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Laboratory X-ray diffraction contrast tomography (LabDCT) has recently been

developed as a powerful technique for non-destructive mapping of grain

microstructures in bulk materials. As the grain reconstruction relies on

segmentation of diffraction spots, it is essential to understand the physics of

the diffraction process and resolve all the spot features in detail. To this aim, a

flexible and standalone forward simulation model has been developed to

compute the diffraction projections from polycrystalline samples with any

crystal structure. The accuracy of the forward simulation model is demonstrated

by good agreements in grain orientations, boundary positions and shapes

between a virtual input structure and that reconstructed based on the forward

simulated diffraction projections of the input structure. Further experimental

verification is made by comparisons of diffraction spots between simulations and

experiments for a partially recrystallized Al sample, where a satisfactory

agreement is found for the spot positions, sizes and intensities. Finally,

applications of this model to analyze specific spot features are presented.

1. Introduction

Non-destructive characterization of grain structures in 3D,

resolving the grain sizes, shapes and orientations, provides a

versatile tool for improving the understanding of fundamental

materials science processes, such as phase transformation,

recrystallization and grain growth in polycrystalline materials.

Over the past two decades, huge effort has been devoted to

the development of a number of such techniques using high-

flux X-rays from synchrotron sources (Poulsen & Juul Jensen,

1995; Yang et al., 2004; Poulsen, 2012; Reischig et al., 2013),

including differential aperture X-ray microscopy (DAXM)

(Larson et al., 2002), 3D X-ray diffraction (3DXRD) (Poulsen

et al., 2001; Margulies et al., 2001; Poulsen & Fu, 2003) and

diffraction contrast tomography (DCT) (Ludwig et al., 2008;

Johnson et al., 2008). DAXM has been demonstrated for

resolving grain orientations and shapes with a resolution

<500 nm. 3DXRD and its variants like high-energy X-ray

diffraction microscopy and DCT are fast tools for grain

mapping with a spatial resolution down to about 1 mm

(Offerman et al., 2002; Schmidt et al., 2004; King et al., 2008;

Oddershede et al., 2010; Li et al., 2012). More recently, dark-

field X-ray microscopy has been developed to enable mapping

of grains with a spatial resolution of 100 nm by inserting an

X-ray objective lens in the diffracted beam to magnify

diffraction patterns (Simons et al., 2015; Jakobsen et al., 2019;

Kutsal et al., 2019). Besides these techniques, other approa-

ches using synchrotron X-rays, neutrons and electrons for

grain mapping at various length scales have been reported
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(Bernier et al., 2011; Clark et al., 2012; Hayashi et al., 2015;

Peetermans et al., 2014; Raventós et al., 2019; Liu et al., 2011).

Although the above-mentioned X-ray techniques are

invaluable tools for grain mapping, they require a very bril-

liant photon beam that is only available at synchrotron

sources, which seriously limits the accessibility. To make non-

destructive 3D mapping possible at in-house laboratories with

daily access, laboratory X-ray diffraction contrast tomography

(LabDCT) has been developed based on ideas from

synchrotron DCT (King et al., 2013, 2014; McDonald et al.,

2015; Holzner et al., 2016). LabDCT adopts a conical poly-

chromatic X-ray beam generated from a conventional X-ray

tube to illuminate a sample with a typical size of hundreds of

microns to millimetres. The grain structure of the sample is

reconstructed from a series of LabDCT diffraction images

recorded as the sample rotates over 360�. The LabDCT

technique has proven to be a powerful tool for non-destructive

3D grain mapping for polycrystalline powders, minerals and

metals (McDonald et al., 2017; Pankhurst et al., 2019; Sun et al.,

2019, 2020).

Today, 3D reconstructions of grain orientations, positions

and shapes are routinely available using the reconstruction

software GrainMapper3D developed by Xnovo Technology

ApS (Bachmann et al., 2019; Oddershede et al., 2019). A fast

geometric indexing approach is used to reconstruct the grains

based on pre-processed and segmented diffraction spots. A

forward projection model has been implemented in Grain-

Mapper3D (version 2.0 or higher) to compute the shape of the

diffraction spots based on the reconstructed grain structure.

By comparing the simulated and experimentally observed

diffraction patterns, any shifts and tilts of the detector can be

minimized and the reconstruction can then be further opti-

mized (Niverty et al., 2019). Besides GrainMapper3D, an

iterative tomographic reconstruction approach is also

reported for grain reconstruction based on a projection model

(van Aarle et al., 2015). Although these forward simulation

models are able to compute spot positions and shapes, they

mainly serve as reconstruction tools and are lacking in aspects

such as detailed descriptions of the principles and imple-

mentation of the model, capabilities to compute spot inten-

sities and quantitatively compare spot features, including sizes,

shapes and intensities, between simulation and experimental

data. All these aspects are important for understanding the

physics of the diffraction process and optimizing LabDCT

experiments.

In the current work, we present a flexible and standalone

forward simulation model to compute LabDCT diffraction

projections. This model provides physical insights into the

diffraction process and all the details about each diffraction

spot, including diffracting X-ray energies, hkl index, position,

size, shape and intensity; based on this, detailed diffraction

information from individual grains can be readily obtained.

This model can thus be used as a virtual tool to predict spot

features for samples with different grain structures under

different LabDCT experimental conditions, and thereby used

to optimize any given experiment. Compared with other

forward simulation models (e.g. the one in GrainMapper3D),

our model has the advantage of being transparent, with

detailed descriptions of both model principles and imple-

mentation, and serving as a tool to analyze all the details of

diffraction spots. In Section 2, we present the principles and

implementation of the forward simulation model. In Section 3,

we verify the accuracy of the model using both a virtually

rendered and a real sample. The virtual sample is used first to

simulate LabDCT diffraction images, and then as a ground

truth to compare with the volume reconstructed using the

simulated diffraction images. A 3D grain structure in a real Al

sample characterized by a LabDCT experiment is then used to

verify the model further by comparing all features of the

simulated diffraction spots with the corresponding experi-

mental ones. In Section 4, we present examples of the appli-

cation of the model, including retrieving experimental spots

and analyzing spot details.

