
research papers

Acta Cryst. (2020). A76, 713–718 https://doi.org/10.1107/S2053273320012668 713

Algorithms for target transformations of lattice
basis vectors
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Simple algorithms are proposed for the transformation of lattice basis vectors to

a specific target. In the first case, one of the new basis vectors is aligned to a

predefined lattice direction, while in the second case, two of the new basis

vectors are brought to a lattice plane with predefined Miller indices. The multi-

dimensional generalization of the algorithm is available in the supporting

materials. The algorithms are useful for such crystallographic operations as

simulation of zone planes (i.e. geometry of electron diffraction patterns) or

transformation of a unit cell for surface or cleavage energy calculations. The

most general multi-dimensional version of the algorithm may be useful for

the analysis of quasiperiodic crystals or as an alternative method of

calculating Bézout coefficients. The algorithms are demonstrated both

graphically and numerically.

1. Introduction

The transformation of lattice basis vectors is a key mathe-

matical operation in crystallography. It is expressed using a

transformation matrix [S] (Ai = ajSji) connecting old

(a1, a2, a3), and new (A1, A2, A3) lattice basis vectors. If det[S]

= �1 and Sij 2 Z, then Ai and ai are the bases of the same

lattice/form the unit cells of the same crystal structure. Such

unit-cell transformations are useful for analysing the struc-

tures of polymorphs (Müller, 2013; de la Flor et al., 2016), twin

laws (Nespolo & Ferraris, 2006; Zhang et al., 2010; Marzouki et

al., 2014), phase transitions (Howard & Stokes, 2005), tilting of

structural polyhedra (Glazer, 1972, 1975) and nanoscale

stacking order (Biermanns et al., 2011). The ability to ‘view’

the same crystal structure using different unit-cell settings is

crucial for a skilful crystallographer.

This article introduces new algorithms for the transforma-

tion of basis vectors for a specific target. The first version of

the algorithm enables the transformation (Ai = aj Sji , det[S] =

�1) such that A3 is parallel to a target lattice vector T. The

second version results in A1, A2 parallel to a target lattice

plane (hkl) and A3 connecting lattice points of two adjacent

planes. In this way the algorithm suggests an alternative

approach to calculate the Bézout coefficients (Bézout, 1779).

In contrast with other number-theoretical approaches [e.g.

the extended Euclidean algorithm (Knuth, 1997)], the new

algorithms are easily extendable to higher-dimensional

lattices. In addition, two- and three-dimensional versions

allow for clear visualization using lattice directions and their

stereographic projections. The algorithms are useful for the

simulation of electron diffraction patterns or for exploring the

two-dimensional periodicity of crystal structures within a

given lattice plane. It is necessary to follow the algorithms

whenever the indices of a target direction or a plane are
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non-trivial. The output can be used in structure visualization

programs [e.g. VESTA (Momma & Izumi, 2011)], for the

structure utilities of the Bilbao Crystallographic Server

(Aroyo, Perez-Mato et al., 2006; Aroyo, Kirov et al., 2006) and

for the ab initio calculation of surface energy (Tran et al., 2016;

Kresse & Furthmüller, 1996; Schwarz et al., 2002). The multi-

dimensional version of the algorithm might be useful for the

analysis of quasiperiodic materials. The algorithm is deposited

as a MATLAB program.

2. Transformation to a target direction

The list of notations and relevant crystallographic relations

are available in Appendix A. The names of the two-, three-

and multi-dimensional algorithms are PARA, TRIO and

MULDIN, respectively. PARA and TRIO are described here,

while MULDIN is deposited in the supporting information.

2.1. PARA: two-dimensional lattice

This algorithm transforms the basis vectors a1, a2 to A1, A2

such that A2 k T = x1a1 + x2a2. Table S1 and Fig. S1 (in the

supporting information) provide a step-by-step illustration of

the algorithm for the example target vector T = ½23�.
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Figure 1
The transformations of the basis vectors given in the rows of Table 1: panel (a) corresponds to the first row in Table 1 with n = 0, panel (b) to the second
row with n = 1 etc. The directions are drawn on the stereographic projection, which includes the poles of a cubic crystal lattice with a maximum index of
10. Panel (a) uses the stereographic projection along [001], and panels (b) to (d) use the stereographic projection along ½111�.

