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A phasing algorithm for macromolecular crystallography is proposed that

utilizes diffraction data from multiple crystal forms – crystals of the same

molecule with different unit-cell packings (different unit-cell parameters or

space-group symmetries). The approach is based on the method of iterated

projections, starting with no initial phase information. The practicality of the

method is demonstrated by simulation using known structures that exist in

multiple crystal forms, assuming some information on the molecular envelope

and positional relationships between the molecules in the different unit cells.

With incorporation of new or existing methods for determination of these

parameters, the approach has potential as a method for ab initio phasing.

1. Introduction

Despite the many advances in protein X-ray crystallography,

determination of the structures of biological macromolecules

can still be problematic as a result of difficulties in solving the

phase problem. Current methods of solution require some

kind of initial phase estimates to generate an initial electron-

density map.

Experimental methods such as multiple isomorphous

replacement (MIR) and multiple anomalous dispersion

(MAD) are effective, but they involve additional experimental

effort, can be time consuming and expensive, and are not

always successful. Problems with MIR include difficulties in

obtaining suitable derivative crystals that diffract to sufficient

resolution, non-isomorphism between crystals, multiple-

and/or low-occupancy heavy-atom sites, radiation damage,

scaling of the data, and problems locating the heavy atoms or

refining their positions, occupancies or thermal parameters.

Complications that can occur with MAD phasing using

selenomethionine (SeMet)-substituted proteins include

limited anomalous signal, radiation damage, or a very small or

large number of methionine residues, limiting the amount of

phase information or making it difficult to determine the

heavy-atom substructure.

Molecular replacement (MR) phasing circumvents the need

for additional experiments, but despite the power and wide-

spread application of this approach, MR is not always suitable

or effective. An homologous molecule of known structure

may not be available to provide initial phase estimates. The

target molecule may contain new structural motifs and/or

the sequence homology may not be reflected in structural
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homology. The MR phases obtained may not be accurate

enough to produce an interpretable map, or they may be

accurate only at insufficient resolution. It may not be possible

to position the model accurately enough in the target unit cell

to obtain accurate enough phases. Model bias can occur when

the measured intensities from the target are insufficient to pull

the phases away from those of the model, with the result that

the solution may resemble, or contain aspects of, the model

structure. Various strategies are available to help reduce

model bias, such as SIGMAA weighting (Read, 1986, 1997),

omit maps (Hodel et al., 1992), optimal phase combination

(Cowtan, 1999) and the prime-and-switch method (Terwilliger,

2004). However, as the proportion of the target structure

represented by the MR model decreases, the MR phases can

become incapable of generating an interpretable electron-

density map. Finally, since the model must be structurally

similar to the target molecule, the method tends to be in-

effective in cases where the target contains new, currently

unknown, folds. MR can therefore be unsuitable for disco-

vering new, novel structures.

As a result of the experimental burden and potential diffi-

culties associated with current methods, there is still an active

interest in developing new phasing methods to complement

current techniques. In particular, there is interest, and

potential value, in the development of new phasing methods

that require little, or no, initial phase information. Methods

requiring no initial phase information are often referred to as

ab initio phasing. While ab initio phasing is a worthy goal, in

practice, some limited additional information will usually be

required to solve the phase problem. The key consideration is

the amount of information required, and the ease with which it

can be obtained and incorporated into a phase retrieval

algorithm.

In this paper we describe an approach to phasing in protein

crystallography that utilizes diffraction data collected from the

same molecule in different crystal forms. In some cases,

diffraction data from multiple crystal forms may be readily

obtained, during crystallization screening for example, and be

more convenient than using alternative experimental phasing

techniques. In fact, it is not uncommon for proteins to crys-

tallize in more than one crystal form, but the additional crystal

form(s) are often not reported, because the best crystal is

chosen for structure determination. There is potential

advantage, however, in not discarding data from the other

crystal form(s), but using them as supplementary data for

phase determination. Such an approach, which uses only

diffraction data from crystal forms containing sufficiently

isomorphous molecules, does not depend on a model struc-

ture. It is therefore not subject to model bias. Since neither

experimental phases nor a known structure are needed, the

approach can be considered a form of ab initio phasing,

depending on what other information is required. The objec-

tive is to use little, or no, information in addition to the

diffraction data, to work towards a method for ab initio

phasing. Successful application of such an approach could

significantly reduce the experimental demands of structure

determination in some cases.

The idea of using diffraction measurements from the same

molecule crystallized in two or more crystal forms for struc-

ture determination is not new. Sayre (1952) recognized that if

the molecular transform could be measured at positions

between the reciprocal-lattice points, then additional infor-

mation is obtained that would constrain the phases. This is, as

we shall see, pertinent to the problem at hand. Bragg & Perutz

(1952) proposed that making additional measurements by

shrinking or expanding the crystal lattice constants would

provide additional information to assist in phasing. They

made diffraction measurements of haemoglobin at different

shrinkage stages, and were thus able to estimate the molecular

transform amplitude at different positions in reciprocal space.

