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Small-angle X-ray scattering from GaN nanowires grown on Si(111) is measured

in the grazing-incidence geometry and modelled by means of a Monte Carlo

simulation that takes into account the orientational distribution of the faceted

nanowires and the roughness of their side facets. It is found that the scattering

intensity at large wavevectors does not follow Porod’s law I(q) / q�4. The

intensity depends on the orientation of the side facets with respect to the

incident X-ray beam. It is maximum when the scattering vector is directed along

a facet normal, reminiscent of surface truncation rod scattering. At large

wavevectors q, the scattering intensity is reduced by surface roughness. A root-

mean-square roughness of 0.9 nm, which is the height of just 3–4 atomic steps

per micrometre-long facet, already gives rise to a strong intensity reduction.

1. Introduction

GaN nanowires (NWs) form spontaneously in plasma-assisted

molecular-beam epitaxy (PA-MBE) on various substrates at

elevated temperatures under an excess of N (Fernández-

Garrido et al., 2009, 2012). In contrast with the vapour–liquid–

solid (VLS) growth approach followed to synthesize the

majority of semiconductor NWs, PA-MBE growth of GaN

NWs takes place without a metal particle on the top (Ristić et

al., 2008). The advantages of spontaneous formation are the

absence of contamination from foreign metal particles and the

possibility of fabricating axial heterostructures with sharp

interfaces by alternating the supply of different elements.

GaN NWs on Si(111), which is the most common substrate,

grow in dense ensembles (>�1010 cm�2) and initially possess

radii of tens of nanometres as well as broad radius and length

distributions (Consonni, 2013). As they grow in length, they

bundle together (Kaganer et al., 2016a). In the process of

bundling, two neighbouring NWs bend towards each other

and merge their top parts, while the bottom parts remain

separate. During further growth, the top parts gradually attain

a hexagonal cross-sectional shape, so that in top-view images

some of them may look like a single NW with a larger radius.

The long axes of GaN NWs are GaN[0001] (Zúñiga-Pérez et

al., 2016). They are aligned on Si(111) in the surface normal

direction, with a 3–5� wide distribution of the long-axis

orientations (tilt) (Jenichen et al., 2011). The side facets of the

NWs, which are GaN(1100) lattice planes (Brandt et al., 2014),

are epitaxially aligned with the Si(112) planes (Geelhaar et al.,

2011). The range of relative misorientation of these planes

(twist) varies from 2 to 4� (Jenichen et al., 2011).
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For dense NW ensembles on Si(111), the radius distribution

can be obtained from the analysis of top-view scanning elec-

tron micrographs (Brandt et al., 2014). However, this method

provides the radius distribution of only the top parts of the

NWs, which notably differs from the radius distribution in

their bottom parts because of NW bundling. In addition, the

use of scanning electron micrographs for statistical analysis of

NW radii becomes much more laborious for NW ensembles

with low densities such as those formed on TiN (van Treeck et

al., 2018), since when the magnification of the scanning elec-

tron micrographs is chosen to quantify the NW diameters, only

a few NWs fall into the field of view.

Small-angle X-ray scattering (SAXS) is potentially more

suitable than scanning electron microscopy for the determi-

nation of the radius distribution of GaN NW ensembles grown

on Si(111) because it probes the entire NW volume. From the

standpoint of small-angle scattering, GaN NWs are long

hexagonal prisms with a substantial distribution of their cross-

sectional sizes and orientations. Since these NWs are, on

average, aligned along the substrate surface normal, the inci-

dent X-ray beam must be directed at a grazing incidence to the

substrate surface. Grazing-incidence small-angle X-ray scat-

tering (GISAXS) has been employed to study Si (David et al.,

2008; Buttard et al., 2013), GaAs (Mariager et al., 2007) and

InAs (Eymery et al., 2007, 2009; Mariager et al., 2009) NWs

grown by the VLS growth mechanism with Au nanoparticles

on their tops. Unlike spontaneously formed GaN NWs, NW

ensembles prepared by VLS are characterized by very narrow

distributions of the NW sizes and orientations. The scattering

intensity from such NW ensembles possesses the same features

as the scattering intensity from a single NW: it exhibits oscil-

lations due to the interference caused by reflections at oppo-

site facets and a pronounced dependence of the intensity on

the scattering vector orientation. The scattering intensity has

maxima in the facet normal directions, which are referred to as

facet truncation rods, and these are well established in X-ray

diffraction from nanoparticles (Renaud et al., 2009) and stem

from crystal truncation rods from planar surfaces (Robinson,

1986; Robinson & Tweet, 1992).

In the case of GaN NWs, despite the potential advantages of

GISAXS to assess the distribution of NW radii, we are not

aware of any GISAXS study to date. The closest report is the

work of Horák et al. (2008), who performed an in-plane X-ray

diffraction study of GaN NWs using a laboratory diffract-

ometer. Their analysis implies the absence of strain in the

NWs. If so, the NW diameters can be obtained from !/2� scans

in the same way as can be done in GISAXS. However, this

analysis cannot be applied to dense arrays of GaN NWs, which

are inhomogeneously strained as a result of NW bundling

(Jenichen et al., 2011; Kaganer et al., 2012; Fernández-Garrido

et al., 2014; Kaganer et al., 2016b). We do not discuss here

other X-ray diffraction studies of NWs devoted to the deter-

mination of strain and composition since they are beyond the

scope of the present work.

The aim of the present paper is to develop the approaches

required for the analysis of GaN NW arrays by GISAXS using

dense NW ensembles grown on Si(111) as a model example.

Since GaN NWs are faceted crystals (their side facets are

f1100g planes), we expected that the GISAXS intensity at

large wavevectors would follow Porod’s law. Porod’s law

(Porod, 1951; Debye et al., 1957) states that, at large wave-

vectors q, the small-angle scattering intensity I(q) from

particles with sharp boundaries (i.e. possessing an abrupt

change in the electron density at the surface) follows a

universal asymptotic law I(q) / q�4. Sinha et al. (1988)

pointed out a common origin of Porod’s law in small-angle

scattering and Fresnel’s law for reflection from flat surfaces,

namely that the scattering intensity from a planar surface in

the xy plane is proportional to q�2
z �ðqxÞ �ðqyÞ. An average over

random orientations of the plane gives rise to the q�4 law just

because the delta function �(q) has a dimensionality of q�1.