Table 1
Information for each TRIO iteration for the transformation to the target
vector T = ½142�.

The table is organized in the same way as Table S1. Iterations 3 and 4 in this
example follow the PARA algorithm. For the first row [X(�1)] = [x].

n [X(n�1)] [Sm] [S(n)] [X(n)]

0
1

4

2

2
4

3
5 0 1 0

1 0 0

0 0 1

2
4

3
5 4

1

2

2
4

3
5

1
4

1

2

2
4

3
5 1 1 0

0 1 0

0 1 1

2
4

3
5 0 1 0

1 1 0

0 1 1

2
4

3
5 3

1

1

2
4

3
5

2
3

1

1

2
4

3
5 1 0 1

0 1 1

0 0 1

2
4

3
5 0 1 1

1 1 2

0 1 2

2
4

3
5 2

0

1

2
4

3
5

3
2

0

1

2
4

3
5 1 0 1

0 1 0

0 0 1

2
4

3
5 0 1 1

1 1 3

0 1 2

2
4

3
5 1

0

1

2
4

3
5

4
1

0

1

2
4

3
5 1 0 1

0 1 0

0 0 1

2
4

3
5 0 1 1

1 1 4

0 1 2

2
4

3
5 0

0

1

2
4

3
5



Iteration 0: We transform the basis vectors ai to A
ð0Þ
i = �ai

(‘�’ is taken if xi is negative) and rearrange them so that

det[S(0)] = 1, where [S(0)] is a 2�2 transformation matrix

A
ð0Þ
i = ajS

ð0Þ
ji [Fig. S1(a)]. According to equation (19) in

Appendix A the new coordinates of T are [X(0)] = [S(0)]�1[x].

All the components of [X(0)] are non-negative.

Iteration n: We replace one of the basis vectors by

A
ðn�1Þ
1 þA

ðn�1Þ
2 . This creates two transformation variants

[AðnÞi = A
ðn�1Þ
j Sji],

S1

� �
¼

1 0

1 1

� �
; S1

� ��1
¼

1 0

1 1

� �
; ð1Þ

S2

� �
¼

1 1

0 1

� �
; S2

� ��1
¼

1 1

0 1

� �
: ð2Þ

Because det[S] = 1, A
ðnÞ
i form the basis of the same lattice for

both variants. The coordinates of T transform as

X
ðnÞ
1

X
ðnÞ
2

" #
1

¼
1 0

1 1

� �
X
ðn�1Þ
1

X
ðn�1Þ
2

" #
;

X
ðnÞ
1

X
ðnÞ
2

" #
2

¼
1 1

0 1

 !
X
ðn�1Þ
1

X
ðn�1Þ
2

" #
:

ð3Þ

The exit condition of the algorithm is that one of X
ðnÞ
i is zero.

This happens if X
ðn�1Þ
1 = X

ðn�1Þ
2 . If valid, the exit condition

holds for both transformation variants. We can choose variant

(2) to ensure that A
ðnÞ
2 k T . The final transformation ai!Ai is

given by the matrix product,

Sðf Þ
� �

¼ Sðn�1Þ
� �

S2

� �
: ð4Þ

If the exit condition is not fulfilled, we select the variant m

yielding all positive X
ðnÞ
i : X

ðn�1Þ
1 <X

ðn�1Þ
2 and X

ðn�1Þ
1 >X

ðn�1Þ
2

force the choice of m = 1 [Fig. S1(c)] and m = 2 [Fig. S1(b)],

respectively. The transformation ai ! A
ðnÞ
i is

SðnÞ
� �

¼ Sðn�1Þ
� �

Sm

� �
: ð5Þ

The algorithm continues to the next iteration until the exit

condition is reached [Fig. S1(d)].

2.2. TRIO: three-dimensional lattice

This algorithm transforms the basis vectors of a three-

dimensional lattice ai! Ai so that A3 k T = xiai. Table 1 and

Fig. 1 support the explanations.

Iteration 0: We transform the basis vectors A
ð0Þ
i = �ai as in

PARA, followed by their permutations ensuring the ‘right-

handedness’ of A
ð0Þ
i {det[S(0)] = 1}, where [S(0)] is a 3�3

transformation matrix between ai and A
ð0Þ
i [Fig. 1(a)]. The new

non-negative coordinates of T become [X(0)] = [S(0)]�1[x].