Tracking these amplitudes in centric zones showed where the

transform passes through zero, giving the position of the sign

changes, allowing the signs (phases) of the structure factors in

these zones to be determined.

Rossmann & Blow (1962, 1963) recognized that, in the

presence of non-crystallographic symmetry (NCS), one can

enforce equivalence of the electron density in the subunits (or

molecules), giving additional information that should help in

structure determination. They also recognized that the same

idea applies in the case of the same molecule in different

crystal lattices, i.e. one can enforce equality of the density of

the equivalent molecules in the different unit cells. The

presence of NCS, or different crystal lattices, effectively

provides information between the reciprocal-lattice points,

thus emulating the situation described by Sayre. Applying

identity of the electron density of the subunits, or molecules,

gives equations that express relationships between the struc-

ture factors which can, at least in principle, be solved for the

phases (Main & Rossmann, 1966; Crowther, 1967). However,

solution of the equations is unwieldy, and this approach was

never used for phase determination.

A breakthrough in the application of these ideas occurred

when the problem was reformulated in real space, leading to a

solution based on averaging of the electron density over the

copies of the subunits or molecules, as part of an iterative

scheme (Buehner et al., 1973; Bricogne, 1974). This was the

forerunner to modern electron-density modification, which

was, and is, used to much advantage for phase refinement and

extension, from an initial experimental phase set, using

constraints such as NCS and solvent regions. It is worth noting

that what is now generally meant by MR, in which the identical

molecules (or subunits) as described above are replaced by

similar molecules, and the phases of one (the known model

structure) are used as approximate phases for the other (the

unknown or target structure), grew out of this early work.

Although the primary use of electron-density averaging has

been in using NCS to improve phases, averaging between

different crystal forms has also been used for the same

purpose, often referred to as multi-crystal, or cross-crystal,

averaging. Some examples are as follows. Multi-crystal aver-

aging has been used to improve MAD phases (Brejc et al.,

2001) and MR phases (Li et al., 2004; Lomakin et al., 2007).

Simonović & Steitz (2008) used cross-crystal averaging to

resolve apparent differences between two ribosome structures.
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Cross-crystal averaging has also been used to help solve

structures with data suffering from heavy-atom non-

isomorphism and multiple SeMet sites (Busby et al., 2016), as

well as twinning and pseudo-symmetry (Bunker, 2016). In an

application that is close to ab initio phasing, Yoshimura et al.

(2016) solved the structure of a viral capsid domain using

cross-crystal averaging and an envelope derived from the ill-

defined density in the domain region of the complete virus. Li

& Li (2011) describe an interesting application of cross-crystal

averaging in which they reduced model bias in an MR solution

by averaging between a known part of the target structure and

the search model in its own crystal form. However, despite

these various applications, multi-crystal averaging has so far

been used, almost exclusively, for refining phases obtained

using another technique, as part of a conventional density-

modification scheme, rather than for ab initio phasing.

In this paper we revisit the idea of using diffraction data

from the same molecule crystallized in more than one unit cell,

with the objective of developing a method for ab initio

phasing. We approach the problem by developing a method

based on iterative projections, that can converge to a solution

starting from a random phase set.

The problem is formulated in the next section and condi-

tions under which a unique solution is expected are examined

in Section 3. The main tool that we use, iterative projection

algorithms, are briefly reviewed in Section 4. Our recon-

struction algorithm is described in Section 5. Some preli-

minary simulations that show the potential of this approach

are presented in Section 6, and concluding remarks are made

in Section 7.

2. Problem formulation

The approach described here depends, of course, on the

molecules in the different crystal forms being isomorphous, or

at least isomorphous to a major degree. Although this is often

the case, there are also cases where the different crystal-

lization conditions and different chemical environment of the

proteins lead to larger structural changes (see, for example,

Betts et al., 1994; Carter et al., 1994). If these changes, or the

presence of different ligands, are large enough, then the

method we propose may not be effective. For the purposes of

formulating the problem, we assume here that the molecules

in the different crystal forms are identical.

Consider a molecule, or molecular assembly, with electron

density �ðrÞ, that packs into N different crystal forms with

various unit-cell dimensions and possibly different space-

group symmetries. We perform diffraction experiments on

each crystal form and extract a set of integrated Bragg

intensities Inh, where n ¼ 1; 2; . . . ;N indexes the crystal forms

and h ¼ ðh; k; lÞ are the Miller indices of the Bragg reflections.

