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Mathematical knots and links are described as piecewise linear – straight, non-

intersecting sticks meeting at corners. Isogonal structures have all corners

related by symmetry (‘vertex’-transitive). Corner- and stick-transitive structures

are termed regular. No regular knots are found. Regular links are cubic or

icosahedral and a complete account of these (36 in number) is given, including

optimal (thickest-stick) embeddings. Stick 2-transitive isogonal structures are

again cubic and icosahedral and also encompass the infinite family of torus knots

and links. The major types of these structures are identified and reported with

optimal embeddings. The relevance of this work to materials chemistry and

biochemistry is noted.

1. Introduction

1.1. Knots and links

Weavings, knots, links and related geometrical structures

are currently of considerable interest in materials chemistry

and biochemistry, as testified in recent reviews (Lim &

Jackson, 2015; Flapan, 2015; Bruns & Stoddart, 2016; Pieters et

al., 2016; Horner et al., 2016; Fielden et al., 2017) and in other

recent reports (Danon et al., 2017; Wu et al., 2017; Kim et al.,

2018; Zhang et al., 2018; Leigh et al., 2019; Sawada, Saito et al.,

2019; Sawada, Inomata et al., 2019; Inomata et al., 2020).

Suggested knots most suitable for self-assembly have recently

been identified (Marenda et al., 2018). We are particularly

interested in such structures from the perspective of reticular

chemistry, which is concerned with the directed assembly of

symmetrical frameworks from molecular components (Yaghi

et al., 2003). Target materials include finite structures such as

polyhedra (Tranchemontagne et al., 2008). Pursuant to that

goal we analyze geometric structures as being piecewise linear,

considering this as most relevant to chemical structures at the

molecular level (Liu et al., 2018; O’Keeffe & Treacy, 2020). In

this approach we term the linear segments sticks, in accor-

dance with established practice in knot theory and to

emphasize that we are interested in structures with linear,

non-intersecting, edges. In knots, threads and loops, sticks

meet at 2-coordinated (2-c) vertices termed corners. For such

structures a transitivity c s t indicates that there are c kinds

(i.e. symmetry-related – ‘one orbit’) of corner, s kinds of stick

and t kinds of thread or loop. In the jargon, corner- (vertex-)

transitive structures are isogonal. Structures with transitivity

1 1 1 we term regular.

A major tenet of reticular chemistry is the principle of

minimal transitivity, which holds that structures most likely to

occur, and hence good targets for synthesis by design, are

those with minimal transitivity (Li et al., 2014). In earlier work

we surveyed the field with emphasis on periodic structures
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(Liu et al., 2018) and gave a detailed analysis of regular

2-periodic structures (O’Keeffe & Treacy, 2020).

In the present work we focus on finite structures such as

knots and links (chemically, polycatenanes) giving what we

believe is a reasonably complete survey of isogonal structures.

These are either stick-transitive (transitivity 1 1 1), for which

we believe all structures are identified, or stick 2-transitive

(transitivity 1 2 1), a category that includes the infinite family

of torus knots and links. Key structures are identified by

a three-letter symbol and can be found in the Reticular

Chemistry Structure Resource (RCSR, O’Keeffe et al., 2008)

in the section on Polyhedra, keyword ‘weaving’. We note an

earlier study (Hu et al., 2009) enumerating cubic and icosa-

hedral polycatenane structures. These were derived by repla-

cing faces of regular polyhedra with polygons with entwined

edges. As discussed in the supporting information, these were

not isogonal but had two or more kinds of corner (vertex).

A good account of knot theory, for those unfamiliar with

the topic, is the book by Adams (1994). Knots and links have a

characteristic crossing number, which may be informally

defined as the minimal possible number of crossings in a

planar drawing of the structure. Knots with a small number of

crossings are identified by the Alexander–Briggs (AB) symbol

ni in which n is the number of crossings and i is a serial

number. Similarly, links have a symbol nm
i where n is again the

number of crossings, m the number of linked loops and i again

is a serial number. A useful source of illustrations and infor-

mation about individual knots with small crossing numbers is

the Knot Atlas (http://katlas.org/wiki/Main_Page). However,

we note that the number of knots increases rapidly with

crossing number – there are >106 with crossing number � 16

(Hoste et al., 1998).

Traditionally, knots are analyzed and listed in order of

increasing crossing number. However, in this work we find

regular structures with crossing numbers of hundreds for

which the methods of knot theory become inappropriate. We

recall that simple crystalline materials have been made in

which rings are catenated to hundreds of others (Bonneau &

O’Keeffe, 2015).

We find that finite stick-transitive structures are cubic or

icosahedral and we give a full account of them. However,

there is a large number of the corresponding stick 2-transitive

cubic and icosahedral structures. We give data for all of these

but restrict detailed descriptions to those that can be made

with relatively thick sticks (defined below as large girth).

The other stick 2-transitive structures we recognize are

embeddings of the well documented torus knots and links

(Adams, 1994). We give data for these using our stick–corner

approach.