2. Forward simulations of projections for LabDCT

LabDCT utilizes a conical polychromatic X-ray beam from a

laboratory X-ray tube, which is different from both a parallel

monochromatic beam used for synchrotron DCT/3DXRD and

a focused polychromatic X-ray beam used for DAXM (Laur-

idsen et al., 2001; Suter et al., 2006; Sørensen et al., 2012;

Sharma et al., 2012; Schmidt, 2014; Larson & Levine, 2013).

The principle of LabDCT is therefore different from any of

the synchrotron techniques. In this section, we will first present

a detailed description of the principle of LabDCT and the

forward simulation. Then, we show the implementation of the

forward model for simulating LabDCT diffraction projections

using a new polyhedron meshing based approach.
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Figure 1
Schematic view of the LabDCT setup in a laboratory coordinate system
(x̂x, ŷy, ẑz). Laue focusing occurs from a volume element of a grain, centered
at position M, in a polycrystalline sample illuminated by a cone-shaped
polychromatic X-ray beam from point S. The detector is placed
perpendicular to the horizontal line in the downstream transmitted
direct beam. The diffraction plane defined by the incoming wavevector
Kin and scattered wavevector Kout determines the position Q on the
detector for the diffracted beam. Glab is the scattering vector and its
projection on the detector is along PQ

�!
. The sample rotation angle

is denoted as !. Lss is the sample-to-source distance and Lsd is the sample-
to-detector distance. The zoom-in views (at the bottom) illustrate that the
volume element focuses the incoming conical X-rays with a small range of
wavelengths between �1 and �n onto the detector along PQ

�!
, while the

diffraction pattern is magnified perpendicular to PQ
�!

.



2.1. Principle of LabDCT and the forward simulations

A schematic of the LabDCT setup is shown in Fig. 1. The

system is defined in a laboratory coordinate system: x̂x is along

the incoming horizontal X-ray beam, ŷy is transverse to the

beam in the horizontal plane, ẑz is along the vertical axis that is

perpendicular to the beam, and O (0, 0, 0) is the origin. The

sample is mounted on a rotation stage, having the rotation axis

coincident with the ẑz axis, and placed between an X-ray source

and a 2D detector. The X-ray source is assumed to be a point

source at position S (�Lss, 0, 0) as its size is negligible

compared with Lss or Lsd (Lss, sample-to-source distance; Lsd ,

sample-to-detector distance). An aperture is placed close to

the source to confine the beam. The detector is placed

perpendicular to the horizontal beam at a distance of Lsd from

the origin and O0 (Lsd , 0, 0) is denoted as the detector center.

The direct transmitted beam is blocked by a beam stop, while

the diffracted signals are recorded by the outer area of the

detector. A complete LabDCT data set is obtained by

collecting diffracted projections for each rotation step from a

full 360� rotation around the ẑz axis with a predetermined step

size.

At a given rotation angle, !, for a volume element Vpol

centered at a position M (xm, ym, zm) within the sample with a

given crystal structure, its lattice plane (hkl) can be considered

as a mirror that focuses the incoming X-rays with different

wavelengths (�1, �2, �3 . . . �n) onto the detector (see Fig. 1).

The diffraction event thus occurs based on a Laue focusing

effect, rather than the standard Bragg or Laue diffraction. It

has to be noted that the beam is only focused along the

direction perpendicular to the (hkl) plane (that is along PQ
�!

on the detector in Fig. 1). Within the plane, the incoming beam

keeps its divergence while being diffracted and leads to a

geometrical magnification in the direction parallel to the (hkl)

plane (that is perpendicular to PQ
�!

on the detector in Fig. 1)

with a factor of (Lsd + Lss) / (Lss + xm). As a result, the

diffraction spot on the detector has an elliptical shape and its

center Q (Lsd, ydet, zdet) can be determined as follows.

The scattering vector Glab at the center of mass of Vpol

defined in a laboratory coordinate system for the (hkl) plane

can be determined as

Glab ¼ �Tg�1BGhkl; ð1Þ

where � is a matrix transforming a rotated system to the

laboratory system, T is a matrix transforming a sample system

to the rotated system, g�1 is a matrix transforming a Cartesian

crystal system to the sample system, B is a matrix transforming

a reciprocal space to the Cartesian crystal system, and

Ghkl ¼ ðhklÞ
T. The detailed formulations of these transfor-

mation matrices are given in the work of Poulsen (2004).

The incoming wavevector Kin of the diffraction event can be

expressed as

Kin ¼
2�

�hkl

Lss þ xm; ym; zmð Þ= Lss þ xm; ym; zmð Þ
�� �� ð2Þ

where �hkl is the photon wavelength that fulfills Bragg’s law

and reflects at the center of Vpol. The Bragg angle � is now

calculated as

� ¼ arccos
Kin �Glab

Kin

�� �� Glab

�� ��
 !

�
�

2
; ð3Þ

based on which the �hkl can be determined according to

Bragg’s equation �hkl ¼ 2dhkl sin �, where dhkl is the lattice

spacing of the (hkl) planes and dhkl = 2�/|Glab|. The scattered

wavevector Kout can be expressed as Kout ¼ Kin þGlab.