Iteration n: We replace one of the basis vectors by

A
ðn�1Þ
1 þA

ðn�1Þ
2 þA

ðn�1Þ
3 , creating three transformation variants

[A
ðnÞ
i = A

ðn�1Þ
j Sji]:

S1

� �
¼

1 0 0

1 1 0

1 0 1

0
@

1
A; S1

� ��1
¼

1 0 0

1 1 0

1 0 1

0
@

1
A; ð6Þ

S2

� �
¼

1 1 0

0 1 0

0 1 1

0
@

1
A; S2

� ��1
¼

1 1 0

0 1 0

0 1 1

0
@

1
A; ð7Þ

S3

� �
¼

1 0 1

0 1 1

0 0 1

0
@

1
A; S3

� ��1
¼

1 0 1

0 1 1

0 0 1

0
@

1
A: ð8Þ

Because det[S] = 1, A
ðnÞ
i and ai build the same lattice for all

three variants. The new coordinates of T are

X
ðnÞ
1

X
ðnÞ
2

X
ðnÞ
3

2
4

3
5

m

¼ Sm

� ��1
X
ðn�1Þ
1

X
ðn�1Þ
2

X
ðn�1Þ
3

2
4

3
5: ð9Þ

The exit condition (two of the new T coordinates are zero) is

fulfilled if X
ðn�1Þ
1 = X

ðn�1Þ
2 = X

ðn�1Þ
3 . If valid, it holds for all three

variants but choosing [S3] ensures A
ðnÞ
3 k T. The transforma-

tion ai ! Ai is [S(f)] = [S(n�1)] [S3]. Otherwise, we select the

variant m, which gives non-negative X
ðnÞ
i . According to

equations (6)–(9), m is defined such that

X ðn�1Þ
m ¼ min X

ðn�1Þ
i

h i
: ð10Þ

If equation (10) is fulfilled only for one m then none of X
ðnÞ
i is

zero [Fig. 1(b), m = 2]. The transformation ai ! A
ðnÞ
i is

SðnÞ
� �

¼ Sðn�1Þ
� �

Sm

� �
: ð11Þ

This moves the algorithm to the iteration n + 1.

However, equation (10) might be valid for two variants if

e.g. X
ðn�1Þ
m1 = X

ðn�1Þ
m2 <X

ðn�1Þ
m3 . Then either [Sm1] or [Sm2] could

be selected for the next iteration, which yields X
ðnÞ
m2 ¼ 0

or X
ðnÞ
m1 ¼ 0, respectively. The transformation ai ! A

ðnÞ
i is

described by equation (11) with m = max(m1, m2), which

ensures X
ðnÞ
3 6¼ 0 [m = 3, X

ðnÞ
2 = 0 in Fig. 1(c)]. The algorithm

will be completed by PARA with respect to the vectors a1 =

A
ðnÞ
j and a2 = A

ðnÞ
3 such that X

ðnÞ
j 6¼ 0 [Figs. 1(d) and 1(e)].

Table 1 and Fig. 1 show that the example of the TRIO

algorithm where the target vector is T = ½142� results in

A1 A2 A3ð Þ ¼ a1 a2 a3ð Þ

0 1 1

1 1 4

0 1 2

2
4

3
5: ð12Þ

3. Transformation of basis vectors to a target lattice
plane

We will show how TRIO helps transform the basis vectors

ai! Ai so that A1, A2 are parallel to the reticular (lattice)

planes with Miller indices (hkl). Such planes are perpendicular

to a reciprocal-lattice vector T* = hia
�
i , and the inter-planar

distance is the inverse length of T* [see e.g. De Graef &

McHenry (2012) and Giacovazzo (1992)]. We apply TRIO to

the reciprocal basis vectors a�i ! A�i with the target vector

T� ¼ hi a�i :

research papers
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A�1 A�2 A�3ð Þ ¼ a�1 a�2 a�3ð Þ S�½ �; S�½ � ¼

S�11 S�12 h

S�21 S�22 k

S�31 S�32 l

0
@

1
A:
ð13Þ

We can calculate the equivalent matrix of transformation of

the direct-lattice vectors [equation (21) in Appendix A],

A1 A2 A3ð Þ ¼ a1 a2 a3ð Þ ½S� ½S�T ¼ S�½ �
�1

� �
: ð14Þ

This will result in A1, A2 ? T*. Because Ai form the basis of

the same lattice, A1, A2 are the basis of the two-dimensional

lattice in the (hkl) planes and A3 connects two adjacent planes.