We do not claim to have determined the symmetries of

knots and links. A polyhedron (sensu stricto with a planar

3-connected graph) has a well defined maximum symmetry

and all embeddings must be with that symmetry, or be a

subgroup. Not so for knots. A well documented case is that of

knot 41 (Flapan, 1987, 1988). This knot is commonly illustrated

as chiral, with symmetry 222 ðD2Þ, but it has also an achiral

embedding with symmetry �44 (S4) (see illustration in the

supporting material). Curiously, these two symmetry groups

have no group–subgroup relationship; indeed, both have order

4, so the question of the symmetry of the knot is moot. But the

knot is achiral; it can readily be shown that the chiral repre-

sentation is isotopic with its mirror image (Fielden et al., 2017).

At the time this paper was submitted for publication we

were unaware of the book Orderly Tangles (Holder, 1983).

This work contains numerous illustrations of piecewise linear

models of knots and links. Particularly relevant to our work is

the part on ‘regular polylinks’ which contains illustrations of

many of the regular structures described below (Section 2).

Holden’s work was further elaborated by Lang (2002) who

enumerated the possibilities but gave no other details. We find

the same number of regular structures and present details. We

believe that illustrations, specific coordinates and catenation

details of all 36 structures are presented here for the first time.

We remark also that we could find no reference to those books

in the physical science literature.

1.2. Weavings on the sphere

Weavings on the sphere can conveniently be derived from

polyhedra with 4-c vertices (Jablan et al., 2011; Thompson &

Hyde, 2018). A weave commonly found in artwork and models

is related to the triaxial kagome weave, kgm, shown in Fig. 1.

Starting from the simple tiling of the plane by hexagons, hcb

(top left), the 4-c tiling, kgm (centre top), is derived as the edge

net obtained by placing vertices (corners) in the midpoints of

the edges of the original hcb net, and then connecting the new

vertices (O’Keeffe et al., 2008). This kagome pattern in turn

leads to the kagome weave, kgm-w (top right). Replacing 12

hexagons by pentagons will produce a simple (3-c) tiling of the

sphere, deg (12 pentagons, 30 hexagons), from which a triaxial

weaving can, in turn, be derived – that is, deg-e-w from deg-e

(middle row of Fig. 1). It can be seen that the threads in

deg-e-w are now closed, woven loops. Note that, since the
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Figure 1
The derivation of spherical weaves from polyhedra. Left column shows
the basic net; centre column shows the augmented net, generated by
replacing each vertex with three; the right column shows the resulting
weave when links are replaced with non-intersecting threads.



surface of the polyhedron is non-planar, weaves can be

derived directly by replacing polyhedron edges by sticks

joining further neighbors. In the limit of an all-pentagon

polyhedron (dod in the figure, lower right) it may be seen that

the loops in rkd (� dod-e-w � ido-w) are now regular

pentagons and the structure is now regular (transitivity 1 1 1).

In this communication we derive systematically all possible

regular weavings on the sphere.

It might be noted that we talk about weaving on the sphere,

but really the weaving is under-and-over (about) a surface –

just as weavings ‘on the plane’ are really under and over.

Periodic weavings about the plane are three-dimensional even

though they lack the ½00t� generator for periodicity out of the

plane, and exhibit one of the 80 layer-group symmetries (as

opposed to one of the 17 plane-group symmetries). We

mention this three-dimensionality because some of our

structures are the torus knots and links. They are equally

spherical weavings, but have the property that they can be

drawn on the surface of a torus with non-intersecting curved

threads. We show that these all have isogonal piecewise linear

embeddings.

1.3. Maximum-girth structures

We define girth of a piecewise linear structure as the ratio of

the shortest distance between sticks to the length of the

longest stick (Liu et al., 2018; O’Keeffe &Treacy, 2020). This

defines the thickest stick that could be used to make a model

of the structure and is similar to the procedure of finding the

maximum-diameter rope that can be used to make structures

from flexible constant-diameter ropes (Stasiak et al., 1998).

If coordinate space is systematically explored for a given

pattern of linking, local points of maximum girth can be

identified. These generally correspond to topologically distinct

structures but, as noted in earlier work, occasionally two local

maxima may correspond to isotopes (O’Keeffe & Treacy,

2020). Usually, these can be detected by inspection but, in

the case of stick 2-transitive icosahedral structures, their

complexity (crossing numbers in the hundreds) precludes easy

determination. On the other hand, the results are generally

unambiguous, particularly for regular structures.

2. Regular (stick-transitive) structures

The stick-transitive (i.e. transitivity c s t = 1 1 1 = ‘regular’)

spherical weavings are mathematical links, in chemistry poly-

catenanes, with cubic or icosahedral symmetry. As explained

below, the loops are planar regular polygons linked to other

such polygons by simple 2-crossing (Hopf) links. A structure

with n loops is known as an [n]catenane. We use the catenation

symbol u-v-w to describe a regular structure of u loops that are

v-gons, each of which is linked to w others.