The projection of the transmitted incoming beam on the

detector P (Lsd, yp, zp) is given by

yp ¼ ym Lss þ Lsdð Þ= Lss þ xmð Þ

zp ¼ zm Lss þ Lsdð Þ= Lss þ xmð Þ: ð4Þ

According to the law of sines for the triangle �MPQ, the

length of the diffraction displacement Ldiff (PQ in Fig. 1) can

be calculated:

Ldiff ¼
Lsd � xmð Þ sin 2�ð Þ

cos �ð Þ sin �ð Þ
; ð5Þ

where � = arctan½ðy2
m þ z2

mÞ
1=2=ðLss þ xmÞ� is the angle between

SM
�!

and SO
�!

and � is the angle between PQ
�!

and Kout (see

Fig. 1). The � can be calculated as

� ¼ arccos
0;Glabð2Þ;Glabð3Þ
� �

Lss þ Lsd; yp; zp

� �
0;Glabð2Þ;Glabð3Þ
� ��� �� Lss þ Lsd; yp; zp

� ��� ��
( )

� 2�;

ð6Þ

where (Lss + Lsd, yp, zp) is the vector SP
�!

and [0, Glab(2),

Glab(3)] is a vector parallel to PQ
�!

. Now the position Q (Lsd,

ydet, zdet) can be determined with

ðydet; zdetÞ ¼ ðyp; zpÞ þ
Ldiff Glabð2Þ;Glabð3Þ

� �
Glabð2Þ

2
þGlabð3Þ

2
� �1=2

: ð7Þ

2.2. Implementation of the forward simulations

A polyhedron meshing based model is developed to simu-

late the diffraction spots from individual grains. By sub-

dividing each grain into many small polyhedral volumes and

treating each polyhedron independently using the method

described above, the 3D grain shape can be accurately

depicted by the resolved diffraction spot even for the very

complex one. This novel polyhedron meshing based approach

has the advantage of conforming to the grain boundaries,

thereby avoiding ‘staircase’ artifacts inherent to voxelized

grids, which are generally used in other models. The details of

the model are described as follows.

First X-ray spectra at different electron accelerating

voltages from an X-ray source were generated according to

the work of Boone & Seibert (1997). An example X-ray

spectrum from a tungsten anode at an acceleration voltage of

140 kV is shown in Fig. 2(a), which should be regarded as an

approximation and can be easily corrected once an actual
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source spectrum is available. The input 3D grain structure can

be either virtually rendered or experimentally characterized

data sets. Fig. 2(b) shows one example of a virtually rendered

3D volume generated based on Voronoi tessellations using the

mpt3 toolbox (Herceg et al., 2013). A 3D polyhedral mesh is

applied for each grain in the input structure. Each polyhedron

belongs to only one grain, i.e. no polyhedron crosses a grain

boundary. An example of a meshed grain can be seen in

Fig. 2(c), where the grain is divided into 269 polyhedral

elements with an average size of 12.5 mm.

To simulate a projection at a certain rotation angle !,

diffraction events are calculated grain by grain, polyhedron by

polyhedron, and hkl by hkl. The intensity of the diffraction

spot Ispot for each polyhedron with volume Vpol can be

calculated by the following equation [adapted from Als-

Nielsen & McMorrow (2011), Warren (1990)]:

Ispot ¼
A Ehklð ÞDQE Ehklð Þ� �hklð Þr2

0 �
3
hkl Fhkl

�� ��2VpolLgP0texp

�2
;

ð8Þ

where AðEhklÞ is the attenuation factor due to sample

absorption for photons with energy Ehkl, DQEðEhklÞ is the

detective quantum efficiency (DQE) of the detector system

for photons with energy Ehkl, �ð�hklÞ is the incident flux of

photons with wavelength �hkl, r0 is the Thomson scattering

length and has a value r0 = 2.82 � 10�15 m, Fhkl is the structure

factor of the hkl reflection, Lg is the Lorentz factor, P0 is the

polarization factor and is given by P0 ¼ ½1þ cos2ð2�Þ�=2, texp is

the exposure time for each projection and v is the volume of

the unit cell. The sample shape has to be known for deriving

AðEhklÞ. We present a solution of AðEhklÞ for a cylindrical

sample in Appendix A. If the sample shape is irregular but can

be well approximated by a cylinder, this approach also applies.

DQEðEhklÞ varies with specific detector systems and experi-

mental conditions. In Appendix B we present details for

calculating DQEðEhklÞ for a scintillation detector using a CsI

scintillator with a thickness of 150 mm at zero spatial

frequency.

In general the Lorentz factor accounts for the way reflec-

tions are integrated. For monochromatic diffraction of

single crystals, the Lorentz factor Lg ¼ 1=ðsin 2�Þ accounts for

the time that each reflection is in the diffraction condition

(Als-Nielsen & McMorrow, 2011); for polychromatic

Laue diffraction, the Lorentz factor Lg ¼ 1=ð2 sin2 �Þ or

Lg ¼ 1=ðsin2 �Þ [it does not matter which when relative

intensities are considered (Sakamaki et al., 1980; Lange,

1995)] accounts for how much of the wavelength range an

infinitely small reflection cuts through as a function of �.
However, the present Laue focusing case is different from

both these cases. Since the lattice plane acting like a mirror

focuses the incoming X-rays at different incident angles and

with different energies, it can be considered as a case of

parallel X-rays with a single energy, i.e. the monochromatic

case. On the other hand, different lattice planes diffract

X-rays with different energies, which can be considered as

polychromatic Laue diffraction. To test which treatment is

more suitable, we performed simulations using these two

different expressions of Lorentz factors and compared them

with the experimental data. Results show that taking the

Lorentz factor as Lg ¼ 1=ðsin 2�Þ gives a much better corre-

lation between simulation and experimental data. Thus, we

use the expression for the monochromatic case in the present

study.