This algorithm applies for two-dimensional (Table S2/Fig. S2)

and multi-dimensional cases alike. The three-dimensional case

is illustrated in the key application below and in Table S3/Fig.

S3. The multi-dimensional version (supporting information)

may be useful for the analysis of quasicrystals where

projecting the multi-dimensional lattice onto one of its three-

dimensional sub-lattices is required.
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Figure 2
Illustrations of the new basis vectors for a cubic lattice and pre-selected zone axes, corresponding to the rows in Table 2: panel (a) corresponds to the first
row in Table 2 with zone axis [110], panel (b) to the second row with zone axis [111] etc. The projection of the basis vectors a�i is shown in the bottom left-
hand corner of each panel.

Table 2
The transformations of the reciprocal-lattice basis vectors of a cubic
lattice (a = 4 Å) to pre-selected zones.

The last column shows the corresponding two-dimensional lattice parameters.

Zone axis [S*] A�1 , A�2 , ffðA�1;A�2Þ

[110]
0 1 0

0 1 1

1 0 0

0
@

1
A 0.25 Å�1, 0.36 Å�1, 90	

[111]
1 0 0

0 1 0

1 1 1

0
@

1
A 0.35 Å�1, 0.35 Å�1, 60	

[123]
2 1 0

1 2 1

0 1 1

0
@

1
A 0.56 Å�1, 0.61 Å�1, 137	

[431]
1 0 0

0 1 0

4 3 1

0
@

1
A 1.03 Å�1, 0.79 Å�1, 23	



Note that the coordinates of A3 (or vector AN for the

multi-dimensional case) are known as Bézout coefficients

(Bézout, 1779). Therefore, the algorithm may be useful as an

alternative method for finding such coefficients for any

number of dimensions.

4. Simulation of the geometry of zone planes
perpendicular to the target zone axis

The ‘zone axis’ is the direction parallel to a lattice vector T =

ui ai (ui 2 Z). The reciprocity of direct and reciprocal lattices

means that T is normal to the reciprocal-lattice planes with

‘Miller’ indices ui. Zones appear e.g. in electron diffraction as

two-dimensional sections of reciprocal space by a nearly flat

Ewald sphere (Vainshtein, 2013) or in Laue diffraction

patterns (Helliwell et al., 1989; Ren et al., 1999; Send et al.,

2009) as visually striking second-order curves – ellipses,

hyperbolas and parabolas.

Using T as a target of TRIO, we obtain the transformation

matrix [S] for the direct-lattice vectors with A3 k T. The

corresponding reciprocal-lattice vectors A�i = a�j S�ji are trans-

formed by [S*]T = [S]�1, with A�1;A�2 parallel to the zone

plane. The two-dimensional lattice parameters of a zone are

obtained from the components of the reciprocal metric tensor

and equation (22):

G�½ � ¼ S�½ �
T

g�½ � S�½ �; ð15Þ

followed by

A�1 ¼ G�11ð Þ
1=2; A�2 ¼ G�22ð Þ

1=2;

cos ff A�1;A�2ð Þ ¼
G�12

G�11G�22

� �1=2
: ð16Þ

Table 2 and Fig. 2 demonstrate four ‘zones’ of a cubic lattice

(aiaj = a2�ij) with a = 4 Å.

Section S5 in the supporting information shows another

application of the algorithm for the transformation of a unit

cell (the LiNbO3 crystal structure is considered). In particular,

it demonstrates the extension of the algorithm for the case of a

non-primitive conventional unit cell.

5. On the length of the vectors Ai

The algorithms introduced here help in reaching one of infi-

nitely many transformations to the specific target. However,

the course of the algorithms does not depend on the matrix of

dot products [G] or lattice parameters. Under these condi-

tions, the transformed lattice parameters remain undefined

and it is therefore impossible to choose one variant of the

transformation over another. If [G] is known, the existing

lattice reduction algorithms [e.g. Niggli (1928)] can be applied

to transform the subset of Ai (e.g. A1 and A2) without chan-

ging the target. For example, it is possible to apply the

Minkowski algorithm to reduce the lengths of vectors A1 and

A2 [e.g. Rote (1997) and Helfrich (1985)].