It should be clear that catenated planar loops are only

possible with symmetries lacking mirror planes. They must

have sticks that are all related by symmetry axes of order 3 or

greater and which make a finite regular group. These axes

cannot be parallel. This limits the possible symmetries to the

cubic groups, 23 (T) and 432 (O), and the icosahedral group

235 (I). Specifically, the possibilities are:

23: four 3-rings.

432: eight 3-rings or six 4-rings.

235: 20 3-rings, six 5-rings or 12 5-rings.

We now describe these. Maximum girth and optimal coor-

dinates are given for all regular structures in Table 1 and for

some stick 2-transitive structures in Table 2.

2.1. Four 3-rings

We find two structures, RCSR symbols rka and rkh, with

four 3-rings, catenation symbol 4-3-3 (Fig. 2). In the maximum-

girth configuration rka actually has symmetry 432 and is one of

just two structures in which the coordinates (apart from a

scale factor) are fixed by symmetry (the other is for six

5-rings discussed below). Thus, for unit stick length, x; y; z =

0; 1=
ffiffiffi
6
p
; 1=

ffiffiffi
6
p

. We note a recent report of molecular assem-

blies with the rkh structure, wherein it is identified as the

‘three-crossed tetrahedral link’ (Sawada, Saito et al., 2019).
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Table 1
Data for the regular, stick-transitive, structures (c ¼ 1, s ¼ 1, t ¼ 1).

The coordinates are Cartesian and are normalized such that the stick length
equals 1. Sticks are defined as connections between vertex x; y; z to:�z;�x; y
for triangles in groups 23 and 432; z; x; y for triangles in group 235; x; z;�y for
squares; the matrix operation ½12 ; g;�G; g;G; 1

2 ; G;� 1
2 ; g� (x; y; zÞ for

pentagons (in rkd–rkn), where G ¼ ð
ffiffiffi
5
p
þ 1Þ=4, g ¼ ð

ffiffiffi
5
p
� 1Þ=4.

Catenation Symbol Group Girth x y z

4-3-3 rka 432 0.1380 0 1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

4-3-3 rkh 23 0.0893 0.2271 0.6715 0.0248
6-4-4 rkb 432 0.1408 0.2041 0.6487 �0.2813
6-4-4 rkc 432 0.0826 0.5078 0.6790 �0.1975
8-3-3 rki 432 0.0938 0.1934 0.6145 0.3126
8-3-3 rkj 432 0.0606 0.0160 �0.2076 0.5756
8-3-3 rkk 432 0.0949 0.4173 0.3970 �0.0617
6-5-5 rkd 235 0.1261 0 0 0.85065
12-5-5 rke 235 0.1049 0.0807 �0.8568 �0.6739
12-5-5 rkl 235 0.0618 0.5534 0.9909 0.8492
12-5-10 rkg 235 0.0939 0.0569 0.0200 0.8498
12-5-10 rkm 235 0.0249 0.9259 �0.0576 0.2339
12-5-10 rkn 235 0.0646 0.5844 �0.6413 0.1663
20-3-3 rla 235 0.0784 0.2255 0.2387 0.9391
20-3-3 rlb 235 0.0242 �0.1891 0.0751 0.6121
20-3-3 rlc 235 0.00711 0.0261 �0.1190 0.6494
20-3-6 rle 235 0.0600 �0.1878 0.0084 0.5967
20-3-6 rlf 235 0.0289 �0.0799 �0.1685 0.5787
20-3-6 rlg 235 0.0268 �0.0733 �0.1279 0.6049
20-3-9 rlh 235 0.0370 �0.2274 �0.0450 0.5530
20-3-9 rli 235 0.0362 �0.1763 �0.0755 0.5758
20-3-9 rlj 235 0.03520 �0.1312 0.2499 0.6847
20-3-9 rlk 235 0.03519 �0.2555 �0.0034 0.5431
20-3-9 rll 235 0.0314 0.5758 0.1763 0.0735
20-3-9 rlm 235 0.0096 0.1485 �0.0353 0.7455
20-3-9 rln 235 0.0075 �0.1043 �0.2231 0.5359
20-3-12 rlo 235 0.0292 �0.2955 0.0230 0.5148
20-3-12 rlp 235 0.0223 �0.3105 0.0886 0.5060
20-3-12 rlq 235 0.0145 �0.3035 �0.0363 0.4983
20-3-12 rlr 235 0.0137 �0.2790 �0.0792 0.5065
20-3-12 rls 235 0.00707 �0.1070 �0.2526 0.5160
20-3-12 rlt 235 0.0037 �0.1016 �0.2352 0.5292
20-3-15 rlu 235 0.0160 �0.2548 �0.0541 0.5310
20-3-18 rlv 235 0.0321 �0.2748 �0.1745 0.4771
20-3-18 rlw 235 0.0302 �0.1473 �0.2742 0.4877
20-3-18 rlx 235 0.0209 �0.3497 �0.0839 0.4518



2.2. Six 4-rings

We find two regular structures (rkb and rkc, Fig. 2) in which

pairs of 4-rings are parallel and each is catenated to four

others, symmetry 432, catenation symbol 6-4-4, crossing

number 24 (12 Hopf links). Interestingly, a molecular example

of a catenane with the rkc structure has recently been reported

(Sawada, Inomata et al., 2019) showing that links with large

crossing numbers are realistic targets for synthesis.