To account for the point spread nature of the interaction

between photons and the detector, the intensity Ispot is

distributed to an array of pixels (pmin,1 � pmin,2) with the

center position determined according to equation (7). Here,

the distribution weight matrix is generated by convolution

of a linear motion filter (with the moving direction parallel

to the projection of the hkl reflection on the detector) and a

Gaussian filter, which leads to an anisotropic point spread

with larger weights assigned along the direction perpendicular

to PQ
�!

(accounting for the magnification effect) while smaller

weights are assigned parallel to PQ
�!

(accounting for the Laue

focusing effect). The sizes of both the motion filter and the

Gaussian filter are determined by the polyhedron size dpol and

the pixel size of the detector dpixel , as 2dpol /dpixel . The
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Figure 2
Illustrative workflow of the forward simulations of projections for an Fe sample with pre-defined 3D grain structure. (a) Spectrum of the X-ray source
using a tungsten target at an acceleration voltage of 140 kV. (b) The 3D grain structure of a virtually rendered cylindrical sample (D � H =
400 � 600 mm) consisting of 666 grains with an average grain size of 58.7 mm. Grain orientations are randomly generated and the grains are colored
according to their orientations along the z direction [see the color code in the inverse pole figure (IPF)]. (c) Polyhedral mesh of a grain. (d) Simulated
projection at a rotation angle ! = 0� and Lss = Lsd = 11.0 mm (the central black region represents the beam stop).



dimensions of the resulting convolution matrix now determine

the values of pmin,1 and pmin,2 .

To simulate the projection, a 2D detector with 2032 � 2032

pixels centered at (1016, 1016) with an effective pixel size of

3.36 mm is used, which is about the same as that used in the

commercial LabDCT system. For each pixel on the detector,

the intensity Iðydet;zdetÞ
is summed for all diffraction signals

arriving at this pixel. A constant background intensity is added

to each pixel to mimic the inelastic scatterings from the

sample. Fig. 2(d) shows a diffraction projection for the 3D

grain structure shown in Fig. 2(b).

Generally, a smaller polyhedron size with a more isotropic

shape will result in a better resolved spot shape. Since the

polyhedra are represented by Voronois that are generated by

placing seeding points inside every grain, the number of

polyhedra in each grain is decided by the number of seeding

points. This means that the average polyhedron size decreases

with increasing number of seeding points. It should be noted

that sizes of polyhedra in the same grain may vary; in parti-

cular, those touching grain boundaries vary more as they must

adapt to conform to the grain boundaries. In the present study

the seeding points are homogeneously generated with their

number in 1D determined according to the grain diameter

divided by the pixel size of the detector. To balance the

accuracy and the computing efficiency, polyhedra with an

average polyhedron size smaller than 12.5 mm resulting from

this meshing algorithm are recommended. In addition to the

size, the polyhedron shape can influence the local intensity

distribution, but it has less impact on the overall shape and

intensity of the spots since polyhedra do not significantly

deviate from isotropic shapes when a fine mesh is used. A

complete LabDCT data set is then generated by computing all

the projections for all the rotation angles. Based on the

simulation, the properties of individual diffraction spots are

also determined, including the locations, sizes, shapes, inte-

grated intensities and X-ray energies, as well as information

about which hkl reflection is from which grain. The current

forward simulations are coded in MATLAB and the projec-

tions are exported in the form of 16-bit gray images. The codes

can be found at https://github.com/haixingfang/LabDCT-

forward-simu-model.

3. Model validation

3.1. Validation using a virtual grain structure

As a first test of the proposed forward simulation model, a

virtually rendered 3D grain structure is used as input for the

simulation. From the simulated LabDCT diffraction projec-

tions, standard routines are employed to reconstruct the grain

structure [here we use those implemented in GrainMapper3D

(Bachmann et al., 2019)]. A good agreement between the input

and the reconstructed grain structures would validate the

forward simulation.

Fig. 3(a) shows the input grain structure of iron. The input

consists of 144 grains with an average size of 98.7 mm. The

standard deviation of the grain size distribution is 11.0 mm.

Using the forward simulation procedure described above

(here grains were meshed into polyhedra with sizes of

9.9 � 0.7 mm), 181 diffraction images with a rotation interval

of 2� were computed, which are used subsequently to recon-

struct (restore) the 3D grain structure using the commercial

software GrainMapper3D. Good agreement between the

reconstructed and the input structures is obtained [see

Figs. 3(a)–3(c)]. This is more clearly visible in 2D cross

sections, as shown in Figs. 3(d)–3(f). The total number of 3D

reconstructed grains is 144 and the average grain size is found

to be 98.5 mm with a standard deviation of 13.0 mm for the

grain size distribution, which are all in excellent agreement

with the input. An even more critical validation can be

obtained by comparing directly the orientations of individual

grains and grain boundary positions. This detailed comparison

shows an agreement better than 0.03� in orientation deter-

mination. 94% of the voxels are fully matched and 99% of the

voxels deviate by no more than 2 voxels, whereas a deviation

of up to 8 voxels is observed for some grain boundary segment

positions. It has to be noted that the quality of the recon-

structed grain structure not only depends on the forward

simulation but also on the parameters used for both spot

segmentation and grain reconstruction with GrainMapper3D.

The latter is suggested to play a more dominant role than the

former. Overall, it can be concluded that the proposed simu-

lation model performs adequately.

3.2. Validation using an experimentally characterized
partially recrystallized structure

Another way to validate the model is to use the grain

structure from a LabDCT/GrainMapper3D measured/recon-

structed sample as input for the forward simulation and then

compare the simulated and measured diffraction spots

directly. A good agreement between the two would further

validate that the input X-ray spectrum is close to that gener-

ated in reality by an X-ray tube and that independent treat-

ment of the polyhedron mesh for each grain is a good

approach for simulating diffraction spots.