Each crystal form is made up of copies of the same unit �ðrÞ,
where the relative position and orientation between each of

the units are different for each crystal. We refer to this unit

simply as the ‘molecule,’ although �ðrÞ might consist of a

number of molecules.

We note that different crystal forms will generally corre-

spond, in practice, to different cell constants and/or space

groups. The case of identical cell constants and space group,

but different packings of the molecules within the different

crystals, is also covered by our formalism, but is unlikely to

occur in practice. This case is discussed further, later in this

section.

We now describe the measured quantities Inh in terms of the

common molecule �ðrÞ, the object of interest. The diffraction

intensities Inh are the squared amplitudes of the structure

factors Fnh so that

Inh ¼ jFnhj
2: ð1Þ

It is convenient to describe the relationship between �ðrÞ and

Inh using the symmetry operators within each crystal and the

geometrical relationships between the different crystals.

Denoting the density in one unit cell of crystal n by unðrÞ, then

unðrÞ ¼
PMn

m¼1

�mnðrÞ; ð2Þ

where �mnðrÞ is the density of the mth asymmetric unit in the

nth crystal, and there are Mn asymmetric units in the unit cell

of crystal n.

Let the rotation matrix Rs
mn and translation vector ts

mn be

the space-group symmetry operators for the mth asymmetric

unit in crystal n, relative to asymmetric unit m ¼ 1, so that

�mnðrÞ ¼ �1nðR
s
mnrþ ts

mnÞ: ð3Þ

The geometrical relationship between the molecules in the

different crystal forms is described by intercrystal position

(rotation and translation) operators (Ri
n, ti

n), that relate the

first (m ¼ 1) asymmetric unit in each crystal to that in crystal

1, i.e.

�1nðrÞ ¼ �11ðR
i
nrþ ti

nÞ; ð4Þ

and we arbitrarily choose the first molecule (m ¼ 1) in the first

crystal (n ¼ 1) as the reference density for the molecule, i.e.

�ðrÞ � �11ðrÞ.

We now define the global position operators (Rg
mn, tg

mn) that

relate the position of �mnðrÞ to that of �ðrÞ, i.e.

�mnðrÞ ¼ �ðR
g
mnrþ tg

mnÞ: ð5Þ

It is then easily seen that the global operators are given in

terms of the space group and intercrystal operators by

Rg
mn ¼ Ri

nRs
mn

tg
mn ¼ Ri

nts
mn þ ti

n: ð6Þ

The structure factors Fnh for crystal n are equal to the

continuous Fourier transform of the contents of the nth unit

cell unðrÞ, sampled on the reciprocal lattice for that crystal

form. The reciprocal-lattice points for the nth crystal are

denoted r�nh. Let FðqÞ be the continuous Fourier transform of

the molecule �ðrÞ, where q is the continuous position variable

in reciprocal space, i.e. FðqÞ ¼ Ff�ðrÞg, where F denotes the

Fourier transform operation. The structure factors for crystal

form n are then given by
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Fnh ¼
PMn

m¼1

FðRg
mnr�nhÞ expði2�r�nh � t

g
mnÞ: ð7Þ

With reference to (7), it is informative to consider the

following. Since the reciprocal lattice possesses the rotational

symmetry of the direct-space lattice, for a single crystal form n,

the points Rg
mnr�nh in (7) are points on the same sampling lattice

for different m, i.e. Rg
mnr�nh ¼ R

g
1nr�nh0 for some h0, for any m.

Therefore, for a single crystal form, the intensity measure-

ments Inh ¼ jFnhj
2 contain information on the continuous

transform amplitude jFðqÞj only on the corresponding reci-

procal lattice at q ¼ R
g
1nr�nh. Increasing the number of asym-

metric units in the unit cell (i.e. higher crystal symmetry)

therefore does not increase the sampling of the continuous

transform of the molecule FðqÞ.

For the case of multiple crystal forms however, the sampling

lattices for FðqÞ in (7) for the different crystals are necessarily

distinct, i.e. fR
g
1nr�nhgh 6¼ fR

g
1pr�phgh for any n 6¼ p. Equation (7)

then shows that data from multiple crystal forms provide

information on different samplings of different linear combi-

nations of the continuous transform of the molecule FðqÞ. The

undersampling of jFðqÞj by the Bragg samples for a single

crystal form is then reduced, and each additional crystal form

with a different unit cell provides additional (independent)

information on FðqÞ.

We note that it is theoretically possible that individual

sample points for two crystal forms could coincide, i.e. R
g
1nr�nh

¼ R
g
1pr�ph0 for some n 6¼ p, and some h and h0. In this case, the

different sets of phase factors in (7) result in different linear

combinations of the samples of the continuous transform for

the different crystals, so giving independent information on

FðqÞ in this case also.