2.3. Eight 3-rings

We identify three distinct structures of catenated 3-rings

with symmetry 432 (Fig. 2). In every case, pairs of rings are

parallel. In one case (rki), each ring is catenated to three

others (symbol 8-3-3); in the other two (rkj and rkk) cases,

which are clearly different topologies, each ring is cate-

nated to six others (symbol 8-3-6).

2.4. Six and 12 5-rings

There is a unique structure (rkd, Fig. 1) with six linked

pentagons with coordinates fixed by symmetry and a scale

factor, linking symbol 6-5-5. It is shown again in Fig. 3. For

unit stick length the optimum-girth coordinates are 0; 0; z,

with z ¼ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ �Þ

p
¼ 0:8507 [� ¼ ð1þ

ffiffiffi
5
p
Þ=2]. Note

that the corners are at the positions of the vertices of a

regular icosidodecahedron (3.5.3.5) with symmetry m�33�55.

With 12 pentagons, coordinates are now in the general

positions of point group 235, and we find five structures.

In two of them, each pentagon is linked to five others

(symbol 12-5-5); in the other three, each pentagon is

linked to ten others (symbol 12-5-10). In Fig. 3 it is clear

that these are all topologically distinct (i.e. compare

separations of parallel pentagons).

2.5. Twenty triangles and five tetrahedra

With 20 linked triangles, in symmetry 235, there are

many possibilities. Structures [Figs. 4(a) and 4(b)] have

triangles linked to one of three, six, nine, 12, 15 or 18 others,

and as many as seven local maxima of girth for a given cate-

nation number, so we can be less sure that all reported

structures are distinct topologically, although we note that the

number of linked structures found (23) is the same as that

reported by Lang (2002). In the extreme case there are 180

Hopf links, so a crossing number at least 360 – a daunting

number for topological analysis. Accordingly, we report data

for, and depict, all 23 observed structures.

The structure map for this system of regular icosahedral

links is shown in Fig. 4(c). The coordinates x0 and y0 lie on the

unit sphere, with z0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x02 � y02

p
. The coordinates x; y; z,

presented in Table 1, are for unit stick length and are related

to the coordinates in this plot via x0 ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
etc.

The image intensity depicts log(girth) for the positive, z0 � 0,

hemisphere. The black lines decorating the sphere represent

paths of zero girth, where sticks intersect. Zones enclosed by
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Table 2
Data for selected cubic and icosahedral stick 2-transitive links (c ¼ 1, s ¼ 2,
t ¼ 1).

Coordinates are Cartesian and normalized such that the longer stick length equals 1.
The symbol x indicates that, because of complexity, we did not essay a crossing
number.

Symbol Catenation Group Girth x y z

knv 3-4-25 23 0.0813 0.4243 �0.2645 �0.1649
knd 3-4-0 m�33 0.25 0.5 0.25 0.0
knq 6-4-0 m�33 0.2 0.5 0.3 0.1
kop 6-4-14,42 432 0.1257 0.1124 0.2227 �0.5207
kor 6-4-14 432 0.0369 0.1164 �0.4903 0.2549
kos 6-4-14,42 432 0.0218 0.2064 0.3663 �0.2750
kot 6-4-54 432 0.0089 0.0471 0.4116 �0.3544
kou 4-6-34 432 0.0554 0.2699 0.4209 0.3655
kov 4-6-x (trefoil) 432 0.0530 0.2967 0.0402 0.2621
kow 4-6-x (trefoil) 432 0.0381 0.3831 0.2603 0.3755
kox 4-6-x (trefoil) 432 0.0305 0.3206 0.2986 0.5420
koy 15-4-122,20 235 0.0628 0.2006 0.4580 0.3952
koz 15-4-92,34,25 235 0.0440 0.3836 0.3206 0.2160
kpm 10-6-92 235 0.1171 0.2908 0.4068 0.5832
kpn 10-6-62,36 235 0.0643 0.1555 �0.4752 �0.4991
kpo 10-6-x (trefoil) 235 0.0393 0.2174 0.4503 �0.2326
kpp 6-10-54 235 0.0739 0.4665 �0.1799 0.5433
kpq 6-10-54 235 0.0359 �0.2705 �0.4206 �0.1850
kpr 6-10-x (cinquefoil) 235 0.0811 �0.3546 �0.3525 �0.5529
kps 6-10-x (cinquefoil) 235 0.0725 0.2475 0.4544 0.3953

Figure 2
Regular cubic links. The yellow spheres delineate the internal space.

Figure 3
Regular icosahedral links of catenated pentagons.



the dark lines represent a single struc-

ture whose girth varies smoothly within

the zone, and is zero at the boundaries.