Sinha et al. (1988) performed an explicit calculation of the

orientational average. Deviations from Porod’s law are caused

by fractality or the roughness of the surfaces in porous media

(Bale & Schmidt, 1984; Wong & Bray, 1988; Sinha, 1989).

In this paper, we show that the GISAXS intensity from GaN

NWs at large wavevectors depends on the azimuthal orien-

tation of the NW ensemble with respect to the incident X-ray

beam. The intensity is maximum when the scattering vector is

directed along the facet normal, and minimum when the

scattering vector is parallel to the facet. In other words, the

azimuthal dependence of the GISAXS intensity reveals the

facet truncation rods. We also show that the intensity at large q

reveals the roughness of the side facets of the GaN NWs. We

determine a root-mean-squared (r.m.s.) roughness of about

0.9 nm, corresponding to the height of a few atomic steps on a

micrometre-long NW sidewall facet. Both the facet truncation

rod scattering and the surface roughness cause deviations

from Porod’s law.

2. Experiment

For the present study, we selected three samples, here

numbered 1 to 3, with different NW lengths from the series A

studied by Kaganer et al. (2016a). The GaN NWs were

synthesized in an MBE system equipped with a solid-source

effusion cell for Ga and a radio-frequency N2 plasma source

for generating active N. The samples were grown on Si(111)

substrates, which were preliminarily etched in dilute HF (5%),

outgassed above 1173 K for 30 min to remove any residual

SixOy from the surface, and exposed to the N plasma for

10 min. The substrate growth temperature was approximately

1073 K, as measured with an optical pyrometer. The Ga and N

fluxes, calibrated by determining the thickness of GaN films

grown under N- and Ga-rich conditions (Heying et al., 2000),

were 0.3 and 0.75 monolayers per second, respectively. The

growth time is the only parameter that was varied among the

samples to obtain ensembles of NWs with different lengths.

Fig. 1 presents scanning electron micrographs of samples 1–

3. Sample 1 corresponds to the end of the NW nucleation

process. The NW density is 3.5 � 1010 cm�2, while the average

length and diameter of the NWs are 230 and 22 nm, respec-

tively. The NWs are mostly uncoalesced hexagonal prisms.

Samples 2 and 3 display the further growth of the NWs, with
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average NW lengths of 650 nm for sample 2 and 985 nm for

sample 3. The average NW diameter, as determined by the

analysis of the top-view micrographs (right-hand column of

Fig. 1), increases with increasing NW length, while the NW

density decreases.

The increase in diameter is a result of NW bundling, rather

than their radial growth. A decisive proof of the absence of

radial growth comes from the measurement of the fraction of

the total area that is covered by NWs (Kaganer et al., 2016a).

The area fraction covered by NWs, derived from the top-view

micrographs shown in the right-hand column of Fig. 1, does

not change from one sample to another and remains always at

20%. The bundling is clearly seen in Figs. 1(c) and 1(e). The

NWs remain thin (and possess larger density) in their bottom

parts and merge in their top parts. By merging, they reduce the

surface energy of side facets at the cost of bending energy

(Kaganer et al., 2016a). The bending energy may be reduced

further by the introduction of dislocations at the merging

joints (Kaganer et al., 2016b). The NW segments are then less

bent and have kinks at the joints.

The distribution of the NW orientations was determined

with a laboratory X-ray diffractometer. We measured the full

width at half-maximum (FWHM) of the GaN(0002) reflection

to determine the tilt range with respect to the substrate

surface normal, and the GaN(1100) reflection to determine

the twist range with respect to the in-plane orientation of the

substrate. The FWHM of the tilt distribution is found to

decrease with increasing NW length, from 5.1� for sample 1 to

4.0� and 3.9� for samples 2 and 3, respectively, as a conse-

quence of bundling. The FWHMs of the twist distribution are

2.8�, 2.7� and 3.1� for samples 1, 2 and 3, respectively.

The GISAXS measurements were performed on the

beamline ID10 at the European Synchrotron Radiation

Facility (ESRF) using an X-ray energy of 22 keV (wavelength

� = 0.5636 Å). The incident beam was directed at grazing

incidence to the substrate. The chosen grazing-incidence angle

was 0.2�, i.e. about 2.5 times larger than the critical angle of the

substrate, to avoid possible complications of the scattering

pattern typical for grazing-incidence X-ray scattering (Renaud

et al., 2009). A two-dimensional Pilatus 300K detector

(Dectris) placed at a distance of 2.38 m from the sample

provided a resolution of 8.06 � 10�3 nm�1.

Fig. 2 shows the GISAXS intensity measured from sample 1.

The scattering pattern comprises three horizontal streaks. The

small-angle scattering around the transmitted beam is labelled

‘T’, while the scattering around the beam reflected from the

substrate surface is labelled ‘R’. Both streaks reveal the same

scattering intensity dependence on the lateral wavevector qx.

The scattering around the transmitted beam possesses a larger

intensity. For that reason, the T streak is chosen here for

further analysis. Besides the T and R streaks, the intensity

distribution in Fig. 2 contains the Yoneda streak, marked ‘Y’,

which is located at the critical angle for total external

reflection. The chosen incidence angle of 0.2� allows us to

separate the three different streaks well, which facilitates the

analysis of the GISAXS intensity within the framework of

kinematic scattering.

3. Analysis of the measured intensities

We use the specific features of the NWs as oriented long

prisms to improve the accuracy of the determination of the

GISAXS intensity I(qx) from the measured maps. Since a

single NW is a needle-like object, its scattering intensity in
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Figure 1
(Left) Bird’s-eye-view and (right) top-view scanning electron micro-
graphs of (a), (b) sample 1, (c), (d) sample 2 and (e), (f) sample 3. The
average NW lengths are 230, 650 and 985 nm, respectively. The scale bar
in panel (a) is applicable to all the micrographs.

