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For students of crystallography and solid-state physics, coming to terms with reciprocal

space means travelling down a thorny road. In this context, a book titled A Journey into

Reciprocal Space: A Crystallographer’s Perspective by A. M. Glazer, published by IOP

Publishing in the ‘Concise Physics’ series, could fill a glaring gap. The target audience is

solid-state physicists who need a gentle introduction to crystallographic concepts and an

overview of the field as seen through the eyes of a crystallographer. The book can be

divided into a part on crystallography (Chapters 1–3) and a part on solid-state physics

(Chapters 5 and 6), with Chapter 4 (‘Dynamical diffraction’) bridging the two. The book

has numerous positive aspects. For example, the author warns of common pitfalls (for

example monoclinic meaning � 6¼ 90�), denounces misconceptions such as ‘lattice

structure’ and recounts interesting historical anecdotes such as the ‘photosommateur’.

Practical applications (for example the metric tensor, measurement methods, Ewald

construction, analysis of the Patterson map) are easy to follow.

Sadly, however, the presentation is not as rigorous as one could have expected. The less

serious, but not less fastidious, problem is inconsistent typography, which gives a sloppy

impression. Lengths, vectors and axes are typeset arbitrarily in bold and italics; differ-

entials of volume integrals are systematically written as dr3 instead of the correct d3r. F is

designated an ‘amplitude’ and in the next line used as a complex number.

The parts of the book that contain the most errors are the mathematical derivations.

Only two of the worst errors (one in each part) shall be mentioned here. The Fourier

transform of a lattice is given as

AðQÞ ¼
R

lattice

exp ðir �QÞ dr3;

which is a very unfortunate notation, since it can be read as an integral over a set of

points, in which case it will evaluate to 0 or perhaps as the Fourier transform of a

constant-valued field, but hardly that of a lattice (is there a sum of � distributions

missing?). The result of the deduction appears deus ex machina: A(Q) has only ‘values at

discrete points hkl’, as if 0 were not considered a ‘value’; the reader does not learn what

the ‘value’ at ‘hkl’ is (as the given series tends to +1). The observed ‘amplitude’ is F(hkl)

= A(Q) (original typography), which is therefore infinity.

The derivation of Bloch’s theorem is based on ‘an operator T̂T acting on the function

exp(ik � r)’, but apparently also acting on vectors and/or scalars:

T̂T exp ðik � rÞ ¼ exp ðiT̂Tk � rÞ:

Later it is stated that T̂Tp � T̂Tq ¼ p � q. By setting p = q we note that T̂T cannot change

the length of a vector just to be informed a few lines down that T̂Tr ¼ rþ tn, which

means that T̂T does change the length. From these contradictions follows that

‘T̂T expðik � rÞ ¼ ½. . .� ¼ expðik � rÞ’ and therefore ‘suitable basis functions for translation

can be taken as exp(ik � r)’. The meaning is unclear.

Sometimes, excess pedagogical effort becomes a trap, as in the example of the atomic

form factor. We read (page 3-30) that it ‘will drop off with angle faster for heavier, and

thus larger, atoms’, thus proving: ‘[l]arge distances [in real space] become small [in

reciprocal space]’. As a matter of fact, the opposite is true: heavy elements scatter to
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higher angles owing to their tightness: the core electrons are

closer to the nucleus because of the increased attractive force.

The limit of the distribution of core electrons for a hypothe-

tical atom of infinite weight is a Dirac delta, whose Fourier

transform is a constant: the scattering power of such an atom

would not drop off at all. Fig. 3.32 actually proves this: the light

O atom retains only 20% but the heavier K atom 40% of its

scattering power at high angles; this would be even more

evident had the curves been normalized with respect to the

number of core electrons. The author is apparently thinking in

absolute terms, which makes the curve for K steeper overall.

However, this is because of its higher total scattering power.

Indeed, considering the normalized scattering power, ‘larger

atoms’ in direct space also means a ‘larger’ contribution in

reciprocal space, the opposite of what the author intended to

say.