3.2.1. Experimental LabDCT measurements. LabDCT

measurements were performed using a partially recrystallized

pure aluminium (99.996 wt% Al) sample. The sample

(6.0 � 4.0 � 1.3 mm) was cut from a 12% cold-rolled Al plate,

ground and electro-polished to remove the cutting damage. A

Vickers hardness indent was made on the surface plane

defined by the rolling direction (RD) and the transverse

direction (TD) to stimulate nucleation of new grains upon

annealing. The sample was annealed to partial recrystalliza-

tion. Details on heat treatment etc. can be found in the work of

Xu et al. (2017), Zhang et al. (2020).

The LabDCT measurements were performed using a Zeiss

Xradia 520 Versa X-ray microscope. The parameters of the

detector are the same as described above. The scanning was

performed with the Laue focusing geometry, Lss = Lsd =

14.0 mm. The accelerating voltage was 150 kV and the expo-

sure time for each projection was 600 s. A total of 181

diffraction projections were acquired by rotating the sample
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360� with an interval of 2�. Additionally, 1601 absorption

contrast tomographic projections were sequentially collected

with an exposure time of 1.2 s to reconstruct the sample gauge

volume. The grain reconstruction was performed with Grain-

Mapper3D version 2.1 by indexing the first three {hkl} families

and subsequently including fitting of the detector position to

optimize the final reconstruction. The grain structure was

reconstructed with a voxel size of 2.5 mm.

3.2.2. Experimental results and comparison with the
simulations. There are six reconstructed grains with sizes

>30 mm in the sample. Details of the six grains are listed in

Table 1. A 3D visualization of the reconstructed grains is

shown in Fig. 4(a). Grain #1 is in a deformed/recovered state

with a significant spread of orientations and made semi-

transparent in Fig. 4(a) for visualization. All the other five

grains are recrystallized and reconstructed with a relatively

high average completeness across all the voxels within the

same grain (>75%). In GrainMapper3D the completeness of

each voxel is defined by the number of indexed reflections as

the fraction of the theoretical number of reflections computed

for this voxel (Bachmann et al., 2019).

We used the reconstructed grain structure shown in Fig. 4(a)

as input for the simulation. The five recrystallized grains were

meshed into polyhedra with average sizes ranging from 5.5 to

10.9 mm. Due to the lack of an X-ray spectrum for the accel-

eration voltage of 150 kV, we used the profile of the X-ray

spectrum at the acceleration voltage of 140 kV for the simu-

lation, which is expected to generate negligible difference for

the outcome. Fig. 4(b) shows an example of the experimental

projection at a rotation angle ! = �146� and the corre-

sponding simulated projection is shown in Fig. 4(c). The large

‘blobs’ seen in Fig. 4(b) are reflections from the deformed

grain and are not considered in the simulations. An overlay of

the outer edges of the simulated diffraction spots on the

experimentally determined ones is shown in Fig. 4(d). The

figure shows that all the diffraction spots are well reproduced

in terms of positions, shapes and sizes, which further validates

our forward simulation model.

Further validation is made by comparing the size and

intensity of the simulated and experimental diffraction spots

in the whole series of projections for a full rotation of 360�.

Here only the spots from the first four strongest {hkl} families,

which are typically the important ones for grain reconstruc-

tion, are considered. The total number of diffraction spots that

have intensities distinguishable from the background in the

experimental projections is listed in Table 1. More spots are

observed for larger grains (see Table 1), agreeing with their

higher completeness values. As the absolute intensities of both

spots and backgrounds are very different between simulation

and experimental data, spot segmentations were performed in

different ways for the two types of data: the average value of

the thresholds determined by Otsu’s method (Otsu, 1979) and
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Figure 3
Validation of the model using a virtually rendered 3D grain structure of
iron. (a) Input 3D grain structure for simulating diffraction projections.
(b) Reconstructed grain structure from the simulated projections. (c)
Crystallographic orientations (OR) along z of the input grains (marked
by dots) and the reconstructed grains (marked by circles). (d) and (e)
show 2D xz slices taken from the middle of the input and reconstructed
grain structures, respectively. (f) An overlay of the reconstructed 2D slice
with the black lines showing the grain boundary positions of the input
grain structure.

Figure 4
(a) 3D visualization of reconstructed grains (shown in random colors) in a
partially recrystallized Al sample determined by LabDCT measurements,
with an inverse pole figure (IPF) triangle (along the sample ND) showing
the crystallographic orientations of the grains. Grain #1 is deformed and
made semi-transparent for visualization. (b) An experimental diffraction
projection at the rotation angle of �146�. (c) The corresponding
simulated projection with grain numbers marked for each diffraction
spot. (d) An overlay of the outlines of the simulated spots in (c) onto (b).
The outlines in (d) are colored according to the {hkl} families: red {111},
green {002}, blue {022}, yellow {113}, olive {133}, purple {024}, navy {224},
orange {115}.



