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The famous Euler’s rule for three-dimensional polyhedra, F � E + V = 2 (F, E

and V are the numbers of faces, edges and vertices, respectively), when extended

to many tested cases of space-filling polyhedra such as the asymmetric unit

(ASU), takes the form Fn � En + Vn = 1, where Fn, En and Vn enumerate the

corresponding elements, normalized by their multiplicity, i.e. by the number of

times they are repeated by the space-group symmetry. This modified formula

holds for the ASUs of all 230 space groups and 17 two-dimensional planar

groups as specified in the International Tables for Crystallography, and for a

number of tested Dirichlet domains, suggesting that it may have a general

character. The modification of the formula stems from the fact that in a

symmetrical space-filling arrangement the polyhedra (such as the ASU) have

incomplete bounding elements (faces, edges, vertices), since they are shared (in

various degrees) with the space-filling neighbors.

1. Introduction

The famous Euler’s formula (Euler, 1758) states that for any

three-dimensional polyhedron the sum of the numbers of its

faces (F) and vertices (V) is by two larger than the number of

its edges (E):

F � Eþ V ¼ 2:

This theorem is the origin of the whole field of topology (e.g.

Weeks, 1985; Thurston, 1998; Nikulin & Shafarevich, 2002).

Euler’s formula can be derived and proven in many ways, e.g.

as given at https://www.ics.uci.edu/~eppstein/junkyard/euler/.

In the course of an analysis of the relations between the

geometrical elements of the asymmetric unit (ASU) of the

crystallographic unit cells in different space groups [analogous

to the work of Grosse-Kunstleve et al. (2011), http://cci.lbl.gov/

asu_gallery/], we realized that another, modified, formula

holds for the bounding elements of the ASU.

As defined in the IUCr Online Dictionary of Crystal-

lography (http://reference.iucr.org/dictionary/), an ASU of a

space group is ‘a simply connected smallest closed part of space

from which, by application of all symmetry operations of the

space group, the whole space is filled’. The exact selection of

the ASU for a particular space group is somewhat arbitrary,

and the most convenient choice is an ASU that is a contiguous

and convex polyhedron. Such conveniently selected ASUs are

defined and presented in the International Tables for Crys-

tallography, Vol. A (Aroyo, 2016) (ITA) for each of the 230

space groups and 17 plane groups. They are addressed in the

following section.
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2. Asymmetric units of the crystallographic space
groups

Each ASU is defined in ITA by equations of the limiting

planes and sometimes by coordinates of its vertices. However,

in all ASUs some pairs of their bounding elements (faces,

edges and vertices) are equivalent by the space-group

symmetry and, consequently, in rigorous definition only one

unique element of each such pair should be included in the

strict definition of the ASU. For the simplest example of the

space group P1 [Fig. 1(a)] the ITA formula 0 � x � 1; 0 � y

� 1; 0 � z � 1 defines a complete parallelepiped, whereas in

reality all eight corners are equivalent by lattice translations,

only one face of each of the three parallel pairs is unique, and

the edges in each set of parallel four are equivalent as well.

The strict definition of the ASU for this space group should,

therefore, be 0� x < 1; 0� y < 1; 0� z < 1, which excludes the

redundant elements, leaving only one unique element from

each equivalent group. More complicated cases are illustrated

in Figs. 1(b), 1(c), 1(d) for the space groups P21 and Fd3c,

where some of the elements lie at special positions and/or are

transformed by symmetry onto themselves or onto other,

equivalent and unique elements.

Of course, as all other three-dimensional polyhedra, all

crystallographic ASUs must fulfill the Euler’s formula.

However, we noticed that they also fulfill a modified rule:

Fn� Enþ Vn ¼ 1

where Fn, En and Vn are, respectively,

the numbers of the faces, edges and

vertices, in each case divided by

their multiplicity or, in other words, by

the number of times they are repeated

by the space-group symmetry opera-

tions.