Terminological confusion is quite common among non-

specialists. This book, aimed precisely at non-specialists,

should give a clear picture of concepts that are too often used

inconsistently. Unfortunately, a certain fear of going into too

much detail produced the opposite result, i.e. promoting the

confusion one wanted to avoid. There is confusion between

symmetry operations, geometric and symmetry elements;

between point groups, point-group types and crystallographic

point groups; between lattice system and crystal system

[leading to the confusing section ‘Hexagonal, trigonal (and

rhombohedral)’]. The ‘element’ of a higher rotoinversion (i.e.

with a rotational component with order higher than 2) is given

as a point, when of course a line is also needed to fully define

its orientation. The book is often vague or inconsistent in

other topics as well. For example, quartz ‘exists in two crys-

talline habits that are mirror images of each other’ (enantio-

morphic is one habit) and then ‘examples of crystal habit[s]’

are given as ‘needle-like’ or ‘prismatic’ (but what would the

‘mirror image’ of ‘needle-like’ be?). A reader familiar with

these terms may make sense of this, but a newcomer will end

up very confused. Point symmetry is defined via ‘operators’,

which are not defined, but apparently used here in the sense of

a linear map from a vector space onto itself, ‘that describe

symmetry operations that act through a point in space’ (a

‘symmetry operation’ may leave points unchanged – it does

not ‘act through’ them). ‘Translation symmetry is the

symmetry that is exhibited by a collection of equivalent

objects repeated regularly throughout space’ may be an

explanation but is not a helpful ‘definition’, since such a

‘collection of equivalent objects’ may have other symmetries

besides pure translations. ‘Bravais lattices’ are defined as

‘unique types’ without stating what the ‘type’ of a lattice is. It

is not clear how a ‘unit cell . . . shows the true symmetry of a

lattice’, as the true symmetry of a lattice certainly involves

translation, in contrast to a unit cell; the point group of the

lattice is obviously meant here. A crystal is ‘a solid’ with ‘an

ordered arrangement in space’. Firstly, order is a more general

and vague concept than crystallinity. The former is therefore

not useful to define the latter. Secondly, most readers will be

able to cope with the facts: Crystallinity used to be defined

via translation symmetry but that was changed to a more

phenomenological, perhaps not entirely satisfying, definition

involving diffraction patterns. ‘[P]oint symmetry operators’

are classified into the three types ‘proper rotations, inversions

and rotoinversions’. The identity (1) is discussed with ‘proper

rotations’ (2, 3, . . . ) but the inversion (�11) not with ‘roto-

inversions’ (�33, �44, . . . ). ‘Reflections’ (formally �22) are discussed

in the section ‘inversions’ not ‘rotoinversions’. This all appears

rather arbitrary.

Some figures are confusing: In the Ewald construction of a

Renninger reflection, the indicated reflection is k2 � k1, but

the label and main text state k1 � k2; arrows are in real space

but labelled with reciprocal-space vectors and the Renninger

reflection is not located on the original Ewald sphere. The

segments of the band structure in ‘Nearly free electrons’ all

have the same slope, making it unclear that they are derived

from a single parabola.

A slide-projector analogy to explain the ‘phase problem’

fails in multiple ways. It says that the ‘purpose of the lens [of

the projector] is to combine all the amplitudes and phases of

the light wave from the object’, when the phase plays no role

in slide projection, as there is no interference involved.

Moreover, for ‘[X]-ray and neutron diffraction’ it is only ‘the

intensity [not the phase] that one observes . . . because no lens

is available’, when again these are unrelated issues. Also, ‘the

light arriving at the screen contains all information about the

slide at every place within the lit area’ (emphasis added) might

give the wrong impression that every point in reciprocal space

contains the whole information if there was only an appro-

priate ‘lens’, which is contradicted by ‘one needs the ampli-

tudes and the phases of each hkl reflection’.

In some cases crucial information is omitted: The trigono-

metrical proof (pages 1-20 and 1-21) of the crystallographic

restriction theorem (not named as such) lacks the funda-

mental statement that t is the shortest lattice vector in a given

direction, by confusing sin and cos (equations 1.16 and 1.17

should contain the cosine, not the sine) and by omitting the�1

for sin � in the list of its possible values. The Laue equation is

derived from the ‘path difference’ of waves scattered at only

two neighbours of a ‘row of atoms’, which is insufficient to

explain sharp diffraction peaks: the ‘path difference’ of waves

scattered by atoms farther apart would have to be taken into

account. The periodicity of ‘uk’ in ‘uk exp(ik � r)’ is only given

indirectly by writing it as a discrete Fourier series (without

naming it as such). The displacement of the ‘sth atom’ in the

classical mass-and-spring model does not depend on s. To

prove periodicity of k-space the reader should consider a

‘plane wave’ and ‘subtract a reciprocal lattice vector g from

the wavevector’:

exp½iðk� gÞ � tn� ¼ expðik � tnÞ expð�ig � tnÞ;

where tn is a (direct) lattice vector. These are constant

complex numbers, not plane waves (which would need a

position vector). How this proves that ‘the wave solutions are

invariant under addition or subtraction of [ . . . ] g’ is unclear.