Figure 2
GISAXS intensity from sample 1 as measured by a two-dimensional
detector. The scattering around the transmitted beam, the scattering
around the beam reflected from the substrate surface and the Yoneda
streak are labelled T, R and Y, respectively. The vertical blue bar in the
middle of the scattering pattern is the beamstop. The three vertical
dashed lines mark the positions of the scans presented in Fig. 3. The
colour-coded scale bar represents the intensity in counts.



reciprocal space is concentrated in the plane perpendicular to

the long axis of the NW. A random tilt of a NW results in a

corresponding tilt of the intensity plane. Hence, one can

expect that the spread of 4–5� in the directions of the long axes

of the NWs results in a sector of intensity in Fig. 2, with the

width �qz increasing proportional to qx.

Fig. 3 presents intensity profiles along the dotted lines

indicated in Fig. 2, i.e. scans at constant values of qx. These

profiles are fitted by a Gaussian plus a background that may

linearly depend on qz. The FWHMs of these profiles �qz are

plotted in Fig. 4(a). As expected, �qz increases linearly with

qx. One can also see that the straight lines through the data

points for each sample do not pass through the origin. The

additional broadening can be attributed to the effect of the

finite NW length L, so that, in the first approximation, the

intersection point at qx = 0 is �qz = 2�/L. For a more accurate

determination of the NW lengths, we performed Monte Carlo

simulations of the �qz versus qx curves. The Monte Carlo
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Figure 3
Measured intensity profiles (circles) along the lines of constant qx marked
by the dashed lines in Fig. 2, and the respective Gaussian fits (lines).

Figure 4
(a) FWHMs of the intensity profiles �qz as a function of the wavevector
qx. Green lines are the results of the Monte Carlo simulations described
in Section 4. (b) GISAXS intensity of sample 1 as a function of the
wavevector qx at varying azimuthal orientations  . (c) The same intensity
profiles as in panel (b) but plotted as IðqxÞq

4
x versus qx.

Table 1
Parameters of the NW ensembles.

The NW lengths obtained from the scanning electron microscopy (SEM) images and the FWHMs of the tilt distributions obtained by X-ray diffraction (XRD) are
compared with their respective values obtained by the Monte Carlo (MC) simulations presented in Figs. 4(a) and 10. The FWHMs of the twist distributions are
obtained by XRD and used in the Monte Carlo simulations. The NW radii (mean and standard deviation, st. dev.) and roughnesses are obtained by the Monte
Carlo simulations of the GISAXS intensity curves.

NW length (nm) FWHM tilt (�)
FWHM twist (�)

NW radius (MC) (nm)
Roughness

SEM MC XRD MC XRD Mean St. dev. (MC) (nm)

Sample 1 230 230 5.1 5.9 2.8 12.1 3.8 0.9
Sample 2 650 350 4.0 5.1 2.7 15.8 5.6 0.95
Sample 3 985 400 3.9 4.6 3.1 16.3 6.5 0.95



simulations are described below in Section 4, and the para-

meters obtained in the simulations are presented in Table 1.

The results of the simulations are shown in Fig. 4(a) by green

lines.

The angular ranges of the NW orientations are 5.9�, 5.1� and

4.6� for samples 1, 2 and 3, respectively. They can be obtained

from the slopes �qz/qx of the respective curves in Fig. 4(a).

These values are close to (albeit somewhat larger than) the

widths of the orientational distributions measured by Bragg

diffraction, as described in Section 2.

The average NW length of 230 nm for sample 1 obtained in

the Monte Carlo simulation coincides with the length that can

be obtained from the scanning electron micrograph in

Fig. 1(a). The average lengths for samples 2 and 3 are 350 and

400 nm, respectively, notably smaller than the NW lengths in

Figs. 1(c) and 1(e). The difference can be explained by NW

bundling. The NW length measured in the GISAXS experi-

ment is not its total length but an effective length of the NW

segment between the merging joints. From the ratio of the

total NW length to the segment length (see Table 1), we find

that a NW consists of 2–3 segments.

The fits in Fig. 3 help to improve the determination of the

scattering intensity I(qx) at both small and large momenta qx.

At small qx, the intensity profiles are narrow and the peak

intensity has to be determined from just a few data points. At

large qx, the intensity is low and the background is comparable

to the signal. After performing the fits of the cross-sectional

profiles (i.e. along the qz direction) shown in Fig. 3 and

establishing the linear dependence of the FWHM �qz on qx,

we make one more step to reduce the noise of the data.

Linear fits are made for the �qz on qx dependencies

plotted in Fig. 4(a). Then, the fits of the qz profiles shown in

Fig. 3 are repeated, now with the FWHMs fixed at the values

obtained from the linear fits. In this way, the number of free

parameters in the Gaussian fits is decreased and the curves

I(qx) are smoothed. These curves are used in the subsequent

analysis.

Fig. 4(b) presents the GISAXS intensity I(qx) measured on

sample 1 at varying azimuthal orientation  . The sample

orientation  = 0 corresponds to the incident X-ray beam

along a GaNh1120i direction, so that the scattering vector (the

x-axis direction) is along h1100i, which is the normal to the

NW facets. Fig. 4(b) comprises the measurements obtained on

the rotation of sample 1 about the normal to the substrate

surface (i.e. about the direction of the long axes of the NWs)

from  = 0� to 30� with a step of 5�. Since the sample has a

rectangular shape and the illuminated area varies on rotation,

the curves are scaled to obtain the same intensity in the small-

qx range. The scaling factors differ by a factor of less than 2.

The azimuthal dependence of the intensity at large qx is

evident from the plot.

In the case of the reflected beam (streak R in Fig. 2), an

identical analysis of the intensity (not shown here) results in

curves close to those shown in Fig. 4(b). Thus, we observe the

same azimuthal dependence of the intensity but with a

smaller total intensity and a higher level of noise. For this

reason, for the further analysis presented here we exclusively

consider the intensity distributions around the transmitted

beam.