The red dots within each zone indicate

the location of the maximum girth for

that linked structure (also listed in

Table 1). Moving a point x0, y0 across a

line means that sticks pass through each

other and the link structure changes.

When the shared zero-girth boundary is

a mirror plane, such as the two dashed

lines containing the �33 axis, the neigh-

boring structures are enantiomers.

There are 24 structurally distinct zones.

Twenty-three are the linked rl* family

depicted in Figs. 4(a) and 4(b) and listed

in Table 1. The 24th zone, the clover-leaf

pattern at the top right, is where

unlinked triangles exist [an example of

which, 20-3-0, is shown in Fig. 4(b)]. All

24 zones reside within the spherical

triangle depicted by dashed lines –

which is the asymmetric unit. This

asymmetric triangle is repeated 12 times

over the full sphere. The symmetry of

this structure map is �33m about the [111]

axis shown. This arises because the set

of all possible structures includes mirror-

image pairs of each structure and has symmetry m�33�55. We

describe all these structures using just one of the ten possible

threefold axes to define a triangle (each structure has ten

possible descriptions according to which threefold axis is used

to define a triangle), so our structure map has just one-tenth of

the symmetry, namely �33m: The lines of zero girth will obey the

lowered symmetry. Thus, there are ten available orientations

of the symmetry map, depending on which threefold axis we

choose to define the system.

In the structure rle [Fig. 4(a)] groups of four triangles come

together in a tetrahedral configuration. If groups of three

vertices in that configuration are merged, a group of five

interlocking tetrahedra (rkz, Fig. 5) results. This structure has

transitivity (vertices, edges, faces, polyhedra) 1 1 1 1. It is well

known to model builders – it occurs as model 24 in the work of

Wenninger (1974) – and, we think, it is the only regular

grouping of non-intersecting interpenetrating polyhedra. The

vertices are at the positions of the vertices of a regular

dodecahedron (symmetry m�33�55).
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Figure 4
(c) Structure map on the unit sphere for the regular icosahedral links of
catenated triangles depicted in (a) and (b) and listed in Table 1. The
intensity is scaled as logðgirthÞ. Black lines track regions of zero girth. The
dashed lines outline an asymmetric unit, of which there are 12 in the point
symmetry group �33m. The plot confirms that there are 24 structurally
distinct zones within each asymmetric unit. Twenty-three are the rl*
family. The 24th zone, within the clover-leaf pattern at the top right, is
where unlinked triangles exist. Red dots mark the locations of maximum
girth for each linked structure.

Figure 4
(a) Regular icosahedral links with each loop linked to three, six or 12 others. A pair of parallel
triangles is coloured blue. (b) Regular icosahedral links with each loop linked to nine, 15 or 18
others. A pair of parallel triangles is coloured blue.

Figure 5
A regular link of 20 triangles (rle) and a related regular cluster of five
tetrahedra (rkz).



3. Isogonal, stick 2-transitive cubic and icosahedral
structures

First, we ask again: ‘Which structures have cubic or icosahe-

dral symmetry?’. Now, a corner has neighbors related by two

distinct twofold axes, identifiable by the mutual angle between

their axes. The possibilities are:

Three 4-rings, symmetry 23, axes at 90	.

Six 4-rings, symmetry 432, axes at 90	.

Four 6-rings, symmetry 432, axes at 45	.

Fifteen 4-rings, symmetry 235, axes at 90	.

Ten 6-rings, symmetry 235, axes at 60	.

Six 10-rings, unknotted symmetry 235, axes at 36	.

Six 10-rings, knotted symmetry 235, axes at 72	.

3.1. Three 4-rings, symmetry 23

In group 23 there are three mutually perpendicular twofold

axes. Two, acting on a vertex, will generate a generally non-

planar quadrangle. We find two distinct ways of forming links.

In the first (knv, Fig. 6) pairs of rings are joined as the five-

crossing link, 52
1 , known as the Whitehead link. To indicate

this, we extend our notation to include subscripts to the

numbers of links, to show the crossing number of the link. So,

for this structure, the catenation symbol is 3-4-25. Note that,

for the two-loop Whitehead link (Fig. 6, top right), the two

loops are not symmetry equivalent (symmetry 222, transitivity

2 4 2). However, the three loops in knv augment the White-

head link and are now related by symmetry (23) with a simpler

transitivity, 1 2 1. This fascinating structure has a large

optimum girth (
0.08) and is surely a prime target for

synthesis.

There is a second three-loop structure with symmetry 23. In

this structure, pairs of loops are not directly linked, and we

recognize the structure as Borromean rings (knd) which, as

the loops are not directly linked, has optimal symmetry m�33
(Th). Actually, in this symmetry one can also have six non-

linked quadrangles with transitivity 1 2 1 in a structure, knq,

which we call ‘Borromean twins’. Data (girth, optimal coor-

dinates) for these structures are recorded in Table 2. The

Borromean rings have the largest optimum girth (0.25) for

any knot or link and it is not surprising that they have

occurred in many molecular assemblies. We believe (see the

supporting information) that these two structures are the only

isogonal knots or links that have embeddings with mirror

symmetry.