Though not wrong, some derivations could have been

shortened significantly if the proper concepts had been used,

and thus been rendered more insightful. For example, the
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derivation of the Patterson function would become trivial by

application of the convolution theorem (which is used in other

parts of the book). The phase problem could have been

demonstrated in one line using the exponential notation of

complex numbers. Ironically, a long-winded ‘derivation’ was

chosen instead because this convenient notation is ‘not

particularly suitable [ . . . ] in practice because it contains

complex quantities’. It remains unclear how treating the real

and imaginary parts (i.e. the cosine and sine terms) separately

is more ‘suitable [ . . . ] in practice’. Surprisingly, the second

part of the book then assumes an intimate knowledge of

complex numbers in the context of wave equations.

At times, the organization of the book is arguably

confusing, with notions introduced after they have been used

(Dirac �, crystallographic restriction theorem, Friedel’s law,

Brillouin zone boundaries, the Bloch theorem) or not intro-

duced at all (symmetry, symmetry axis, symmetry operation,

operator, polar axis) or discussed in unrelated sections (e.g.

kinematic model in ‘Lattice diffraction’; electron and neutron

scattering are subsections in ‘Anomalous dispersion’; elastic

scattering in ‘Waves in space’; ‘The Patterson method’ and

‘Charge flipping’ are not part of ‘Solution of crystal struc-

tures’; ‘Total scattering’ is presented independently of ‘The

Patterson method’). ‘Intensity calculation’ could perhaps be

more aptly called ‘Systematic absences’ or ‘Reflection condi-

tions’.

Occasionally, I got the impression that supposedly cutting-

edge topics were crammed in, but were given insufficient space

to be useful [the Rietveld method: 2 pages; total scattering: 2

pages; quasi-periodics: 4 pages (note that there are no

diffraction patterns in a book with ‘reciprocal space’ in the

title); disorder: 1 page (likewise with no diffraction patterns)].

To my taste, these could have been omitted or their treatment

reduced to a short paragraph to save space for the funda-

mentals. Likewise, a lengthy derivation in the section ‘Lattice

dynamics’ is given only to ‘emphasize its complexity’, which is

not a rewarding insight. A similarly long-winded derivation of

Cv appears hardly related to the title of the book.

The tone of the book is ambivalent. It is generally written in

an amicable style, which is very welcome. However, in the

second part, the tone sometimes becomes strangely over-

bearing. The ‘Brillouin zone’ is redefined as an arbitrary ‘unit

cell in reciprocal space’ (in crystallography unit cells are

parallelepipeds, which Brillouin zones in general are not) with

an aside that this is owing to the topic being ‘poorly under-

stood by many physicists and chemists’. Here, a misconception

in another textbook is pointed out, which feels out of place

considering the book’s own level of errors. One can assume

that the ambiguity of the wavevector is well understood by the

target audience (solid-state physicists). Even though different

‘unit cells’ in k-space can be chosen, these do not constitute

‘Brillouin zones’ as generally defined. A textbook is not the

place to redefine well accepted notions. Moreover, the text

contradicts itself in this respect by indirectly stating that the

Brillouin zone boundary is special (where ‘standing waves’ are

located) and that everything outside the first Brillouin zone is

‘unphysical’ and ‘imaginary’.

Writing a book aimed at newcomers is probably the most

difficult task a scientific author can face. A good introductory

book is concise and easily digestible without sacrificing

correctness and rigour. It shows the fundamentals, but

also the complexities that arise from them, as therein

lies the beauty of science. Clearly, the author strived for an

easy read and assumed a certain amount of prior knowledge.

This is not a valid excuse for the shortcomings discussed

above, which will leave beginners in a deeply confused state.

The erroneous derivations punish those who wish to dig

deeper. Yet, these are precisely the readers that we should

attempt to attract to our science. Moreover, by painting

crystallography as an imprecise and convoluted science,

the book will hardly pique the interest of solid-state

physicists. In truth, crystallography’s multidisciplinary

approach while retaining a high level of rigour is one of its

main attractions.

All this is unfortunate as the book clearly has potential, as

mentioned at the start of this review. Hopefully, a future

thoroughly revised and proofread version will be able to

bridge the gap between crystallography and solid-state

physics, and present a clear and concise view of reciprocal

space.
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