Since we expect Porod’s law I(qx) / q�4
x to be satisfied at

large qx, we plot in Fig. 4(c) the same data as IðqxÞ q
4
x versus qx,

which would tend to a constant value for large qx. Surprisingly,

a strong deviation from Porod’s law is observed. Furthermore,

the data not only deviate from Porod’s law, but also exhibit a

strong azimuthal dependence. In order to explain this un-

expected behaviour, in the next section we develop a Monte

Carlo method to calculate the scattering intensity.

4. Calculation of the scattering intensity

4.1. Scattering amplitude of a prism

We calculate first the scattering amplitude (form factor) of a

NW A(q) in a coordinate system linked to the NW, i.e. with the

z axis in the direction of the long axis of the NW. Hence, the

cross section of the NW is in the xy plane. Next, we will

consider in Section 4.3 a transformation of the wavevectors

from the laboratory frame to the NW coordinate system, and

perform an average of the intensities |A(q)|2 over different

NW orientations.

The scattering amplitude of a NW is given by its form factor

AðqÞ ¼
R
V

expðiq � rÞ dr; ð1Þ

where the integral is calculated over the NW volume V. Since

the NW is a prism, the scattering amplitude can be represented

as a product of the components along the NW axis and in the

plane perpendicular to it, A(q) = Ak(qk)A?(q?). The long-

itudinal component is simply

AkðqkÞ ¼ sinc ðqkL=2Þ; ð2Þ

where sinc ðxÞ ¼ ðsin xÞ=x and L is the NW length.

The calculation of the transverse component A?(q?) can be

reduced to a sum over the vertices, as was initially shown for

faceted crystals by von Laue (1936) and used nowadays to

calculate the form factors of nanoparticles (Vartanyants et al.,

2008; Renaud et al., 2009; Pospelov et al., 2020). Specifically,

von Laue (1936) proposed to reduce, using the Gauss

theorem, the volume integral (1) to the integrals over the

facets; application of the Gauss theorem to these area inte-

grals reduces them to integrals over the edges, which, in turn,

can be taken by parts and expressed through the coordinates

of the vertices.

For a planar polygon, the form factor reads

A?ðq?Þ ¼
1

q2
?

X

j

q? � nj

q? � lj

exp iq? � rjþ1

� �
� exp iq? � rj

� �� �
;

ð3Þ

where the sum runs over the vertices and, as illustrated in

Fig. 5(a), rj are coordinates of the vertices, and lj and nj are unit

vectors along the polygon side between the vertices rj and rj+1

and normal to it, respectively. Lee & Mittra (1983) proposed

another expression for the form factor,
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A?ðq?Þ ¼
X

j

exp iq? � rj

� � lj � lj�1

� �
� N

q? � lj

� �
q? � lj�1

� � ; ð4Þ

where N is the unit vector normal to the polygon plane, and

Wuttke (2017) explicitly showed the identity of expressions (3)

and (4). Equation (3) makes it possible to resolve easily the

numerical uncertainty 0/0 that arises at q? � lj = 0. Since lj =

(rj+1 � rj)/|rj+1 � rj|, we have in the limit q? � lj! 0

1

q? � lj

exp iq? � rjþ1

� �
� exp iq? � rj

� �� �

! i exp iq? � rj

� �
rjþ1 � rj

�� ��: ð5Þ

Fig. 6(a) shows the intensity distribution calculated by

equation (3) for a regular hexagon with a side length of 12 nm.

The intensity is higher in the directions of the side normals and

oscillates due to interference from opposite sides of the

hexagon. Fig. 6(b) shows a Monte Carlo calculation of the

average intensity from hexagons of different sizes. A log-

normal distribution of the lengths of the hexagon sides is

taken with the same mean value of 12 nm and a standard

deviation of 4 nm. This choice of parameters corresponds

approximately to the respective values for sample 1.

The radial intensity distribution in the direction along the

intensity maximum is presented in Fig. 6(f) by the black line.

The intensity distribution is presented as the product Iq3
x,

which would be constant at large qx for an ensemble of

randomly oriented hexagons (as well as for other two-

dimensional objects with rigid boundaries) after averaging

over all possible orientations. As stated above, the intensity

maxima in Fig. 6(b) correspond to the directions normal to the

sides of the hexagon. They possess, at large qx, an I / q�2
x

dependence due to a steplike variation in the density at a

planar surface. Hence, in Fig. 6(f), we observe a linear increase

in the intensity for large values of qx (black line).

The local maximum at qm = 0.175 nm�1 in Fig. 6(f) is related

to the mean length of the side facet of the hexagons a = 12 nm

as a ’ 2.1/qm, which allows us to determine the hexagon size

directly from plots of Iq3
x versus qx (in the three-dimensional

case of hexagonal prisms, the same formula is applicable for

the maximum in an Iq4
x versus qx plot, see Section 4.3). For

comparison, the form factor of a circle of radius R gives

IðqÞq3 / J2
1ðqRÞ, where J1(x) is the Bessel function. The first

maximum of J1(x) at x ’ 1.84 gives the circle radius R ’ 1.84/

qm. We can relate a hexagon and a circle even closer, by

defining an effective radius Ra of a circle possessing the same

area as a hexagon with a side length a. Then, we have Ra =

ð3
ffiffiffi
3
p
=2�Þ1=2

a ’ 0.91a and Ra ’ 1.9/qm, with the proportion-

ality coefficient very close to the case of a circle.

With the form factor defined by the positions of the vertices

according to either equation (3) or (4), we are not restricted to

regular hexagons but can take into account the real cross-

sectional shapes of the NWs. Since the side facets of the NWs

are GaN{1100} planes making an angle of 60� to each other,

we build the hexagons as shown in Fig. 5(a): random heights hj

are taken in the directions normal to the facets. Then, we

check that the generated hexagon is convex, and discard it

otherwise. Fig. 5(b) presents examples of randomly generated

hexagons with the same orientation of their sides. The distri-

bution of the hexagon shapes is chosen to simulate sample 1

and is further described in Section 5. The intensity map

obtained from this distribution of hexagons is shown in

Fig. 6(c). The respective radial intensity distribution is

presented in Fig. 6(f) as the blue line. One can see that the

black and blue lines in Fig. 6(f) are remarkably different. In

particular, the hexagon shape distribution notably reduces the

dip in intensity. Therefore, the distortion of the hexagons can

be deduced from the intensity plots.
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Figure 5
(a) A hexagon with vertices rj and the unit vectors along and normal to
the side lj and nj . The distance from the hexagon centre to its side is hj. (b)
Examples of randomly generated hexagons used to simulate the
scattering from sample 1.