the unimodal background-symmetry method (DIPimage 2.9

toolbox; DIPimage, 2017) were applied to segment each

simulated spot and determine its size. For each experimental

spot a single threshold value (which varies from spot to spot)

was used and for the segmentation the corresponding dilated

simulated spot was employed as a mask. Notably each spot is

segmented independently. Based on the features of the

segmented experimental spots, we identified two types of

spots: one is well segmented and not overlapped with other

spots, referred to as ‘good’ spots here; the other is overlapped

with other spots or has problems with segmentation due to a

too low contrast compared with the background, referred to as

‘bad’ spots here. Fig. 5 shows a detailed comparison between

the simulated and experimentally observed diffraction spots,

including all the ‘good’ and ‘bad’ ones. It can be seen from

Fig. 5 and the grain size data given in Table 1 that a strong

correlation exists between the grain size and the spot size as

well as the intensity. Both Figs. 5(a) and 5(b) show that the

majority of the spots follow well the red lines with a slope of 1,

indicating that the simulations are in good agreement with the

experimental data. In Fig. 5(b) the integrated intensities of

spots from the simulations are scaled by dividing with a

constant of 12.20. It should be noted that this constant does

not have any physical meaning as the observed experimental

integrated intensities are simply gray values of spot pixels on

the projections rather than actual photon counts. Fig. 5(b) thus

documents that the relative spot intensities can be well

predicted by the current model. Both Figs. 5(a) and 5(b) show

that the outliers far from the red lines are mainly the ‘bad’

spots. In particular, in Fig. 5(b) most of the ‘bad’ spots are

located above the red line, indicating that they are overlapped

with other spots. Besides the outliers, the data points for the

‘good’ spots are also scattered around the red lines, which can

be due to the non-uniform experimental beam profile and its

variation over time, noise of the experimental measurement,

as well as, to a certain extent, the imperfect grain recon-

struction. Altogether, the results demonstrate that the poly-

hedron meshing based approach predicts satisfactorily the

sizes and intensities of individual spots.

4. Application of the forward simulation model

In a recent study (Hovad et al., 2020), we have demonstrated

that the simulated LabDCT diffraction projections can be

used as input to train a deep learning algorithm to identify the

diffraction spots in experimental images. Here we will show

two other application examples of the model: (i) retrieving all

the experimental diffraction spots; (ii) analyzing spot inten-

sities as a function of photon energy.

4.1. Retrieving experimental spots

We can combine the forward simulation with LabDCT

experiments to retrieve all the experimental diffraction spots

from individual grains and then analyze the spot information.

For example, using the 3D grain structure in Fig. 4(a) as input,

all the simulated diffraction spots from grain #2 can be readily

obtained and summarized in one image [see Fig. 6(a)]. The

simulated spots can then be used to identify the locations of all

the corresponding experimental spots [see Fig. 6(b)] and used

as masks to segment the experimental spots [Fig. 6(c)]. Thus,

we can overcome challenges in segmenting weak as well as

overlapped spots. Fig. 6(d) shows examples of segmenting

these two types of spots, those that are weak (in region A) and
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Figure 5
Comparisons of (a) spot sizes Aspot and (b) spot integrated intensities Ispot

between simulated (Simu) and experimentally (Exp) observed diffraction
spots for the first four {hkl} families. The lines in (a) and (b) indicate that
the simulated spot sizes are equal to the experimental ones and that the
scaled integrated intensities of the simulated spots are equal to those of
the experimental ones, respectively. The closed symbols represent ‘good’
spots and the open symbols stand for ‘bad’ spots.

Table 1
Characteristics of the reconstructed grains in the partially recrystallized
Al sample.

Euler angles [’1, �, ’2] are expressed in Bunge’s convention. Mean values of
Euler angles are given for the deformed grain #1. Mean values and standard
deviations are listed for the completeness of all voxels within a grain.

Grain
ID [’1, �, ’2] (�)

Diameter
(mm) Completeness

Observed spot
number for the
first four {hkl}
families

#1 [344.29, 23.45, 29.00] 587.8 0.551 � 0.055 —
#2 [81.02, 9.35, 265.84] 248.5 0.888 � 0.081 341
#3 [346.06, 15.12, 27.30] 71.2 0.829 � 0.087 228
#4 [339.90, 24.81, 22.43] 40.6 0.751 � 0.040 188
#5 [334.07, 27.37, 36.62] 66.3 0.802 � 0.068 228
#6 [314.57, 14.89, 57.42] 151.0 0.895 � 0.097 304



those touching other spots (in region B). The retrieval of all

the experimental spots is important for analysis of spot details,

and a further analysis could uniquely identify the ‘good’ and

‘bad’ spots and separately quantify spot features like size,

intensity etc. (see Fig. 5 for example) based on comparison of

spot features between the simulation and experiment.

However, this is outside the scope of the present work.

We can also readily compute the theoretical number of

spots for each grain using our forward simulation model.

Taking the recrystallized grains in the Al sample as an

example, we plot the theoretical number of spots and the

number of experimentally observable spots in Fig. 7. The

figure clearly shows the correspondence for the number of

spots from each {hkl} family between the simulation and

experimental observation as a function of grain size – both

numbers decrease with decreasing grain size. Taking the ratios

between the number of experimentally observed and theore-

tical spots, we can determine the values of theoretical

maximum completeness. Obviously, the values decrease with

decreasing grain size and the decrease is even greater when

more {hkl} families are considered. For example, the values of

theoretical maximum completeness are 0.80 for grain #4

(40.6 mm) and 0.94 for grain #2 (248.5 mm) when the first three

{hkl} families are considered. When the first four {hkl} families

are considered, the values decrease to 0.54 for grain #4 and

0.91 for grain #2.

4.2. Spot intensity as a function of {hkl} family and X-ray
energy

Both the lattice plane and the photon energies for each

diffraction spot can be determined from the forward simula-

tion. By correlating this information to the experimental spot

intensity, the relationship between the photon energy/{hkl}

family and the spot intensity, as well as its dependence on

grain size can be studied. This is essential for understanding

how diffraction events for a specific grain are affected by the

polychromatic laboratory X-ray source.

Fig. 8 shows the relationship between the normalized inte-

grated spot intensities and the photon energies as well as {hkl}

families for a large grain (grain #2, 248.5 mm) and a smaller

grain (grain #3, 71.2 mm) from the Al sample shown in Fig. 4.