There are no special positions in the

space group P1 [Fig. 1(a)]; therefore,

for this space group Fn = 3 (each of

the six faces is repeated twice in pairs),

En = 3 (three sets of four parallel edges

equivalent by translation) and Vn = 1

(all eight vertices equivalent). Thus,

for P1, the modified Euler’s rule

Fn� Enþ Vn ¼ 6� 1
2� 12� 1

4þ 8� 1
8

= 1 is obviously fulfilled.

Fig. 1(b) illustrates a possible ASU in

the space group P21. Here two sets of

four vertices at z = 0 and z = 1
2 are

related by one of the 21 axes, similarly as

pairs of parallel horizontal edges and

the pair of faces z = 0 and z = 1
2. All four

vertical edges are equivalent by trans-

lation, as are the pairs of parallel

vertical faces. In effect, all vertices are

equivalent, there are four sets of

parallel and equivalent edges and three

pairs of equivalent faces. The normal-

ized Euler’s formula is Fn� Enþ Vn

¼ 6� 1
2� 12� 1

4þ 8� 1
8 ¼ 1.

In Fig. 1(c) the P21 case is modified

by replacing each of the horizontal faces

at z = 0 and z = 1
2 with a set of four small

pyramidal facets with an apex at the

central 21 axis below the level of the

original face. Such a concave poly-

hedron can also serve as the ASU in

the space group P21. It has an

additional pair of equivalent vertices,

leading to Vn ¼ 8� 1
8 þ 2� 1

2 ¼ 2;

four additional pairs of equivalent
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Figure 1
(a) The ASU in the space group P1, where vertices 2, 3 . . . 8 are equivalent by translation to vertex
1, all four edges parallel to a given axis have only one unique member (e.g. 4–3, 5–6 and 8–7 are
equivalent to 1–2) and only one face from each parallel pair is unique. Black is used to outline the
crystallographic unit cell and blue is used to mark the ASU, whose elements coincide with the whole
unit cell in this case. (b) The ASU (blue) in the unit cell (black) of space group P21, where a twofold
screw axis (only one is shown in green) transforms the bounding elements of the ASU at y = 1

2 onto
the corresponding elements at y = 0. See text for detailed explanation. (c) The ASU (blue) in the
unit cell (black) of space group P21, modified by addition of two vertices positioned at the central 21

axis. The symmetry relations between different ASU bounding elements of this ASU, which in this
case is a concave polyhedron, are explained in the text. (d) The ASU (blue) in the unit cell
(black) of space group Fd3c, where a twofold axis transforms one-half of the face 4–3–5–6 onto the
other half and the 4 operation centered at x = 1

4 transforms the edge 1–2 four times onto itself.
Moreover, the vertices 1 and 2 lie at the 12-fold redundant special position with 23 symmetry,
vertices 3, 4, 5, 6 lie at the sixfold Wyckoff position 32, and the pairs of equivalent edges 1–4/2–5 and
1–6/2–3 lie on the threefold axes. The color code is as in (a); in addition the twofold axis is presented
in green and the special position at the 4 inversion point is marked in orange.



edges, leading to En ¼ 12� 1
4þ 8� 1

2 ¼ 7; and four

additional pairs of equivalent and parallel facets replacing

the original equivalent pair, leading to Fn ¼ 12� 1
2 ¼ 6.

Hence the normalized Euler’s formula also holds for

this concave ASU, and is in this case Fn� Enþ Vn ¼

6� 7þ 2 ¼ 1.

