Moreira de Oliveira & Eon (2014), Theorem 4.1.] The auto-

morphism group of a Cayley graph � of Zn, Aut(�), is

isomorphic to a crystallographic group.

As an immediate consequence we obtain that vertex

stabilizers in Aut(�) are finite.

Any Cayley graph of Zn allows a natural embedding in Rn,

with vertices as nodes of an integral lattice and edges as

straight-line segments corresponding to generators. Any

automorphism of a graph in this embedding is induced by an

affine map of Rn. The following theorem provides a group-

theoretic condition for when this embedding is free of edge

intersections.

Theorem 3. [cf. Power et al. (2020), Proposition 4.5.] Let �
be a Cayley graph of Zn with respect to a generating set S, and

let � be embedded in Rn as described above with edges as

straight-line segments. Then � is free of edge intersections

(except at the vertices of �) iff hs1; s�1
1 i is a maximal rank 1

subgroup of Zn for any s1 2 S and hs1; s�1
1 ; s2; s�1

2 i is a maximal

rank 2 subgroup of Zn for any s1 2 S and s2 2 S \ fs1; s�1
1 g.

Proof. A pair of intersecting edges of � spans a one- or two-

dimensional affine subspace. Subgraphs of � which corre-

spond to Hð1Þ ¼ hs1; s�1
1 i and Hð2Þ ¼ hs1; s�1

1 ; s2; s�1
2 i are chains

and (topological) square grids, respectively. Let Hð1Þmax and Hð2Þmax

be maximal rank 1 and rank 2 subgroups of Zn such that

Hð1Þ � Hð1Þmax and Hð2Þ � Hð2Þmax. If Hð1Þ<Hð1Þmax , then cosets of

Hð1Þ in Hð1Þmax generate collinear chains in � running along the

direction defined by s1. To have only one chain rather than a

set of collinear chains implies Hð1Þ ¼ Hð1Þmax . Similarly, if

Hð2Þ<Hð2Þmax, cosets of Hð2Þ in Hð2Þmax give rise to square grids

which are shifted against each other in a two-dimensional

plane defined by s1; s2 that forces edges to cross. As a conse-

quence, edge intersections do not take place iff subgroups H(1)

and H(2) are maximal subgroups of Zn with rank 1 and 2,

respectively. &

Remark 1. If the conditions of Theorem 3 are fulfilled but

subsets of S generate non-maximal subgroups of Zn with rank

d� 3, then an affine subspace of dimension d accommodates a

finite number of connected components (each of dimension-

ality d) which do not cross each other. This implies the exis-

tence of Hopf links between the cycles of a graph (cf.

Section 3).

Remark 2. From Theorem 3 it is possible to determine the

maximal valency for Cayley graphs of Zn which can be

embedded in R
n without edge intersections provided the

components of generating vectors are restricted to a certain

range. For example, if vectors with components �1, 0, 1 are

considered, the maximal valency is 6, 14, 30, 62, 126 for n = 2,

3, 4, 5, 6, respectively.

2.2. Computation of automorphism groups for Cayley graphs
of Zn

Since any Cayley graph � of Zn obviously does not show up

vertex collisions in a barycentric placement, the method of

Delgado-Friedrichs (2004) [cf. also Delgado-Friedrichs &

O’Keeffe (2003) for a less formal exposition] can be used to

compute Aut(�). Here we have adopted a different strategy

that involves a computation of a vertex stabilizer in Aut(�)

from the local structure of a graph �. This strategy is quite

general and appears to be very effective for vertex-transitive

periodic graphs with finite vertex stabilizers in Aut(�).

To facilitate the following discussion, let us establish some

notation for graphs and group actions on various sets asso-

ciated with them.

Let � be a connected simple graph with finite valencies of

vertices. The distance between vertices x and y, d(x, y), is

defined as the number of edges in a shortest path from x to y.