3.2. Six 4-rings, symmetry 432

In group 432 with neighbors of a vertex produced by

twofold axes at 90	, six 4-rings are obtained. Each ring has one

other ‘opposite’ (with a common twofold axis) and four

‘adjacent’. The pair of opposite rings form a Solomon

(4-crossing) link, as shown in Fig. 7. We find just one large-

girth structure (kop, girth = 0.126). In this structure adjacent

rings are linked by a Hopf (2-crossing) link so we write the link

symbol as 6-4-14,42. Three other smaller-girth structures, kor,

kos and kot, are shown in the figure and data are recorded in

Table 2.

3.3. Four 6-rings, symmetry 432

In group 432 with neighbors of a vertex produced by

twofold axes mutually inclined at 45	, four non-planar 6-rings

are obtained. We now find a large number of local maxima of

girth in coordinate space and we illustrate just four larger-girth

examples. In the first, largest-girth (kou, girth = 0.055) the

rings are unknotted skew hexagons and are linked to each

other by the 4-crossing Solomon link, as shown in Fig. 8. In our

other examples the rings are 31 (trefoil) knots linked in

distinct ways, as shown in the figure. The complete data set is

given as supporting material. We remind the reader that our

main purpose is to identify structures amenable to designed

synthesis and that large-girth structures are the most favour-

able in this respect.

3.4. Fifteen 4-rings, symmetry 235

Using two twofold axes mutually inclined at 90	 (as usual, to

generate the opposite ends of the two stick types), in group

235, 15 non-planar quadrangles are generated. These, in turn,

form two groups of structures which are fivefold inter-

penetrations of the three 4-ring structures generated in group

23. These are the Whitehead linked structure, knv, and the

Borromean rings knd (Fig. 6). So koy contains five distinct
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Figure 6
Isogonal cubic links of three quadrangles. Top (knv) quadrangles linked
by Whitehead links. Bottom Borromean rings in maximum-symmetry
embeddings. Also shown are ‘Borromean twins’ (six quadrangles).

Figure 7
Isogonal cubic links formed from six quadrangles joined by Solomon
links.



Borromean triplets – a fact that compounds the difficulty in

determining crossing numbers for these links. Fig. 9 illustrates

the two largest-girth examples of these structures, koy and

koz. The pattern of linking can now be complex. In addition to

the Whitehead links, each ring in koz is linked to nine others in

Hopf (2-crossing) links and three with Solomon (4-crossing)

links, and the catenation symbol becomes 9-4-92,34,25. Data for

these structures are included in Table 2.

3.5. Ten 6-rings, symmetry 235

Using two twofold axes, mutually inclined at 60	, ten 6-rings

are generated in group 235. These are non-planar, and may be

unknotted or knotted, to form 3-crossing trefoil knots. We give

three larger-girth examples in Fig. 10. In kpm, each ring is

catenated by Hopf links to nine others – catenation symbol

10-6-92; in kpn, there are six Hopf links and three 6-crossing

links [torus knot (6,2) discussed later] – catenation symbol

10-6-62,36. In kpo, the rings become trefoil knots, each cate-

nated to nine others. Note that kpm particularly has large

optimum girth (0.117).

3.6. Six 10-rings, symmetry 235

With twofold axes mutually inclined at 36	 in group 235

acting on a point, skew, but unknotted, decagons are gener-

ated. We show two larger-girth examples, kpp and kpq, in Fig.

11. In both, each ring is catenated to five others by a Solomon

link – catenation symbol 6-10-54.

If instead, the chosen twofold axes are mutually inclined at

72	, then knotted decagons are generated which are cinquefoil

knots [torus knot (5,2) discussed below]. In Fig. 12 we show

two larger-girth examples, kpr and kps. We do not essay a

linking symbol, but note that each linked pair has a crossing

number of 10 just from self-crossings.
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Figure 10
Isogonal icosahedral links of ten hexagons showing different patterns of
catenation.

Figure 8
Isogonal cubic links of four non-planar hexagons.

Figure 11
Isogonal icosahedral links of six unknotted decagons.

Figure 9
Isogonal icosahedral links of 15 rectangles comprised of five interpene-
trating Borromean triplets (top) and five interpenetrating triplets of
Whitehead links (bottom).



4. Knots and links with axial symmetry

There are infinitely many knots and links with isogonal

piecewise linear embeddings. They have the symmetries of the

axial groups n2 (Dn) with n odd or n22 (Dn) with n even. As

mentioned earlier, they can be drawn on the surface of a torus

with non-intersecting threads, hence the name torus knots and

links.

They are characterized by two integers ðp; qÞ with

p � q � 2. If p; q are coprime the structure is a knot, other-

wise it is a link with the number of loops equal to the greatest

common divisor, r, of p and q. Specifically, there are r inter-

woven ðp=r; q=rÞ knots. In this context note that ðp; 1Þ is an

unknotted 2p-gon.