It is worth considering the following. In the different crystal

forms referred to here, the molecules adopt different crystal

packing arrangements, and it is these different geometrical

relationships between the molecules in the different crystals

that result in the different samplings of the molecular trans-

form amplitude. It is not in fact necessary (as alluded to above)

that the unit-cell constants, or the space group, are different. If

both the unit-cell constants and space-group symmetries were

identical for the different crystals, but the intercrystal position

operators are distinct, then the global position operators are

different for each crystal, and the data from the different

crystal forms are independent via (7). If only the rotational

intercrystal operators were different, then the result is a

different sampling of reciprocal space for each crystal. If only

the translational intercrystal operators were different, then

the sampling of the molecular transform is actually the same,

but the phase factors in (7) result in measurements that are

different, independent, linear combinations of the amplitudes

at the sample points. These observations emphasize that it is

the different packing arrangements of the molecules, rather

than necessarily different unit cells, that ensure there are

additional independent Bragg data.

The situation described in the previous paragraph can be

related to a recent proposal for using diffuse diffraction from

imperfect (disordered) crystals for structure determination

(Ayyer et al., 2016; Morgan et al., 2019). In that case, there is a

single set of cell constants and space group, but the molecules

are subject to small random translations from one unit cell (or

asymmetric unit) to the next, within a single crystal. The

resultant different local packings give rise to diffuse diffrac-

tion that contains information additional to that contained in

the Bragg reflections. While different to the case considered

here, since in that case there are translations within, rather

than between, crystals, there is a fundamental link between the

two situations.

With the setup as described above, the problem at hand is to

reconstruct the molecule �ðrÞ from the diffraction data Inh for

a number of crystal forms n. We consider the ab initio case

where there is no initial phase information, although we do

assume that some limited real-space information is available.

3. Uniqueness

Our objective is reconstruction of the electron density from

the diffraction amplitudes (or intensities) from multiple

crystal forms alone, without other phase information. This is a

form of ab initio phasing, and an immediate question of

fundamental importance is, do the diffraction data provide

sufficient information for a unique solution to the phase

problem in the absence of other information?

A simple view of the problem is as follows (Millane &

Arnal, 2015). Since the structure factors (amplitudes and

phases) provide just enough information to determine the

electron density, and since the amplitudes and phases are

independent, then loss of the phases represents loss of half of

the required information. The Nyquist spacing for the inten-

sity jFðqÞj2 is half the reciprocal-lattice spacing in each

direction (Millane, 1990), so that the Bragg samples are below

the Nyquist density. This means that the intensities on a

second reciprocal lattice as provided by a second crystal form

(as described in the previous section) provide information that

is independent of that from the first crystal form. Therefore,

data from a second crystal form should be just sufficient to

make up for the lost phase information. Reconstruction from

the amplitudes only is a nonlinear problem however, so that

these data will not quite be sufficient, but data from a third

crystal form should provide sufficient information for a unique

solution. If other a priori information is available, such as

known solvent regions, for example, then data from two crystal

forms may be sufficient (or even a single crystal form if the

solvent fraction is large enough). Of course, data from more

crystal forms would be desirable in practice to help compen-

sate for the effects of noise, missing data etc.

The above description can be presented in a more formal

way as follows. Uniqueness properties of the phase problem

for single objects (not necessarily crystals) are conveniently

characterized via the constraint ratio � (Elser & Millane,

2008), that describes the number of available independent

diffraction amplitude data relative to the number of para-

meters describing the electron density. Uniqueness requires

that �> 1, i.e. the number of independent data exceeds the

number of parameters. As a result of errors in the data and
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other uncertainties, a margin will be needed in practice, and a

value somewhat greater than unity is required. Various results

indicate that � greater than about 1.5 might be required in

practice (Millane & Lo, 2013).

In the crystallographic case, where the number of data are

limited by the Bragg sampling, � ¼ 1=2, or � ¼ 1=ð2pÞ if it is

known that the protein occupies a volume fraction p of the

unit cell (Millane & Arnal, 2015). Therefore, with data from a

single crystal form, the problem is highly underdetermined.

For diffraction data collected from the same molecule,

crystallized in N different crystal forms, the total number of

data is equal to the sum of the number of unique Bragg data

from each crystal form, but the number of parameters

describing the density is the same as for one crystal form. The

data-to-parameter ratio, which we denote �, is then given by

� ¼
XN

n¼1

1

2pn

; ð8Þ

where pn denotes the protein content of crystal n. If the

protein contents are similar, i.e. p1 ’ p2 ’ . . . ’ pN ’ p, then

(8) reduces to

� ’
N

2p
: ð9Þ

Although the protein contents may or may not be similar in

particular cases (Chruszcz et al., 2008), we consider, for

simplicity, the case of identical protein contents in the

following analysis. This does not affect the conclusions in any

material way. Inspection of (9) shows the somewhat obvious

result that the data-to-parameter ratio increases linearly with

the number of crystal forms. Consequently, for example, even

with a low solvent content of say 30% (p ¼ 0:7), for two

crystal forms � ¼ 1:4, and for three crystal forms � ¼ 2:1.