Then B�(v, r) = {x | d(v, x) � r} is the ball with a radius of r

edges centred at v, and hB�(v, r)i is the subgraph of � induced

by B�(v, r). If there is no ambiguity we shall write B(v, r). A
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coordination sequence for a vertex v is a sequence of integers

{|S(v, i)|} where S(v, i) = {x | d(v, x) = i} is the sphere of vertices

at distance precisely i from v. The automorphism group of �,

Aut(�), is regarded as a group of all adjacency-preserving

permutations on the vertex set of �. Two (generally

non-isomorphic) vertex-transitive graphs �1 and �2 are said

to be locally isomorphic within a ball of radius r if

hB�1
ðx; rÞi ffi hB�2

ðy; rÞi. If G is a permutation group on a set

X, then StabG(x) = {g | xg = x, g 2 G}, i.e. the stabilizer of an

element x 2 X in G. If Y � X is G-invariant, GY is the

restriction of G to a subset Y.

Proposition 1. [Trofimov (2012), Section 3.] Let � be a

connected vertex-transitive graph and v be a vertex of �. For

any non-negative integer r there exists a minimal integer

�(r) � r such that

StabAutðhBðv; �ðrÞÞiÞðvÞ
Bðv; rÞ
¼ StabAutð�ÞðvÞ

Bðv; rÞ:

In other words, any automorphism of hB(v, r)i fixing v which

can be extended to an automorphism of hB(v, �(r))i can also

be extended to an automorphism of �.

Proposition 2. Let � be a Cayley graph of Zn. For any vertex

v of �, the stabilizer StabAut(�)(v) acts faithfully on B(v, 1).

Proof. By Theorem 2 Aut(�) is isomorphic to a

crystallographic group. Vertices adjacent to v form an

n-dimensional convex hull that cannot be stabilized

pointwise by any crystallographic isometry (or an affine map)

of Rn. &

Proposition 3. Let � be a Cayley graph of a group G with

respect to a generating set S, and v be a vertex of �. Then

Aut(�) = hS, StabAut(�)(v)i.

For a Cayley graph � of Zn Propositions 1 and 2 allow

us to determine a faithful action of StabAut(�)(v) on

B(v, 1) as a permutation group from the restriction of

StabAut(hB(v, �(1))i)(v) to B(v, 1). A practical computation of

�(1), StabAut(�)(v) and eventually Aut(�) (the latter requires

Proposition 3) is facilitated by employing the fact that

any automorphism of � is induced by an affine map of

R
n if vertices of � are associated with nodes of an integral

lattice as done in Section 2.1.

Given an input set S of n-dimensional integral vectors, the

automorphism group of the respective Cayley graph � of Zn,

Aut(�), can be computed as a matrix group in the following

steps (hereafter v is the vertex (0, . . . , 0) of �):
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Table 1
Vertex stabilizers and automorphism groups for enumerated Cayley graphs of Z4 with valency 10.

TD15 is the number of vertices in a ball of radius 15. Dn denotes a dihedral group of order n.

Graph Stabilizer TD15 BBNWZ† Graph Stabilizer BBNWZ† TD15

#1 C2 � S3 � D8 58321 20/22/1/1 #30 C2 � C2 2/3/2/1 165953
#2 C2 � C2 � S4 58321 25/11/2/1 #31 C2 1/2/1/1 185771
#3 C2 � C2 � S3 83521 14/10/1/1 #32 C2 1/2/1/1 220707
#4 C2 � C2 � S3 102631 14/10/4/1 #33 C2 1/2/1/1 205055
#5 C2 � C2 � C2 113915 4/4/3/1 #34 C2 � C2 � C2 4/4/6/1 158993
#6 C2 � S4 83521 24/5/4/1 #35 C2 � C2 2/3/2/1 180113
#7 C2 � S4 109001 24/5/1/1 #36 C2 � C2 2/3/2/1 198263
#8 C2 � S4 128111 24/5/3/1 #37 C2 � C2 � C2 4/4/5/1 173183
#9 D12 113915 8/5/1/1 #38 C2 � C2 2/3/2/1 192083