Figure 6
Scattering intensities from (a) a regular hexagon with a side length of
12 nm, (b) a distribution of regular hexagons with an average side length
of 12 nm and a standard deviation of the side lengths of 4 nm, (c) a
distribution of distorted hexagons as shown in Fig. 5(b), (d) the same
distribution as in panel (c) but with a side facet roughness � = 0.6 nm
added according to equation (7), and (e) a distribution of randomly
oriented distorted hexagons. The colour-coded scale bar representing the
intensity is applicable to panels (a)–(e). (f) Radial intensity distributions
from panels (b)–(e) in the directions of the intensity maxima; the product
Iq3 is plotted. The curves are labelled by the same letters as the respective
maps. The effect of roughness is illustrated in (f) by two curves: the solid
red curve corresponds to the geometric distribution of the atomic steps on
the side facets and the dashed red curve to the Poisson distribution, both
possessing the same r.m.s. roughness of � = 0.6 nm.



4.2. Roughness of the side facets

The side facets of GaN NWs are atomically flat (Stoica et al.,

2008; Ristić et al., 2008) but may have atomic steps. The radial

growth of these NWs presumably proceeds by step flow, with

the motion of steps from the NW top, where they are nucle-

ated, down along the side facets (Fernández-Garrido et al.,

2013). Random steps across the side facets can be treated as

facet roughness in the same way as is done in the calculation of

crystal truncation rods (Robinson, 1986; Robinson & Tweet,

1992).

A step of height d0 shifts the jth side of the polygon in Fig. 5

by a vector d0 nj in the direction of the facet normal. Hence,

the jth term in sum (3) acquires an additional factor

expðid0q? � njÞ. Random steps give rise to a factor Rj =

R(q? � nj), where the function R(q) is defined as

RðqÞ ¼
X1

m¼0

pm exp imqd0ð Þ; ð6Þ

and pm are the probabilities of the shift of the side facet by m

steps. Hence, the function R(q) is the characteristic function of

the probabilities pm.

Consider the geometric probability distribution pm = (1 �

�)�m with the parameter � < 1. It describes a flat surface with

a fraction � one step higher, its fraction � is, in turn, one step

higher, and so on (Robinson, 1986). The r.m.s. roughness is

� = d0(�1/2)/(1 � �) and the corresponding characteristic

function is

RðqÞ ¼
1� �

1� � expðiqd0Þ
: ð7Þ

The Poisson probability distribution pm ¼ expð��Þ�m=m!
gives rise to the r.m.s. roughness � = d0(�1/2) and the char-

acteristic function is

RðqÞ ¼ exp �� 1� exp iqd0ð Þ
� �� 	

: ð8Þ

We stress here that the jth term in sum (3) is multiplied by a

complex factor Rj = R(q? � nj) that depends on the orientation

of the respective facet. This is different from a common

treatment of surface roughness, which involves a single factor

|R|2. In particular, the Poisson probability distribution gives for

qd0 � 1 the factor |R|2 = expð��2q2Þ. Buttard et al. (2013)

used such a factor to describe the effect of roughness on the

scattered intensity from Si NWs, by analogy with the rough-

ness of planar surfaces, and arrived at an r.m.s. roughness � of

1 nm for their samples. We use equation (3) in further calcu-

lations with the complex factors Rj in each term of the sum.

Fig. 6(d) shows the scattering intensity distribution obtained

with the roughness factors given by equation (7). The r.m.s.

roughness is taken to be � = 0.6 nm and the step height d0 is

that of the atomic steps on the GaN(1100) facet, d0 = a0

ffiffiffi
3
p
=2,

where a0 = 0.319 nm is the GaN lattice spacing. Strictly

speaking, the roughness factors given by equations (7) or (8)

are derived for a prism which has in each cross section a

hexagon with straight sides. It describes a variation in the cross

section of the prism along its length and does not make sense

for two-dimensional objects. Hence, the intensity distribution

shown in Fig. 6(d) corresponds to prisms with perfectly aligned

long axes.

The solid red line in Fig. 6(f) shows the radial intensity

distribution obtained from the map shown in Fig. 6(d) in the

direction of maximum intensity, calculated using the rough-

ness factors for the geometric probability distribution given by

equation (7). The dashed red line in Fig. 6(f) shows the

intensity from the same distribution of hexagons but calcu-

lated using the roughness factors derived from the Poisson

probability distribution, equation (8). The r.m.s. roughness is

taken to be the same in both cases, � = 0.6 nm. One can see

that the roughness qualitatively changes the intensity at q� > 1.

Hence, the r.m.s. roughness � can be obtained from the

intensity plots. Moreover, the intensity curves are fairly

sensitive to the choice of the probability distribution. Crystal

truncation rods from planar surfaces possess a similar sensi-

tivity to the choice of the roughness model (Walko, 2000). Our

modelling of the scattering from GaN NWs presented in

Section 5 shows that the geometric probability distribution

provides a better agreement with the experimental data.

4.3. Orientational distribution of NWs

The scattering intensity is measured as a function of the

wavevector q in the laboratory frame (see Fig. 2). We need to

find the components of this vector in the frame given by the

long axis of the NW and the normal to one of its side facets.

Let us consider first the simple case of the two-dimensional

rotation of the hexagons (or perfectly aligned prisms in the

plane normal to their long axes). The unit vector normal to a

hexagon side (or prism facet) can be written as

n ¼ ðcos ; sin ; 0Þ; ð9Þ

where  is an azimuthal angle (defined modulo 60�) with

respect to a reference orientation. The unit vector along the

hexagon side is l = ð� sin ; cos ; 0Þ. The components qn, ql

of the two-dimensional vector q? in the plane perpendicular to

the long axis of the NW are determined simply as qn = q? � n

and ql = q? � l.