We now consider the relationship between the simple data-

to-parameter ratio � and the more informative constraint

ratio �. Although � increases without bound as N increases,

the information content of the data does not increase indefi-

nitely. The maximum amount of information available occurs

for the case of a single molecule, where one measures the

continuous diffracted intensity and, as a result of the sampling

theorem, the constraint ratio for a single object is fixed and

bounded for a particular object shape. For a compact (convex

and centrosymmetric) single object, � ¼ 4 (Elser & Millane,

2008). Although low-resolution molecular envelopes are not

exactly compact in this sense, they are generally approxi-

mately so, and � ’ 4 is a reasonable approximation in most

cases. Bragg sampling can only reduce the value of �, even for

multiple crystals. Since, as argued above, the diffraction data

from each crystal form are expected to be independent, but �
cannot exceed 4, we conclude that

� ’
N

2p
for N< 8p

’ 4 for N � 8p ð10Þ

and for the conservative case of no envelope (protein content)

information (p ¼ 1)

� ’
N

2
for N< 8

’ 4 for N � 8: ð11Þ

The constraint ratio as described in the previous paragraph

assumes that the sampling patterns are not structured in

specific ways. For example, if two cell constants changed and

one remained unchanged, then the continuous intensity is

undersampled along one direction and � would be reduced by

a factor 2. The implications of this are that, in such cases, the

reconstruction problem is likely to be more difficult and more

noise-sensitive. As a matter of interest, such a situation is

related to the case of 1D and 2D crystals (Millane, 2017; Arnal

& Millane, 2017).

Inspection of (10) and (11) shows that data from three or

more crystal forms should be sufficient in general for a unique

solution in the absence of molecular envelope information,

and that two crystal forms should be sufficient if there is some

envelope information, since in these cases �> 1. In practice,

the problem is better determined if data from more crystal

forms are available, since the additional data help to amelio-

rate the effects of errors. The equations also suggest that there

are diminishing returns for more than eight crystal forms, since

the constraint ratio saturates in this case. However, in practice,

data from additional crystal forms will be beneficial. Excess

data correspond to oversampling the continuous transform,

and it is known that oversampling by a factor f relative to the

Nyquist spacing reduces the effect of the noise level in the

sample values by a factor f, and also compensates for the

effects of missing samples (Marks, 1983, 1991). In practice

then, data from more crystal forms will always be beneficial.

These results are in accord with the simple analysis described

above.

The constraint ratio defined by (10) and (11) assumes that

the data from each crystal form are all independent. It is worth

considering further the implications of two reciprocal-lattice

points from two crystal forms being either too close together

or being too widely separated (due to, for example, one or two

of the unit-cell dimensions being quite similar, as described

above). It is known that bunching or gaps in a sampling

sequence increases the sensitivity of interpolation to errors in

the sample values (Yen, 1956; Marks, 1991). In this regard, it is

instructive to consider two cases that can arise: the first when

the cell constants are quite different, and the second when

they are quite similar.

If the unit cells are quite different (in which case the space

groups are also likely to be different), then the reciprocal

lattices are also quite different. The reciprocal-lattice points

are then generally unlikely to be close together. In the event

that two reciprocal-lattice points are close together, then, as a

result of the different global position operators, the structure-

factor amplitudes will still be independent, as described in

Section 2. Therefore, for unit cells that are quite different, the

data from the different crystal forms will generally be inde-

pendent.

If, on the other hand, the different unit cells are similar,

then the reciprocal lattices will also be similar, and there is a
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greater likelihood that some reciprocal-lattice points will be

close together. For similar unit cells, the global position

operators ðRg
mn; tg

mnÞ are also likely to be similar, reducing the

independence of data at reciprocal-lattice points that are close

together. This effect can be assessed as follows. The Nyquist

spacing for the continuous diffracted amplitude (or intensity)

is half the reciprocal-lattice spacing. Consider initially a 1D

lattice with spacing (cell constant) a. The Nyquist spacing for

the diffracted amplitude is then 1=ð2aÞ. Now consider a second

unit cell with cell constant that is larger by �, i.e. cell constant

aþ �. It is easily seen that the distance between two corre-

sponding reciprocal-lattice points from the two lattices is small

at low resolution and increases with increasing resolution. At

resolution d, for small �, these low-resolution reciprocal-lattice

points are a distance of approximately �=ðadÞ apart. It is

convenient to express this distance as a fraction � of the

Nyquist spacing 1=ð2aÞ, so that � ¼ 2�=d. We show in

Appendix A that if two samples are a fraction � of the

Nyquist spacing apart, then the noise in those sample values is

amplified by a factor 1=�. For example, if we consider noise

amplification to be significant for �< 0:1 (as considered in the

Appendix), and for a difference in unit-cell constant � = 1 Å,

using the above equation shows that noise amplification would

become significant only at resolutions d less than 20 Å. This

resolution threshold will be lower for larger differences in the

unit-cell dimensions.