A high-symmetry example is illustrated in Fig. 1(d) for

space group Fd3c. The face 4–3–5–6 transforms into itself by

the operation of the twofold axis, and the pairs of faces

1–2–3–4/1–2–5–6 and 1–4–6/2–3–5 are equivalent by the 4

operation, yielding Fn = 1 � 1
2 + 4 � 1

2 = 21
2. Edge 1–2 is

positioned along the 4 inversion axis and is, therefore, fourfold

redundant, four edges (3–4, 3–5, 4–5, 4–6) are equivalent

either by a twofold or 4 operation, and there are two pairs

of edges (1–4/2–5 and 1–6/2–3) oriented along threefold axes

that are equivalent by 4. The En value is, therefore,

1� 1
4þ 4� 1

4þ 4� 1
6 = 23/12. Two equivalent vertices 1 and 2

lie at the 12-fold redundant 23 sites, two equivalent vertices 3

and 6 lie at the sixfold 3 site, and two equivalent vertices 4 and

5 lie at the sixfold 32 site, yielding Vn ¼ 2� 1=24þ 2� 1=12

þ 2� 1=12 = 5/12. The normalized Euler’s formula

Fn � En þ Vn ¼ 30=12 � 23=12 þ 5=12 ¼ 1 is, therefore,

fulfilled as well.

We have analogously interpreted all 230 space groups, and

in all cases the modified Euler’s rule holds for their ASUs

defined in ITA. The normalized Euler’s parameters Fn, En and

Vn for all these space groups are presented in Table S1 in the

supporting information.

3. Two-dimensional planar groups

The Euler’s formula for all polygons is E� V ¼ 0, since each

polygon always has equal numbers of corners and edges. A

similar concept of a normalized Euler’s formula can also be

applied to the plane-filling symmetric polygons in the two-

dimensional planar groups and can be shown to have the form

En� Vn ¼ 1.

As illustrated in Fig. 2(a), in the two-dimensional group p1

each of all four vertices and two edges in each parallel pair

delimiting the ASU are equivalent and they are all in general

positions. Therefore, En� Vn ¼ 4 � 1
2 � 4 � 1

4 = 1.

In the two-dimensional group p3 [Fig. 2(b)] the vertices

1, 3 and 4 lie at the threefold axes, but are not equivalent

to each other. Vertices 2, 5 and 6 are equivalent by the

threefold rotation axes and lie at general positions. Thus,

Vn ¼ 3� 1
3þ 3� 1

3 ¼ 2 . Edge 1–5 is equivalent to the edge

1–2, and the edges 3–6 and 4–6 are equivalent by the threefold

axes to the edges 3–2 and 4–5, respectively. Hence, En ¼ 2� 1
2

+ 4� 1
2 = 3. The modified Euler’s formula is, therefore, written

as follows: En� Vn ¼ 3� 2 ¼ 1. The normalized Euler’s

parameters En and Vn for all 17 planar groups are presented

in Table S2.

The normalized Euler’s formula seems to hold also in four

dimensions, as illustrated in the appendix in the supporting

information for a four-dimensional hyper-parallelepiped.

4. The Dirichlet domains

A specific kind of space-filling polyhedra are the Dirichlet

domains, sometimes called the Voronoi polyhedra, regions of

influence, or (in mathematics) fundamental regions (Voronoi,

1908; Delaunay, 1933; Engel, 1986). A Dirichlet domain

consists of all points that are closer to a selected generating

point in a lattice than to any of its space-group-symmetry-

equivalent points. Such a domain is thus always a polyhedron

bounded by planes normal at half-length to vectors joining the

generating point with its neighbors. A Dirichlet domain can,

therefore, be treated as a form of the ASU, since it contains

only the unique part of the unit cell and the whole space is

filled by identical polyhedra without any gaps. In general,

Dirichlet domains have more complicated shapes than the

ASUs defined in ITA and are less useful in the practice of

structural crystallographic computations, but in fact they

better correspond with the shapes of (globular) molecules

positioned in various places of a crystal unit cell.