Fig. 6(e) presents a Monte Carlo calculation of the intensity

for the distribution of distorted hexagons described above and

sketched in Fig. 5(b), after averaging over the orientations  
uniformly distributed from 0� to 360�. The corresponding

radial intensity distribution, shown in Fig. 6(f) by a grey line,

follows the two-dimensional Porod law I(q) / q�3 at large q.

At small q, it coincides with the intensity distribution for the

oriented hexagons.

For the three-dimensional distribution of the NW orienta-

tions, inherent to the spontaneous formation of GaN NWs on

Si(111) (see Fig. 1), we obtain the components of the scat-

tering vector q0 for a given NW by applying three rotations

about the orthogonal axes x, y and z to the scattering vector q

in the laboratory frame, q0 = Mz( )My(	)Mx(�)q. Here the

scattering vector in the laboratory frame is shown in Fig. 2: the

qx axis is normal to the mean direction of the long axes of the

NWs, the qz axis is along this direction and qy = 0. The matrices

Mj (j = 1, 3) are the rotation matrices about the respective
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axes, and the angles �, 	 and  defining the NW orientation are

the nautical angles, as shown in Fig. 7: the roll and pitch angles

� and 	 define the direction of the long axis of the NW, and the

yaw angle  the orientation of the side facets.

If the NW orientations are completely random, i.e. the

angles �, 	 and  vary uniformly and independently from 0 to

2�, the small-angle scattering intensity at q	 2�/a, where a is

the width of the side facet, follows Porod’s law I(q) / q�4.

However, since the NWs are long prisms, the scattering

intensity from a single NW of length L with its long axis in the

z direction concentrates in reciprocal space in a disc of width

�qz = 2�/L. We have seen in Section 3 that the scattering from

oriented NWs is limited by �qz/qx < ��, where �� is the

angular range of orientations. As long as 2�/(Lqx) < ��,

oriented NWs give the same intensity in the x direction as fully

randomly oriented ones. Therefore, Porod’s law is satisfied for

qx > 2�/(L��).

Fig. 8 presents Monte Carlo calculations of the small-angle

scattering intensity from NWs of different lengths and the

same FWHMs of the distributions of the angles � and 	 of 5�

corresponding to that of sample 1. In particular, for NWs with

a length L = 200 nm, the condition derived above reads qx >

0.7 nm�1, which is in good agreement with the region of

constant IðqxÞq
4
x in Fig. 8. Hence, the limited range of tilt

angles in the NW ensemble does not prevent the system

reaching Porod’s law, even for the relatively short NWs of

sample 1. The curves in Fig. 8 are calculated by averaging over

the facet orientation  varying from 0 to 2�. Further Monte

Carlo calculations, taking into account the orientational

ordering of the side facets of the epitaxially grown GaN NWs,

are presented in the next section.

5. Results

Figs. 9 and 10 present the results of systematic GISAXS

measurements on samples 1–3. The measurements and their

analysis are described in Sections 2 and 3, respectively. The

samples were measured with the azimuthal orientation  

varying from 0� to 90� in steps of 5�. Each measurement

provided a map Iðqx; qzÞ around the transmitted beam similar

to the one in Fig. 2. The intensity Iðqx; qzÞ has been analysed

by fitting every scan of a constant qx by a Gaussian, as shown

in Fig. 3. The peak values of the qz scans obtained in this fit

provided the intensity I(qx).

The measurements performed at different azimuthal

orientations  of the sample are presented in Fig. 9 as maps in

the axes ðqx cos ; qx sin Þ. The measurements were

performed in the quadrant 0 <  < �/2, shown by dotted lines,

and then reflected relative to the horizontal and vertical axes.

A sixfold symmetry of the intensity distribution, with maxima

in the directions of the normals to the side facets of the NWs, is

evident from the figure.

The same data are presented in Fig. 10 for each azimuthal

angle  as a product IðqxÞ q
4
x versus qx, to reveal deviations

from Porod’s law. The data are represented in more detail: one

can see that the sixfold symmetry is quantitatively proven for

samples 2 and 3, while sample 1 reveals some difference

between the curves at  = 0� and 60�. This difference is

presumably due to the illumination of different parts of the

sample during its rotation.

We calculate the scattering intensity by the Monte Carlo

method. It enables a simultaneous integration over the

distributions of the NW lengths, their cross-sectional sizes and

shapes, and the orientations of both the NW long axis and of

the side facets. The calculations take a fairly short time. It

takes less than a minute on a single CPU core of a standard PC

to calculate an intensity curve to an accuracy sufficient to

make estimates. The smooth curves presented in this paper

took less than an hour of CPU time each.

Table 1 summarizes the parameters of the NW ensembles

obtained from the experiment and used as input for the Monte

Carlo simulations, as well as the ones derived from the Monte

Carlo simulations. We have simulated the qz scans, similar to

the ones presented in Fig. 3, and obtained their FWHMs �qz
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Figure 7
Three-dimensional rotation of a NW. The angles �, 	 and  are the angles
of rotations about the x, y and z axes, respectively, and referred to as roll,
pitch and yaw angles in nautical notation. The angles � and 	 define a
random orientation of the long axis of the NW and vary in the range 3–5�,
as determined from the tilt measurements. The mean value of the angle  
defines an average orientation of the side facets with respect to the
incident X-ray beam, and its variation in the range 2–4� is determined
from the twist measurements.

Figure 8
Monte Carlo calculation of the small-angle scattering intensity from an
ensemble of NWs with a 5� wide range of orientations of the long axes
and random orientation of the side facets. The width of the side facets is
12 nm and the NW lengths vary from 100 to 1000 nm.



as a function of qx. The results of these calculations are

presented in Fig. 4(a) as green lines. For sample 1, agreement

between the measurements and the simulations is found at a

mean NW length of 230 nm, coinciding with the mean NW

lengths in the scanning electron micrograph in Fig. 1(a). For

samples 2 and 3, the simulations of the �qz versus qx curves

give mean NW lengths of 350 and 400 nm, respectively, values

notably smaller than the real NW lengths in Figs. 1(c) and 1(e).