#10 D12 135937 8/5/1/1 #39 C2 � C2 2/3/2/1 207995
#11 D12 152239 8/5/1/1 #40 C2 � C2 2/3/2/1 212055
#12 D12 141943 8/5/1/1 #41 C2 � C2 2/3/2/1 176105
#13 D12 160533 8/5/1/1 #42 C2 � C2 2/3/2/1 189943
#14 D12 174063 8/5/3/1 #43 C2 � C2 2/3/2/1 195269
#15 C2 � C2 � C2 158773 4/4/5/1 #44 C2 � C2 2/3/2/1 198423
#16 C2 � C2 163723 2/3/2/1 #45 C2 � C2 2/3/2/1 214729
#17 C2 � C2 179453 2/3/2/1 #46 C2 1/2/1/1 202787
#18 C2 � C2 190703 2/3/2/1 #47 C2 1/2/1/1 216717
#19 C2 � C2 197363 2/3/2/1 #48 C2 1/2/1/1 215653
#20 C2 � S5 72601 31/7/1/1 #49 C2 1/2/1/1 235001
#21 C2 � C2 � S3 100811 14/10/2/1 #50 C2 1/2/1/1 209759
#22 C2 � C2 � S3 129931 14/10/6/1 #51 C2 1/2/1/1 218183
#23 C2 � C2 � C2 126213 4/4/5/1 #52 C2 1/2/1/1 235955
#24 C2 � C2 151733 2/3/2/1 #53 C2 1/2/1/1 212503
#25 C2 � C2 174503 2/3/2/1 #54 C2 1/2/1/1 229905
#26 C2 � C2 � C2 135475 4/4/6/1 #55 C2 1/2/1/1 227335
#27 C2 � C2 � C2 144913 4/4/5/1 #56 C2 1/2/1/1 234225
#28 C2 � C2 170843 2/3/2/1 #57 C2 1/2/1/1 223743
#29 C2 � C2 195155 2/3/2/1 #58 C2 1/2/1/1 238785

† The notation of four-dimensional space groups following Brown et al. (1978).



(i) For some k� �(1) generate a finite subgraph hB(v, k)i of

� and compute Aut(hB(v, k)i).1

(ii) Compute generators of StabAut(hB(v, k)i)(v)B(v, 1) as

permutations on vertices of B(v, 1).

(iii) Check (by solving systems of linear equations) if

permutations computed at step (ii) are induced by integral

n � n matrices. If so, then k = �(1) is found. The set T of the

so-obtained matrices generates an integral matrix repre-

sentation of StabAut(�)(v), and we proceed to step (iv).

Otherwise we set k: = k + 1 and go back to step (i).

(iv) Aut(�) is output as a matrix group generated by S and

T: Aut(�) = hS, Ti (elements of S and T are expressed here as

(n+1) � (n+1) augmented matrices).

Remark. Recently another method [see Section 3.1 in

Bremner et al. (2014)] has come to our attention that allows

one to compute StabAut(�)(v) [v = (0, . . . , 0)] as an integral

matrix group by making use of a positive definite symmetric

matrix Q ¼
P

i si sT
i , where the sum runs over column vectors

si 2 S; i ¼ 1; . . . jSj. The automorphism group of Q, Aut(Q), is

defined as

AutðQÞ ¼ fX 2 GLðn;ZÞ j XQXT
¼ Qg

and corresponds to the isometry group of an n-dimensional

integral lattice with a Gram matrix Q. Aut(Q) can be

computed using the algorithm of Plesken & Souvignier (1997)

as implemented in the AUTO program.2 StabAut(�)(v) is

readily obtained as a setwise stabilizer of S in Aut(Q).

3. Results and discussion

With the above theory in mind, we have implemented in the

GAP programming language (GAP, 2019) the search for

generating sets of Z4 which give rise to Cayley graphs of

valency 10 by enumerating quintuples of four-dimensional

vectors with components �1, 0, 1. Filtering out generating

sets which satisfy our Theorem 3 (Section 2.1) and yield

isomorphic graphs was done on the fly, and the computation of

automorphism groups was implemented in a separate program

making use of nauty (McKay, 2009) and the Cryst package

(Eick et al., 2019). For checking purposes, automorphism

groups were also computed with an alternative method based

on the Remark in Section 2.2. The results are gathered in

Table 1. Furthermore, the supporting information contains

explicit lists of generators, point symbols (Blatov et al., 2010)

and coordination sequences up to the 15th sphere.

To our knowledge, only three out of the 58 graphs have

been known before, namely, #1, #2 and #20 which correspond

to primitive hexagonal tetragonal, I-centred cubic orthogonal

and primitive icosahedral lattices3 (O’Keeffe, 1995). The

‘topological’ diversity of the graphs is very much restricted

since they all turn out to be closely related to a five-

dimensional (primitive) cubic lattice as shown by point

symbols and coordination sequences. This is not accidental

since Cayley graphs of Zn with valency 2(n+1) are indeed

quotients of an (n+1)-dimensional cubic lattice with respect to

some rank 1 subgroup (cf. Eon, 2011). Low-dimensional

quotients necessarily inherit certain properties from their

parent higher-dimensional counterparts.