By analogy with the previously addressed ASUs, the

external elements of Dirichlet domains (faces, edges or

vertices) are also often located at the special positions of the

unit cell, because the bounding faces lie exactly at the

symmetry elements relating the generating point with its

symmetry equivalents. It is, therefore, interesting to check if

the modified Euler’s formula also holds for the Dirichlet

domains. This analysis cannot be fully comprehensive, since

the number of all possible topologically different domains in

three dimensions is very large and not known, although this

number is finite (Delaunay, 1961).
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Figure 2
(a) The two-dimensional group p1 and its ASU (marked in blue)
encompassing the whole unit cell (black). All vertices are equivalent by
translation and the two edges in each parallel pair are also equivalent. (b)
The ASU (blue) of the unit cell (black) of the two-dimensional group p3.
The three vertices 1, 3 and 4 are positioned at the threefold axes. The
vertices 2, 5 and 6 are equivalent by the threefold axes. The pairs of edges
1–2/1–5, 3–2/3–6 and 4–5/4–6 are also equivalent by the operation of the
threefold axes.



Fig. 3(a) illustrates a Dirichlet domain for the planar group

p2 and shows how the domains are formed by planes (in this

case by lines) perpendicular to the vectors joining the gener-

ating point with its neighbors. The four edges of the domain

that lie across the twofold axes are unique, while the two

parallel edges of the remaining pair (1–2 and 5–4) are

equivalent by translation, yielding En = 4 � 1
2 + 2 � 1

2 = 3.

Among the vertices, there are two triplets (1, 5, 6 and 2, 3, 4) of

equivalent ones, related either by translation or by the twofold

axes, and Vn = 6 � 1
3 = 2. The normalized Euler’s formula is,

therefore, En� Vn ¼ 3� 2 ¼ 1.

Fig. 3(b) shows a Dirichlet domain constructed around a

point with coordinates x ¼ y ¼ 0:2; z ¼ 0:3 in space group

P222 with all unit-cell lengths equal. It has the shape of a

distorted rhombic dodecahedron and the corresponding

topology. All 12 rhombic faces are unique, but they lie at the

twofold axes, and thus Fn = 12 � 1
2 = 6. Among the 14 vertices,

eight sit at the special 222 positions and are unique, and all six

remaining apical vertices are equivalent by some of the

twofold axes, so that Vn ¼ 8� 1
4þ 6� 1

6 ¼ 3 . The three edges

crossing at the 222 symmetry position are equivalent by one of

the twofold axes, and there are eight such triplets, so that

En ¼ 24� 1
3 ¼ 8. The normalized Euler’s formula is, there-

fore, Fn� Enþ Vn ¼ 6� 8þ 3 ¼ 1.

We checked several other Dirichlet domains in different

space and planar groups and they all agree with the normal-

ized Euler’s formula, behaving in the same way as the above-

analyzed ASUs of all space and planar groups from the ITA.

5. Conclusions

The applicability of the modified (normalized) Euler’s formula

to space-filling polyhedra with symmetrical restrictions on

their bounding elements (faces, edges, vertices) is somewhat

puzzling to us, structural crystallographers, who constantly

utilize the concept of the asymmetric unit in our practice of

structural chemistry and biology. We are curious if more

qualified topologists will be able to provide a rigorous math-

ematical proof of the general correctness of this rule, so far

confirmed to hold by exhaustive enumeration for all examples

of crystallographic two-dimensional and three-dimensional

groups.
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Figure 3
(a) The Dirichlet domain around the point x = 0.32, y = 0.7 in the two-
dimensional group p2 with cell parameters a = 1.45, b = 1 (arbitrary units),
� = 76�. The neighboring domains are also shown to emphasize that the
plane is filled completely. The generating point and its neighboring
symmetry-equivalent points together with the lines joining them are in
orange, the meaning of other colors is as in previous figures. (b) Stereo
presentation of the Dirichlet domain constructed around the point x = y =
0.2, z = 0.3 in the space group P222. It has the shape of a distorted
rhombic dodecahedron with the same topology, i.e. the same number of
faces, edges and vertices joined in the same way, as the cubic polyhedron
with the same morphology. The twofold axes are shown in green and the
generating point is orange.
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