This difference is explained, as we have already discussed in

Section 3, by NW bundling: the lengths obtained in the

GISAXS analysis are the effective lengths of the NW

segments between the merging joints of the bundled NWs.

These NW lengths are used in further Monte Carlo simula-

tions. The NW length distributions are assumed to be log-

normal with a standard deviation of 20% from their respective

average lengths.

Taking into account the sixfold symmetry of the intensity

distributions in Fig. 9, we performed Monte Carlo simulations

for the azimuth  from 0� to 30�. We assumed a normal

distribution of the angle , with the FWHM determined by the

in-plane X-ray diffraction scans (see Table 1).

The parameters of the NW ensemble to be determined from

the Monte Carlo simulations are the mean width of the side

facets a, its variation and the variation in the cross-sectional
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Figure 9
Scattering intensities in the plane normal to the mean direction of the long axes of the NWs for (a) sample 1, (b) sample 2 and (c) sample 3. The maps are
obtained from the measurements I(qx) at different azimuthal orientations  and presented with q0x = qx cos ; q0y = qx sin . The measurements are
performed in the quadrant 0 <  < �/2, shown by the dotted lines, and then reflected relative to the horizontal and vertical axes. The scale bars present
the intensity in counts.

Figure 10
The measured GISAXS intensities (three left-hand columns) and Monte Carlo simulations (right-most column) for (a)–(d) sample 1, (e)–(h) sample 2
and (i)–(l) sample 3. The measurements are performed for different mean orientation angles  of the side facets of the NWs with respect to the X-ray
beam, namely from 0� to 90� in steps of 5�. For clarity, these measurements are presented in three different panels (from 0� to 30�, from 30� to 60� and
from 60� to 90�). The intensities are plotted as IðqxÞq

4
x versus qx to highlight deviations from Porod’s law. The curves calculated at  = 0� for each sample

are repeated as blue curves in the left-most column, for direct comparison of the calculated and measured curves.



shapes of the NWs, and the roughness of the side facets. We

have seen in Section 3 that these parameters affect the

calculated curves in qualitatively different ways. The mean

facet size a determines the position of the local maximum of

the curves at qx’ 0.17 nm�1, which corresponds to a side facet

width of about 12 nm. The depth of the dip between this

maximum and the rise of the curves at larger qx is controlled

by the width of the facet size distribution and the shape

distribution of the cross sections. The decrease in Iq4
x at large

qx is caused by the roughness of the side facets.

The distorted cross sections of the NWs were modelled in

the Monte Carlo study as described in Section 4.1. The heights

hj shown in Fig. 5(a) were generated at random around a mean

value. Fig. 5(b) exemplifies the shapes of the NWs used in the

simulation of sample 1. The right-most column in Fig. 10

presents the Monte Carlo calculations of the small-angle

scattering intensity for samples 1–3. For a direct comparison of

the calculated and measured intensities, the curves calculated

for each sample at  = 0� are repeated as blue lines in the left-

most column of the figure.

For each generated NW, we calculate the cross-sectional

area A and the perimeter P. Then, we determine out of these

parameters the radius R from A = �R2 and the circularity C =

4�A/P2. The circularity thus defined is C = 1 for a circle, C =

�
ffiffiffi
3
p
=6 ’ 0.907 for a regular hexagon, and C � 1 for highly

irregular shapes. These parameters, radius and circularity, can

be obtained from scanning electron micrographs and are

objective NW shape descriptors as discussed elsewhere

(Brandt et al., 2014). The lines in Fig. 11 show the distributions

of the radius and the circularity obtained in the simulations.

The mean NW radii, the standard deviations of the radius

distributions and the roughnesses obtained in the Monte Carlo

simulations for samples 1–3 are presented in Table 1. The

simulations show the fairly high sensitivity of the calculated

curves to these parameters. The accuracy of the determination

of the mean radius and the standard deviation of the radius

distribution can be estimated as 
 0.3 nm, while the r.m.s.

roughness is determined with an accuracy of 
 0.02 nm. From

the simulations in Fig. 3(a), we estimate the accuracy of the

determination of the tilt angle distribution to be 
 0.1�, while

the accuracy of the NW length distribution can be estimated as


 50 nm.

The distributions of the cross-sectional radii and circula-

rities of the NW ensembles were also interdependently

obtained by analysing top-view scanning electron micrographs

similar to those shown in Figs. 1(d)–1(f). The analysis was

performed using the open-source software ImageJ (Schneider

et al., 2012), as described in detail by Kaganer et al. (2016a) in

their supporting information. The distribution of the radius

obtained from the modelling of the GISAXS intensity for

sample 1 in Fig. 11(a) is fairly close to the distribution derived

from the micrographs. The circularity distribution obtained

from the micrographs is, however, extended towards smaller

values, indicating a higher density of NWs with elongated

cross-sectional shapes. Such a discrepancy can be attributed to

an artefact caused by the NW tilt. Specifically, the scanning

electron micrographs exhibit very little difference in bright-

ness between the top facet and the top part of the side facet of

the NW, so that ImageJ treats both regions together, i.e. as

extended intensity spots.

In contrast with sample 1, the NW radii obtained from the

Monte Carlo simulations of the scattering intensity from

samples 2 and 3 [Figs. 11(c) and 11(e)] are smaller than those

derived from analysis of the scanning electron micrographs,

and the discrepancy increases with increasing NW length. We

remind the reader that the mean NW radius can be derived

directly from the position qx of the local maximum in the

experimental curves presented in Fig. 10. It remains at about

qx ’ 0.17 nm�1 and shifts only slightly to smaller values (and

hence to larger radii) as the NW length increases from sample

1 to sample 3.