Consider, for example, two crystal forms in which one cell

constant differs by 1 Å and the other two cell constants differ

by larger values. The noise sensitivity is dominated by the cell

constant with the smaller difference and, following the above

analysis, noise amplification will be significant out to a reso-

lution of 20 Å along the corresponding direction in reciprocal

space and to high resolution in the other two directions. If the

maximum resolution of the data is 2 Å, then these data

represent approximately 15% of the total data set. Since

� ¼ 0:1 at 20 Å resolution, the average value of � is 0.05 over

the low-resolution data. The overall noise amplification factor

is then (0.15/0.05 + 0.85/1.0), i.e. the noise is amplified by a

factor of about four. This example illustrates the noise sensi-

tivity in the case of unit cells with similar dimensions, and the

need for either data from more crystal forms in that case, or

larger differences in the cell dimensions.

Another factor that could potentially affect uniqueness is

overlap between the molecular envelopes of the asymmetric

units in a single unit cell. Envelope overlap is discussed in

more detail in Section 5. The problem considered is

constrained as a result of the equivalence between the elec-

tron densities of the molecules in different unit cells. In

overlap regions, the electron densities of the individual mol-

ecules may not be available, limiting application of this

equivalence. However, the relationship between overlap and

uniqueness is complicated, and depends on the details of the

nature of, and relationships between, the overlap regions in

each unit cell, in a particular case. Since the molecules

themselves do not overlap, the size of overlap regions will be

small. The worst-case situation would occur when only the

overlap-free region of the envelope provides a constraint

between the electron densities. For two crystal forms, for a

small degree of overlap, this would reduce � by a factor of

approximately ð1� oÞ, where o is the fraction of the envelope

volume subject to overlap. For 5% overlap, for example, this

reduces � by a factor of only 0.95. For more crystal forms, the

effect will be less significant since � is larger. We conclude,

therefore, that envelope overlap will have minimal effect on

uniqueness of the reconstruction problem.

Finally, we consider the effect of non-equivalence of the

molecular structures in the different forms on uniqueness. As

noted above, the structures of the molecules in different

crystal environments will generally be slightly different, and so

the data from the different crystals will correspond to slightly

different electron densities. Phase determination against the

combined crystal form data sets is expected to produce, at

best, an electron-density map that approximates the average

of the densities from the individual crystal forms. This average

map would be useful when multiple, slightly different,

conformations exist. In some cases, structural differences as a

result of different packings will tend to be concentrated near

the periphery of the molecule, as a result of different inter-

molecular contacts between surface loops. The resolution of

the reconstruction may then be higher in the interior of the

molecule than near the edges, allowing chain tracing in the

interior, followed by model-building and refinement to

improve the phases and the map on the periphery. As noted

above, in cases where there are large differences between the

structures in the different crystal forms, our approach may not

be applicable.

In summary then, the data will be independent in most

cases, and the problem posed is expected to have a unique

solution with data from three or more crystal forms, and from

two crystal forms in favourable cases, although it is likely that

some additional information on the object, such as a molecular

envelope, will be needed. Additional crystal forms will be

beneficial in terms of ameliorating the effects of noise, errors

etc. Complicating factors such as similar unit cells, envelope

overlap and small differences between the molecular struc-

tures may affect uniqueness, but only to a manageable degree.

4. Iterative projection algorithms

We use the approach of constraint satisfaction, or iterative

projection algorithms (IPAs), to solve the reconstruction

problem. IPAs are an effective and frequently used type of

algorithm for ab initio phase retrieval, and other reconstruc-

tion problems, for example in crystallography and other areas

of imaging. The basis of this approach is outlined here and the

reader is referred elsewhere for more details (Elser, 2003;

Marchesini, 2007; Millane & Lo, 2013).

Values of the electron density of the object (molecule) on a

sampling grid are represented as points in a high-dimensional

vector space, one dimension for each sample, with each

coordinate value representing the value of the object at that

sample. The data (diffraction intensities in our case) are

represented by a manifold (set) in the vector space, i.e. the

manifold contains all points that represent objects which
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would produce the given data. Since the data are usually

incomplete, i.e. insufficient by themselves to define the object,

the data manifold is high-dimensional. Other information

about the object (generally in real space) is represented by

another manifold in the vector space, i.e. this manifold

contains the points representing all objects that are consistent

with all the real-space information, or constraints. This

manifold is also generally high-dimensional. A valid solution is

one that satisfies both the data and object constraints, and

therefore lies in the intersection of the two manifolds. If the

problem is well determined, or has a close-to-unique solution,

this intersection will be small in extent, i.e. close to a point.