Here only the photon energy averaged over the whole grain is

used for each diffraction spot. The figure shows that for the

majority of the spots the intensities for both grains match

reasonably well with the expected spectrum profile of the

X-ray source. Since the ‘bad’ spots are mainly overlapped with

others, they have abnormal high intensities and are thus

located apart from the majority. Overall, spots diffracting from

higher-order {hkl} planes are from higher photon energies. For

the large grain, spots up to the tenth {hkl} family are detect-

able and the photon energies are mainly distributed in the

range 15–80 keV (96% of the total number of 525 ‘good’

spots). For the small grain, only the first four hkl-index spots

can be identified and the corresponding photon energies are

nearly all in the range 15–60 keV except for a few ‘bad’ spots.

It is known that the structure factor Fhkl is lower for higher

orders of hkl indices (e.g. F113
2 / F111

2 = 0.53 for Al). Combined

with the lower X-ray flux as well as lower detective quantum

efficiency at the higher-energy end, the spot intensities for the

higher {hkl} families are therefore lower. For the relatively
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Figure 7
Number of diffraction spots for each {hkl} family of each grain. The two
columns are: left – number of theoretically predicted spots that hit onto
the effective area of the detector; right – number of experimentally
observed spots.

Figure 6
Images summarizing all diffraction spots from grain #2 [see Fig. 4(a)] in
all projections from �180 to 0� with an interval of 4�. (a) Simulation; (b)
overlay of outer edges of the simulated spots onto the corresponding
cropped regions of the experimental projections; (c) segmented
diffraction spots using the simulated spots as masks; (d) zoom-in views
of regions of interest [ROIs A and B in (b)] show that (A) weak and (B)
partially overlapped diffraction spots can be well retrieved. The outlines
are colored according to the reflections of the {hkl} families: red {111},
green {002}, blue {022}, yellow {113}.



small grain #3, these two in combination are more significant,

leading to spot intensities indistinguishable from the back-

ground for photon energies >60 keV. In contrast, the large

volume of grain #2 ensures pronounced spot intensities even

for very high {hkl} families, which makes them clearly visible

above the background intensity. As the X-ray spectrum profile

for a given X-ray tube is affected by both the electron accel-

erating voltage and current, the two parameters can be tuned

for different samples to optimize the detectable number and

intensity of diffraction spots. For example, to resolve more

diffraction spots for small grains with better accuracy, maxi-

mizing the fluxes of X-rays with energies in the range 15–

60 keV is expected to improve the signal-to-noise ratio for the

strongest spots from low hkl indices for Al.

5. Conclusions

We have developed a forward simulation model for LabDCT.

The model principles are described in detail. A novel

approach, by considering diffraction events for each meshed

polyhedron in each grain, is used for implementing the model.

This polyhedron meshing based approach has the advantage

of conforming to grain boundaries, thereby avoiding ‘stair-

case’ artifacts inherent to voxelized grids. The accuracy of the

model has been verified by good agreements between (i) a

virtual input grain structure and the reconstructed one based

on the simulated diffraction projections of the input structure

and (ii) the computed and experimental diffraction spots from

a partially recrystallized Al sample.

Based on the results presented for the applications of the

model to strain-free materials with grain sizes >40 mm in Laue

focusing geometry, it is found that:

(i) Experimental spots, including the weak and overlapped

ones, can be retrieved with the assistance of the presented

forward simulation model.

(ii) The theoretical maximum completeness, i.e. the number

of experimentally observed spots divided by the theoretically

predicted number of spots, is grain size dependent. For a fixed

number of {hkl} families, it increases with increasing grain size.

(iii) Diffraction spots from higher-order {hkl} families are in

general from photons with higher energies and experimentally

their visibility is reduced with decreasing grain size.

(iv) For an Al sample characterized with the typical Laue

focusing condition, diffraction spots from up to the tenth {hkl}

family can be seen for a 250 mm grain, while spots from the

first four {hkl} families are only visible for a 40 mm grain. The

diffraction spots from the first four strongest (also most

important) {hkl} families are mainly from photons with ener-

gies in the range 15–60 keV.

Such analysis provides important understanding of

LabDCT results and guidelines to optimize experimental

parameters, like tuning the X-ray source spectrum profile,

according to specific samples. The model can handle any

crystal symmetries and any geometries of Lsd / Lss. Other input

that depends on specific instrumentation such as the X-ray

spectrum and detective quantum efficiency of the detector

system can be readily tuned and incorporated into the forward

simulation model. The versatility and flexibility of the current

simulation model make it a useful tool for any LabDCT

characterization.

APPENDIX A
Attenuation intensity factor, A(E)

Sample attenuation is considered to calculate A(E) in equa-

tion (8) for an X-ray energy E. As shown in Fig. 9, the length

of the incoming beam path in the sample is jNM
��!
j and the

length of the diffraction beam path in the sample is jMQ1

��!
j.