The origin of the discrepancy between the NW radii

determined from the scanning electron micrographs and from

the modelling of the GISAXS intensity is in the bundling of

the NWs. Bundling is almost absent for sample 1, and the cross

sections of the NWs obtained from the micrographs char-

acterize the NWs along their full length. As the NWs grow in

length, they bundle together, which causes an apparent radial

growth. Simultaneously, the NW density decreases, so that the

fraction of the surface covered by the NWs remains constant

(Kaganer et al., 2016a). GISAXS provides statistics of the NW

radii averaged over their lengths, while the top-view micro-

graphs reveal their distribution at the top. The result is a

progressive difference between the distributions obtained by

the two methods.

The widths of the circularity distributions in the right-hand

column of Fig. 11 reduce slightly with the growth of the NWs.

The NW images in the scanning electron micrographs become

more circular since, during NW growth, the bundled NWs

attain a common shape that tends to a regular hexagon. Also,

the low-circularity wing of the circularity histogram reduces,

because the effective radii of the bundled NWs increase, and

the distinction between the top facets and the top parts of the

side facets becomes more pronounced for the ImageJ analysis.

The circularity distributions obtained from the GISAXS
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Figure 11
Distributions of the NW radii and circularities of samples 1–3 obtained
from analysis of the top-view scanning electron micrographs (histograms)
and the Monte Carlo modelling (lines).



intensity curves are sharper than the ones obtained from

scanning electron micrographs, because the former take into

account both single NWs in their bottom part and bundled

NWs in their top part, while the latter count only the NW tops.

We also remember that the circularity of a distorted hexagon

is always smaller than the circularity C ’ 0.907 of a regular

hexagon. Larger circularities obtained from analysis of the

scanning electron micrographs in Figs. 11(d) and 11(f) are due

to the finite resolution of the micrographs, as well as to the

algorithm used by ImageJ that tends to round faceted objects.

We have seen in Section 4.1 and particularly in Fig. 6(f) that,

when the scattering vector is oriented normal to the side facets

of the NWs ( = 0�) and the facets are atomically flat, facet

truncation rod scattering would result in a linear increase in

the intensity on the IðqxÞq
4
x versus qx plot at large qx. The

decrease in the experimental curves indicates a roughness of

the side facets. We obtain in the Monte Carlo modelling r.m.s.

roughnesses of � = 0.9, 0.95 and 0.85 nm for samples 1, 2 and 3,

respectively. According to the height of the atomic steps on a

GaN(1100) facet d0 = a0

ffiffiffi
3
p
=2 = 0.276 nm (here a0 = 0.319 nm

is the GaN lattice spacing), the r.m.s. roughness is less than

3.5 steps.

6. Discussion and summary

GaN NWs nucleate spontaneously on Si(111) and grow with a

substantial disorder with respect to their orientations. Their

growth is, nevertheless, epitaxial: the NWs inherit the out-of-

plane and in-plane orientations of the substrate. Since these

NWs are typically long (from hundreds of nanometres to a few

micrometres) and thin (tens of nanometres), the range of

orientations of their long axes of 3–5� is sufficient to provide

the same average in the small-angle scattering intensity as if

they would have all orientations in space. However, an angular

range of orientations of the side facets of 3� gives rise to

features in the GISAXS intensity distribution that are remi-

niscent of the crystal truncation rod scattering from flat

surfaces of single crystals.

We have found that the GISAXS intensity depends on the

orientation of the side facets with respect to the incident X-ray

beam direction. In our experiment, the incident beam is kept

normal to the average direction of the long axes of the NWs.

The orientation of the incident beam with respect to the side

facets is varied by rotating the sample about the substrate

surface normal. The scattering intensity is maximum when the

incident beam is along the facets, or in other words, when the

scattering vector is in the direction of the facet normal.

The X-ray scattering intensity from a planar surface is

proportional to q�2. Porod’s law (q�4) is a result of a full

average over all orientations of the plane (Sinha et al., 1988),

i.e. integration over the two angles defining the plane orien-

tation. For GaN NWs on Si(111), the range of orientations of

the long axes is large enough to provide an integration over

the tilt angle and give rise to a q�3 dependence when the

scattering vector is along the facet normal. In the Iq4 versus q

plots shown in Fig. 10, this dependence is seen as an intensity

increase after the dip at  = 0� or 60�. The intensity decreases

as the sample is rotated about the normal to the substrate

surface. The minimum intensity value is reached at  = 30�, i.e.

in the direction between facets.

The surface roughness gives rise to a decrease in the

intensity at q� >� 1, where � is the r.m.s. roughness. The Monte

Carlo modelling of the experimental curves in Fig. 10 gives �
from 0.85 to 0.95 nm, which is just 3.5 times the height of the

atomic steps. Nevertheless, this small roughness strongly

modifies the intensity curve for high values of q.

The GISAXS curves vary fairly little from one sample to

another, despite the large difference between the cross-

sectional sizes of the NWs observed in the scanning electron

micrographs shown in Fig. 1. This apparent discrepancy is

explained by NW bundling, which is an essential effect in their

growth (Kaganer et al., 2016a). While GISAXS reflects the

distribution of the cross-sectional sizes of the NWs over their

whole volume, the top-view micrographs shown in the right-

hand column of Fig. 1 reveal the cross-sectional sizes of the

NWs at their very top part. As a result, the distributions of the

NW radii and circularities obtained from the scanning electron

micrographs and the GISAXS intensity curves only coincide

for sample 1, which is free of bundling. As the NWs grow in

height and their bundling increases (samples 2 and 3), the

discrepancies between the results obtained by these two

different methods increase.

Finally, we conclude that GISAXS, together with Monte

Carlo modelling of the intensity curves, is well suited for the

determination of the distributions of the cross-sectional sizes

of NWs. The methods developed in the present paper are not

specific to GaN NWs on Si(111) and can be applied to other

NW distributions and material systems. In particular, they will

be applied in a separate study to assess the radius distributions

of GaN NW ensembles grown on TiN, which exhibit a much

lower density that hinders analysis of the NW cross-sectional

shapes by scanning electron microscopy.
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Chèze, C. & Kaganer, V. M. (2014). Cryst. Growth Des. 14, 2246–
2253.
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