The reconstruction problem then is to find a point in this

intersection.

IPAs are algorithms used to find a solution, or a point in the

intersection of the constraint sets. They start at a random point

in the vector space, i.e. a random object, and perform a

sequence of moves, or updates, to this point, or object, with the

objective of locating a point in the intersection. IPAs have

three components: constraint sets, projections and an update

rule. Constraint sets represent objects that satisfy either of the

diffraction data or real-space constraints, as described above.

A projection is an operation that takes an object to the

closest (in the Euclidean distance, or squared difference,

sense) object in a constraint set. The new object then satisfies

the constraint. For most IPAs, and the ones we consider here,

there are two constraint sets and two projection operators. In

our case, one projection operator projects onto the real (or

object)-space constraints and the other onto the reciprocal-

space (or Fourier amplitude, or data) constraints. We denote

these two projection operators by PO and PD, respectively.

The final component in an IPA is the update rule. The

update rule is the operation that takes the current object

estimate, or the iterate, to the next estimate. One such step is

called one iteration of the algorithm. The update rule is a

combination of the two projection operators. Different IPAs

have different update rules, and may have different kinds of

convergence behaviour.

The error reduction (ER) algorithm is the simplest IPA. It

projects alternately onto the object and data constraint sets.

The update rule for the lth iterate, �lðrÞ, is then given by

�lþ1
ðrÞ ¼ PDPO�

l
ðrÞ: ð12Þ

Each iteration of the ER algorithm reduces the summed

distance to the two constraint sets, but the algorithm

converges to a local minimum that usually does not satisfy

both constraints. Thus the ER algorithm is a local minimizer.

ER corresponds to the usual forms of conventional electron-

density modification in protein crystallography (Millane, 1990;

Millane & Lo, 2013).

The main IPA that we use here is the difference map (DM)

algorithm (Elser, 2003), which has better global convergence

behaviour than the ER algorithm. This is particularly impor-

tant in the case at hand, for ab initio phasing, where we do not

start with initial phase estimates or an approximate solution.

The DM algorithm uses so-called relaxed projections. Relaxed

projections do not project to the closest point in the constraint

set, but ‘under- or over-shoot’ this point. The relaxed projec-

tion T is given by

T�ðrÞ ¼ P�ðrÞ þ �½P�ðrÞ � �ðrÞ�; ð13Þ

where P stands for any projection operator, either the data or

object projection PD or PO. The relaxation parameter �
controls the amount of relaxation, and may be positive or

negative. The update rule for the DM algorithm is given by

(Elser, 2003)

�lþ1ðrÞ ¼ �lðrÞ þ � POTD�
lðrÞ � PDTO�

lðrÞ
� �

; ð14Þ

with � 6¼ 0, set usually to 0:7 	 j�j 	 1, and the relaxation

parameters for TD and TO usually set to �D ¼ 1=� and

�O ¼ �1=� (Elser, 2003). There is then a single parameter �
which is effectively a step size. For the DM algorithm, the

iterate itself is not an estimate of the solution, but an estimate

of the solution at convergence of the algorithm is given by

POTD�
lðrÞ or PDTO�

lðrÞ (Elser, 2003).

5. Reconstruction algorithm

Our objective is to reconstruct the molecular electron density

�ðrÞ from the diffraction data Inh for the N crystal forms. Our

interest here is with ab initio phasing, i.e. in the absence of

experimental or model-based initial phase estimates, although

it is likely that some weak real-space information is required

for successful phasing. We consider here the case where

we have knowledge of an approximate (low-resolution) mol-

ecular envelope, within which the molecular density is

confined, as well as the relative positions of the molecules in

the different unit cells, i.e. the intercrystal position operators

Ri
n and ti

n. Note that the space-group operators of the crystals

will be known from the measured diffraction patterns.

The problem considered is related to that of reconstructing

an object from measurements of diffraction from clusters of

the object, recently considered by Chen et al. (2016). They

consider the case where the diffraction is incoherently aver-

aged over the clusters, and considered clusters that are not

crystalline so that the diffraction is measurable continuously in

Fourier (reciprocal) space. In the case considered here, the

unit cell of each crystal form can be considered a different

cluster, i.e. a cluster of the corresponding molecules or

asymmetric units, and because measurements are made from

each crystal form, we have available the diffraction from each

cluster, as opposed to only the diffraction averaged over all

clusters in the case of Chen et al. (2016). However, in the case

considered here, the diffraction is available only at the Bragg

positions, as a result of the crystalline nature of the specimens

(clusters), as opposed to being available continuously in

reciprocal space. Therefore, the problem considered here is on

the one hand easier since the data are not averaged, but is on

the other more difficult because the diffraction intensities are

Bragg sampled.