To get an embedding, we use Cartesian coordinates and

note that with symmetry n2 or n22 and the n-fold axis along z,

the set of 2n points derived from one point x ¼ ðx; y; zÞ when

projected down z, lie on a circle with points with positive and

negative z coordinates alternating. Without loss of generality,

we can take one twofold axis to be along the x axis and the

point, x, to be the positive triplet closest to the x axis (see Fig.

13). To generate the knot/link we now add sticks from x to

points that are the ith neighbor clockwise and jth neighbor

anticlockwise, as shown by the blue lines in the figure. To make

a knot/link, i and j must be odd. q in the knot symbol is

q ¼ ðiþ jÞ=2. Note that q defines the structure for a given p;

for example, i, j = 1,5 and 3,3 are topologically the same.

The structures can be derived from a segment of a linear

bundle of q helices repeating p times with opposite ends of

threads joined. The crossing number of the knot/link is

pðq� 1Þ.

Torus knots are particularly important in natural DNA

structures (e.g. Reith et al., 2012). They also feature promi-

nently in the knots most amenable to construction by molec-

ular self-assembly (Marenda et al., 2018). Notable recently

achieved molecular examples are (4,3) (Danon et al., 2017),

(8,3) (Kim et al., 2018), and (7,2) and (8,2) (Inomata et al.,

2020).

The links with p ¼ q are usually included in the family but

the loops are digons, which are not realizable piecewise linear.

We note that (2,2) is just the Hopf link 22
1 and (3,3) is 63

3 – both

with piecewise linear embeddings with triangles and transi-

tivity 2 2 1, as shown in Fig. 14.

We have determined optimum-girth configurations for all

knots and links ðp; qÞ for p � 13. Figs. 15 and 16 illustrate

knots for p � 11 and Figs. 17 and 18 illustrate links for p � 12.
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Figure 13
Generation of the torus knots ð5; qÞ. The fivefold axis is normal to the
page and a twofold axis is along the x direction (red arrow). The points
are generated by the fivefold rotation matrix R and the twofold rotation
matrix S. Numbers in blue are the number of steps made by the blue
arrows; q is half the sum of those numbers.

Figure 14
Torus links ðp; pÞ. On the left (2,2) is shown as linked digons and
piecewise linear as linked triangles. The symmetries are 222, 32 and 422,
respectively, and the transitivity 2 2 1 in each case.

Figure 15
Maximum-girth embeddings for torus knots ðp; qÞ for p ¼ 3–7.

Figure 12
Isogonal icosahedral links of six knotted (cinquefoil) decagons.



Data (girth, coordinates and stick lengths) are reported in

Table 3. The rest of the structures are reported in the

supporting information.

Optimum girth in the torus knots and links is always less

than 1
4 and it generally decreases with increasing p and q. For

example, a plot of girth versus q for the ð13; qÞ family (Fig. 19,

blue squares) shows that girth decreases monotonically with q,

with the peak value occurring at q ¼ 2. Because p ¼ 13 is a

prime number, all of that family are knots (see the supporting

information). The red circles in the plot indicate how girth for

the ðp; 2Þ structures varies with p. In this case, there is a peak

girth g ¼ 0:2357 for p ¼ 4, and the girth then decreases

monotonically with p. For p � 7, girth values fit well to a

negative exponential,

gðpÞ ’ 0:0525þ 0:2362 expð�0:0790pÞ:

It is notable in the graph (Fig. 19) that the maximum girth

for (3,2) (Fig. 15, top left) is less than that for (4,2) (Fig. 17, top

left), breaking the monotonic trend. It appears that the tighter

angles in (3,2), compared with (4.2), constrict the stick widths,

despite (3,2) appearing to have the larger girth in the

projection shown along z.

5. Concluding remarks

According to Grünbaum & Shephard (1985) there are no

knots with cubic or icosahedral symmetry. The symmetry then

has to be one of the uniaxial groups. They state further that

there are no knots with mirror planes normal to that axis other

than 2=m. However, they considered knots to be composite (a
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Table 3
Data for torus knots ðp; qÞ for p � 10 and links ðp; qÞ p � 12 (marked *).

For these knots, ðc ¼ 1; s ¼ 2; t ¼ 1Þ. Cartesian coordinates are for a twofold
axis along the x direction, and longer stick length equal to 1.0.