Generating sets for 55 graphs (all except #1, #2 and #20)

contain subsets corresponding to non-maximal Z3 or Z4

subgroups (or both). This means that quadrangular cycles of

the graphs are linked (cf. Remark 1 to Theorem 3). Let us

discuss this phenomenon in more detail for six exceptional

graphs (#49, #52, #54, #55, #56, #58, see Table 2) which are

locally isomorphic to a five-dimensional cubic lattice within a

ball of radius 10, as proven by isomorphism computations.

Subgraph enumeration for #49, #52, #54, #55, #56, #58 has

identified sets of three- as well as four-dimensional cubic

lattices (last column of Table 2). These sets contain a finite

number of connected components which interpenetrate

each other in a manner as shown in Fig. 1. As a result, the

above graphs could be built by interconnecting ‘layers’ of
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Table 2
Coordination sequences (up to the 15th sphere) for some Cayley graphs of Z4 and a five-dimensional cubic lattice.

Coincident subsequences are highlighted in bold.

Graph Coordination sequence No. interpenetrating cubic lattices, 3D; 4D†

5D 10 50 170 450 1002 1970 3530 5890 9290 14002 20330 28610 39210 52530 69002 –
#49 10 50 170 450 1002 1970 3530 5890 9290 14002 20330 28610 37908 49238 62550 (2, 3); (3, 4, 5, 6, 7)
#52 10 50 170 450 1002 1970 3530 5890 9290 14002 20330 28318 38002 49616 63324 (3); (3, 4, 7, 9)
#54 10 50 170 450 1002 1970 3530 5890 9290 14002 20330 27798 36942 47838 60632 (2, 3); (2, 3, 5, 6, 7)
#55 10 50 170 450 1002 1970 3530 5890 9290 14002 20054 27472 36470 47192 59782 (3); (3, 5, 6, 7)
#56 10 50 170 450 1002 1970 3530 5890 9290 14002 20330 28144 37684 49112 62590 (2, 3); (2, 5, 6, 9)
#58 10 50 170 450 1002 1970 3530 5890 9290 14002 20330 28610 38530 50440 64510 (3); (3, 5, 7, 9)

† The notation (a, b, c, . . . ) means that different subsets are possible which contain a (or b, or c, . . . ) connected components.

1 In actual computations, if a graph in question is a quotient of some
other graph (as is the case for 10-valent Cayley graphs of Z4 which are
quotients of a five-dimensional hypercubic lattice, cf. Section 3), a good initial
guess for k is the radius starting from which coordination sequences of a graph
and its quotient become different. Then the described procedure for finding
�(r) converges rather rapidly. For the graphs from Table 1 computations
yield �(1) � 13.
2 This program can also be accessed from the GAP package Polyhedral
(Dutour Sikirić, 2015).

3 In this section, by a lattice we actually mean a Cayley graph of Zn for some
standard generating set [e.g. for a (hyper)cubic lattice the set consists of n
orthogonal unit vectors and their inverses].



interpenetrating cubic lattices in a fourth dimension. Alter-

natively, they could be viewed as interconnected inter-

penetrating four-dimensional cubic lattices. Obviously both

constructions imply Hopf links between quadrangular cycles.

Qualitatively speaking, Hopf links arise from keeping the

same amount (40) of quadrangular cycles per vertex while

reducing the number of coordinate two-dimensional planes

from 10 (in five dimensions) to 6 (in four dimensions). It is

clear that quadrangular cycles of a five-dimensional cubic

lattice lie separately in orthogonal two-dimensional coordi-

nate planes and therefore are not linked. As a consequence,

although being locally isomorphic to a five-dimensional cubic

lattice, the above graphs are not locally isotopic to it. These

examples illustrate perhaps a general phenomenon that

knotting in crystal structures can formally arise from projec-

tions of high-dimensional periodic nets and represents a

compromise of how a high-dimensional object could fit into a

lower-dimensional space.
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Figure 1
Two interpenetrating primitive cubic lattices in a three-dimensional
Euclidean space.
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