Synthetic investigation on structure-property relationships in the Ca2-xMnxTi2O6 quadruple perovskite system

S Bhoi¹, M LEGENDRE², C GOUJON², M JOSSE³, M SUCHOMEL⁴ ¹Institut de Chimie de la Matière Condensée de Bordeaux, PESSAC, ² Institut Néel UPR 2940, 38042 Grenoble FRANCE, Grenoble, ³University of Bordeaux, ICMCB, UMR 5026, 33600 Pessac, FRANCE, Pessac, ⁴ICMCB-CNRS UMR 5026, 33600 Pessac FRANCE, Pessac, France sub.bhoi@icmcb.cnrs.fr

Pressure assisted synthesis is a proven route for expanding the explorable range of phase space in order to discover and stabilize new metastable ABO_3 perovskite-type structures. Recently, a new class of complex perovskites termed quadruple perovskites (QPv) have been investigated for their unusual cation ordering and interesting ferroic properties [1]. One intriguing member of this family is CaMnTi_2O_6, which displays ferroelectric character (T_C = 630K) and was previously reported by High-Pressure High-Temperature (HP-HT) synthesis methods at 1200°C -1700 °C and 7 GPa [2]. A recent work [3] showed that related Ca-rich compositions in the Ca_(2-x)Mn_xTi_2O_6 series could be achieved at much lower pressures (100 MPa) using a Spark Plasma Sintering (SPS) approach. Our present study explores the optimized P-T synthesis conditions for compositions across the Ca_(2-x)Mn_xTi_2O_6 series under a variety of different synthetic techniques (HP-HT, SPS, etc.). Furthermore, the effect of varying synthetic parameters (Ca/Mn ratio, pressure, temperature, SPS current, etc.) on competing phase stabilities, structural distortions, and cation ordering in Ca_(2-x)Mn_xTi_2O_6 series of QPv is discussed. Finally, connections are proposed concerning the structure-property relationship, in particular for the ferroelectric transition temperature (T_C) and dielectric permittivity response.

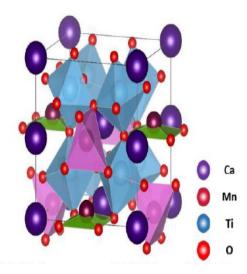


Figure 1. Schematic of $CaMnTi_2O_6$ structure. Light blue, pink and green polyhedral are for TiO_6 , tetrahedral-MnO₄ and square pannar-MnO₄ respectively.