Symbol Girth x y z Stick 2
Angle
(	)

(3,2) 0.1748 0.1354 0.4363 0.2442 0.8297 50.19
(4,2)* 0.2051 0.4225 0.2175 0.2673 0.6892 65.50
(4,3) 0.0977 0.0955 0.4017 0.2978 0.9214 35.08
(5,2) 0.2057 0.2800 �0.4197 �0.2718 0.6083 68.34
(5,3) 0.1351 0.1691 0.4002 0.2997 0.8265 52.77
(5,4) 0.0606 0.0718 0.3836 0.3207 0.9531 27.04
(6,2)* 0.1981 0.3318 �0.4203 �0.2708 0.5632 66.07
(6,3) 0.1492 0.2289 0.4011 0.2986 0.7525 61.71
(6;4)* 0.0915 0.1326 0.3857 0.3181 0.8852 43.49
(6,5) 0.0412 0.0576 0.3741 0.3317 0.9685 22.10
(7,2) 0.1882 0.3767 �0.4221 �0.2679 0.5395 61.89
(7,3) 0.1535 0.2799 �0.4029 �0.2961 0.6964 65.85
(7,4) 0.1072 0.1847 0.3884 0.3149 0.8251 53.67
(7,5) 0.0657 0.1088 0.3770 0.3285 0.9173 37.01
(7,6) 0.0299 0.0483 0.3685 0.3379 0.9773 18.73
(8,2)* 0.1781 0.4164 �0.4244 �0.2643 0.5287 57.23
(8,3) 0.1532 0.3248 �0.4052 �0.2929 0.6537 67.20
(8,4)* 0.1152 0.2306 0.3912 0.3114 0.7750 59.96
(8,5) 0.0800 0.1539 0.3800 0.3250 0.8680 47.20
(8,6)* 0.0494 0.0924 0.3714 0.3348 0.9373 32.24
(8,7) 0.0227 0.0417 0.3649 0.3418 0.9829 16.27
(9,2) 0.1685 0.4523 �0.4268 �0.2604 0.5259 52.70
(9,3)* 0.1506 0.3651 �0.4076 �0.2896 0.6213 66.89
(9,4) 0.1188 0.2717 �0.3939 �0.3079 0.7334 63.72
(9,5) 0.0886 0.1944 0.3830 0.3214 0.8243 54.23
(9,6)* 0.0619 0.1320 0.3743 0.3315 0.8961 42.07
(9,7) 0.0385 0.0804 0.3675 0.3390 0.9507 28.57
(9,8) 0.0178 0.0366 0.3625 0.3444 0.9866 14.39
(10,2)* 0.1596 0.4852 �0.4292 �0.2566 0.5279 48.56
(10,3) 0.1469 0.4019 �0.4100 �0.2862 0.5965 65.60
(10,4)* 0.1200 0.3092 �0.3967 �0.3044 0.6988 65.79
(10,5) 0.0936 0.2313 0.3859 0.3179 0.7864 59.06
(10,6)* 0.0701 0.1679 0.3772 0.3282 0.8580 49.29
(10,7) 0.0493 0.1156 0.3703 0.3360 0.9159 37.93
(10,8)* 0.0309 0.0713 0.3648 0.3419 0.9602 25.66
(10,9) 0.0144 0.0327 0.3608 0.3462 0.9892 12.91
(12,2)* 0.1439 0.5438 �0.4335 �0.2491 0.5396 41.56
(12,3)* 0.1384 0.4673 �0.4146 �0.2795 0.5639 61.54
(12,4)* 0.1184 0.3759 �0.4017 �0.2977 0.6455 66.80
(12,6)* 0.0788 0.2319 0.3827 0.3217 0.7932 58.53
(12,8)* 0.0470 0.1323 0.3698 0.3365 0.9010 41.53
(12,9)* 0.0335 0.0930 0.3651 0.3416 0.9415 31.67
(12,10)* 0.0212 0.0582 0.3613 0.3456 0.9725 21.33

Figure 16
Maximum-girth embeddings for torus knots ðp; qÞ for p ¼ 8–10.

Figure 17
Maximum-girth embeddings for torus links ðp; qÞ for p ¼ 1–9.



linking of two or more smaller knots) as well as prime (not

composite).

On the symmetry of embeddings of knots and links we offer

the following educated guesses (‘conjectures’ is too grand a

word in this case). Always excepting Borromean rings, which

are sui generis, for finite (no translational symmetry) prime

knots and links:

(i) All isogonal embeddings are chiral.

(ii) The only stick-transitive (isotoxal) structures are the

links we have described here (Section 2).

(iii) No prime knots have mirror symmetry, so the only

achiral embeddings of these have symmetry �NN, where N is odd

or a multiple of 4.

In this paper we have restricted the discussion to knots and

links – structures in which two sticks meet at a corner.

However, molecular structures are also found that are based

on tangled polyhedra (e.g. Domoto et al., 2020), entering the

more general mathematical world of ravels (Castle et al., 2008,

2009). In a piecewise linear embedding there are now three-

and higher-valent vertices. Isogonal three-valent structures

can readily be derived from the structures presented here. We

adduce three simple examples (Fig. 20). From the [4] catenane

rka (Fig. 2) adding an extra edge produces the tangled trun-

cated tetrahedron 3.62 (qlz) shown (symmetry now 23). From

the trefoil knot (3,2) adding an extra link produces the

complete bipartite graph K3;3. This occurs in molecular

structures as a ‘Möbius ladder’ (Flapan, 2015). Finally, adding

extra edges to the Solomon link (4,2) produces the tangled

cube, esd, the ‘wreath cube’ (Hyde & Schröder-Turk, 2007).

For amplification see the supporting information.
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