6. Related literature

The following references are cited in the supporting infor-

mation: Abrahams et al. (1966), Ong et al. (2013), Weis &

Gaylord (1985).

7. Conclusions

We have presented algorithms for the transformation of lattice

basis vectors, so that one of the vectors is parallel to a target

direction T, or alternatively two of the vectors are parallel to

the target lattice planes (hkl). Such transformations are useful

for e.g. the simulation of electron diffraction (presented here)

and the transformation of crystal structures for exposing

certain lattice planes (supporting information). We generalize

the algorithm to the multi-dimensional case (MULDIN algo-

rithm, supporting information), which may be useful for the

analysis of quasiperiodic crystals or as an alternative approach

for finding multi-dimensional Bézout coefficients.

APPENDIX A
Symbols, notation and important crystallographic
relationships

The indices i, j run from 1 to N (N is the number of space

dimensions). The Einstein summation rule applies to these

indices but is abandoned for the index in brackets (m).

ai are linearly independent basis vectors of an N-dimen-

sional crystal lattice. Ai are transformed basis vectors of the

same crystal lattice. We assume that both sets determine

primitive unit cells, otherwise the transformation to such must

be performed.

a�i are the reciprocal basis vectors, such that their dot

products with ai are a�i 
 aj = �ij (here �ij is the Kronecker

delta). A�i are the reciprocals of the transformed basis vectors

such that A�i 
Aj = �ij .

[g] and [g*] are the components of the direct and reciprocal

metric tensors: gij = ai 
 aj and g�ij = a�i 
 a
�
j . [G] and [G*] are the

analogous components for the transformed basis vectors: Gij =

Ai 
 Aj and G�ij = A�i 
A
�
j .

xi are the direct lattice coordinates of a vector T = xiai. Xi

are the coordinates of the same vector relative to the trans-

formed basis vectors: T = XiAi.

hi (hk for two- and hkl for three-dimensional cases) are the

reciprocal-lattice coordinates of a vector T* = hi a�i . Hi are the

transformed coordinates of the same vector: T* = Hi A�i .

[S] is the N�N matrix of the ai! Ai transformation. The

columns of [S] are the coordinates of Ai relative to ai, so that

Ai = ajSji. For the three-dimensional case, the formal matrix

equation applies:

A1 A2 A3ð Þ ¼ a1 a2 a3ð Þ

S11 S12 S13

S21 S22 S23

S31 S32 S33

0
@

1
A or Ai ¼ ajSji:

ð17Þ
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Acta Cryst. (2020). A76, 713–718 Semën Gorfman � Target transformations of lattice basis vectors 717



Ai form a primitive unit cell of the same lattice if Sij 2 Z and

det[S] = �1. (det[S] = �1 if the transformation changes the

handedness of the coordinate system.)

[S*] is the N�N matrix of transformation for the reciprocal-

lattice vectors:

A�1 A�2 A�3ð Þ ¼ a�1 a�2 a�3ð Þ

S�11 S�12 S�13

S�21 S�22 S�23

S�31 S�32 S�33

0
@

1
A or A�i ¼ a�j S�ji:

ð18Þ

[x], [X] are the N�1 columns of the numbers xi, Xi , respec-

tively. [h], [H] are the 1�N rows of the reciprocal-lattice

coordinates hi, Hi .

The following transformations are used in this paper (De

Graef & McHenry, 2012; Hahn, 2005; Giacovazzo, 1992).

The transformation of the direct- and reciprocal-lattice

coordinates of a vector:

½X� ¼ ½S��1
½x�; ð19Þ

½H� ¼ ½h� ½S�: ð20Þ

The relationship between [S] and [S*]:

S�½ �
�1
¼ ½S�T: ð21Þ

The transformation of the matrix of the dot product:

½G� ¼ ½S�T ½g� ½S�: ð22Þ

If the transformations ai ! A
ð1Þ
i and A

ð1Þ
i ! A

ð2Þ
i are

defined by the matrices [S1] and [S2], then the combined

transformation ai ! A
ð2Þ
i is defined as a matrix product:

½S� ¼ S1

� �
S2

� �
: ð23Þ
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