Thus, the total length of the beam attenuated by the sample

is Lattenu ¼ jNM
��!
j þ jMQ1

��!
j. Assuming a cylinder sample shape

with a radius of Rs, the cylinder surface can be described by
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Figure 8
Plots of the spot integrated intensities determined from the experimental
data as a function of the photon energy obtained from the simulations for
all the experimental spots of grains #2 and #3 in the Al sample. The closed
symbols represent ‘good’ spots and the open symbols are for ‘bad’ spots.
The intensities are scaled by dividing by the maximum integrated
intensity of all the experimentally observed ‘good’ spots. The profile of
the X-ray spectrum used in the simulations is also plotted and normalized
with respect to its maximum. The average standard deviations of the spot
energies are 2.4 keV for grain #2 and 0.6 keV for grain #3.



x2 þ y2 � R2
s ¼ 0: ð9Þ

The intersection point N (xn, yn, zn) between the line SM

and the cylinder surface can be expressed as

xn ¼ �Lss þ �1 Lss þ xmð Þ

yn ¼ �1ym

zn ¼ �1zm;

8<
: ð10Þ

where �1 is an unknown parameter, which can be derived by

solving equation (9) with (x, y) substituted by (xn, yn). Two

solutions may exist for �1, corresponding to the coordinates of

N and P1, respectively. The solution of �1 for deriving point N

is calculated as

�1 ¼
Lss Lss þ xmð Þ � R2

s Lss þ xmð Þ
2
þy2

m R2
s � L2

ssð Þ
� �1=2

Lss þ xmð Þ
2
þy2

m

: ð11Þ

To determine jMQ1

��!
j, the coordinate of the point Q1 (inter-

section of line MQ and the sample cylinder surface) has to be

derived. The coordinate (xq1, yq1, zq1) of Q1 can be expressed

as

xq1 ¼ xm þ �2 Lsd � xmð Þ

yq1 ¼ ym þ �2 ydet � ymð Þ

zq1 ¼ zm þ �2 zdet � zmð Þ;

8<
: ð12Þ

where (ydet, zdet) can be calculated with equation (7) and �2 is

an unknown parameter, which can be derived by solving

equation (9) with (x, y) substituted by (xq1, yq1). Similarly, two

solutions for �2 may exist. The solution of �2 for deriving point

Q1 can be calculated as

�2 ¼

�
�xm Lsd � xmð Þ � ym ydet � ymð Þ

þ
	

2xmym Lsd � xmð Þ ydet � ymð Þ þ R2
s

�
Lsd � xmð Þ

2

þ ydet � ymð Þ
2
�
� x2

m ydet � ymð Þ
2
�y2

m Lsd � xmð Þ
2

1=2

�
= Lsd � xmð Þ

2
þ ydet � ymð Þ

2
� �

: ð13Þ

After the coordinates of points N and Q1 are derived, jNM
��!
j

and jMQ1

��!
j and thus Lattenu can be readily calculated. There-

fore, the attenuation intensity factor A(E) can be derived:

AðEÞ ¼ exp �	ðEÞsampleLattenu

� �
ð14Þ

where 	(E)sample is the linear attenuation coefficient of the

sample at a photon energy of E, which can be retrieved from

the NIST X-ray attenuation databases (Hubbell & Seltzer,

2004).

For the present Al sample that has a roughly square cross

section as described in Section 3.2, A(E) was determined using

this method, assuming that the sample is a cylinder with Rs as

the maximum radius of circumcircle of the sample cross

section in the XY plane. This is expected to lead to only a small

error in determining A(E) for Al.

APPENDIX B
Detective quantum efficiency, DQE

The performance of a detector can be described by detective

quantum efficiency (DQE), which can be expressed by (Jaffray

et al., 1995)

DQE ¼
SNR2

out

SNR2
in

; ð15Þ

where SNR2
out and SNR2

in are the output and input signal-to-

noise ratios, respectively. According to Swank (1973), DQE

can be rewritten as

DQE ¼ "Ix; ð16Þ

where " is the quantum absorption efficiency of the detector

and Ix is the Swank statistical factor characterizing noise

increase due to variable X-ray energy absorption.

For a scintillated detector system (which is widely used

in modern laboratory X-ray imaging setups), the quantum

absorption efficiency at a particular X-ray energy, "(E), can be

calculated as the absorption by the scintillator:

" Ehklð Þ ¼ 1� exp �	ðEÞscintillatorLscintillator

� �
; ð17Þ

where 	(E)scintillator is the linear attenuation coefficient at an

X-ray energy of E and Lscintillator is the scintillator’s thickness.

The Swank factor Ix is calculated from the absorbed X-ray

energy distribution (AED), which describes the probability

per unit energy that an incident X-ray will deposit a certain

energy within the detector. Since AED cannot be measured

directly, it is best estimated by Monte Carlo simulations

(Jaffray et al., 1995). AED is shown to be dependent on spatial

frequency related to random variations in absorbed energy,

incident X-ray energy and scintillator materials.

For the present study, we use zero-frequency data of Ix

calculated from Monte Carlo simulations (Hajdok et al., 2008).

Since Ix decreases with increasing spatial frequency, Ix derived

from zero frequency represents its upper limit. Combining the

Ix data and equations (16) and (17), DQE at zero frequency as

a function of X-ray energy was calculated for a CsI scintillator

with a thickness of 150 mm, which is the same as used in our

LabDCT experiment (shown in Fig. 10). The figure shows that

DQE(0) decreases with increasing X-ray energy until two

partial recoveries occurring at 33.17 keV (K edge of iodine)

and 35.98 keV (K edge of caesium), after which a consecutive
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Figure 9
Top view of the sketch for a diffraction event occurring at position M
inside a cylinder sample. The incoming beam intersects with the cylinder
surface at points N and P1. The diffracted beam intersects with the
cylinder surface at point Q1. The center of the intersecting plane is
projected at point O1. Other symbols have the same meanings as in Fig. 1.



decrease goes on. An increase in the scintillator’s thickness

enhances DQE(0) due to an increased photon absorption

ability. It should be pointed out that there are other factors

influencing DQE, such as absorption by other materials like

the scintillator’s substrate, non-energy-absorbing scattering

and non-zero spatial frequency (Drangova & Rowlands, 1986).

However, those factors are expected to play less significant

roles and thus are not considered here.
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Figure 10
DQE(0) as a function of X-ray energy for a detector system using a
150 mm-thick CsI scintillator.
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