Chen et al. (2016) describe two approaches, that they call

approach A and approach B, for reconstruction of an object

from intensities averaged over a number of object clusters.

These same two kinds of approaches can be applied to the
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problem at hand. Approach B has some advantages over

approach A, but it is informative to consider both approaches

for our problem.

The primary difference between the two approaches, in the

context of our problem, is as follows. Approach A explicitly

reconstructs the unit-cell contents of each crystal, and then

extracts an estimate of the molecule from these. Approach B,

on the other hand, reconstructs the molecule in each asym-

metric unit by itself (i.e. not associated with the other asym-

metric units in the crystal), and these are used to form an

estimate of the molecule. An important difference between

the two approaches is the way that overlap between the

molecular envelopes is treated. Although the molecules

themselves do not overlap, it is likely that their low-resolution

envelopes do overlap within the unit cell. With approach A,

overlap introduces errors when the molecule is extracted from

the unit cells, since the overlap regions are also extracted. This

is avoided in approach B since the molecules (asymmetric

units) are reconstructed in isolation.

In the following subsections we describe the constraints and

projections for our problem that are used to define an IPA for

ab initio reconstruction of the molecule.

5.1. Constraints

The data or Fourier amplitude constraint expresses the fact

that the Fourier amplitudes of the molecular electron density

in crystal n correspond to the measured diffraction intensities

Inh, i.e. the data constraint can be expressed as

jFnhj ¼ Inhð Þ
1=2: ð15Þ

We consider two object or real-space constraints, that we call

the support constraint and the similarity constraint.

We suppose that we know the approximate envelope (low-

resolution shape) of the molecule, as well as its approximate

location relative to the unit-cell origin in crystal n ¼ 1. The

envelope, also referred to as the support region, is denoted S

and contains the entire molecule. The density outside the

envelope is assumed to be zero (non-zero-valued solvent can

be accommodated by not enforcing any particular value on the

amplitude of the zero-order reflection). The envelope

constraint can then be expressed as

f�ðrÞ : �ðrÞ ¼ 0; r =2 Sg: ð16Þ

We also denote by SðrÞ the indicator function of S, i.e. SðrÞ ¼ 1

for r 2 S and SðrÞ ¼ 0 for r =2 S.

The similarity constraint expresses the assumption in our

model that the molecules in the different crystal forms are

identical. We use the term similarity rather than identity to

acknowledge that the molecules in the different crystal forms

will generally be slightly different. The similarity constraint

can be written as

f�ðrÞ : �ðrÞ ¼ �mn Rg
mn
�1 r� tg

mnð Þ
� �

; 8m; ng; ð17Þ

i.e. the molecules �mnðrÞ are identical to the reference mol-

ecule �ðrÞ after aligning them back into the position of the

reference molecule.

5.2. Data projection operator

Here we derive the projection operator PD that projects the

iterate onto the data, or Fourier amplitude, constraint. As

already mentioned above, we define two different approaches

A and B, which give different projection operators. A key

novelty here is approach B, which circumvents difficulties

presented by envelope overlap, as is explained in this and the

following subsections.

5.2.1. Approach A. For approach A, the algorithm operates

on the unit-cell densities unðrÞ. The data projection makes the

smallest change to the current estimate of unðrÞ to give a

density whose Bragg amplitudes are equal to the measured

amplitudes ðInhÞ
1=2. Since the Fourier transform is a unitary

linear operator, the projection can be calculated in reciprocal

space, treating Fnh as the iterate. The projection simply

projects each complex number Fnh onto the circle of radius

ðInhÞ
1=2 in the complex plane that represents the structure

factor. This modifies the amplitude of the current estimate, but

leaves the phase unchanged. The projection operator is then

given by

PDunðrÞ ¼ F
�1 Inhð Þ

1=2 Fnh

jFnhj

� �
; ð18Þ

remembering that Fnh ¼ FfunðrÞg, and where F�1
f�g denotes

the inverse Fourier transform operation. A flow chart of the

operation of the data projection approach A is shown in
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Flow charts showing operation of the data projection for (a) approach A
and (b) approach B.



Fig. 1(a). This projection corresponds to the usual Fourier-

space projection for a single object (Millane & Lo, 2013).

5.2.2. Approach B. An alternative approach is to define the

iterate as the set of separate, rotated and translated molecules

�mnðrÞ, rather than the combined unit-cell densities unðrÞ. We

refer to this as approach B. As is described in Section 5.3, the

motivation for this approach is that it accrues an important

advantage in eliminating the deleterious effects of envelope

overlap that exist with approach A.

As with approach A, we are free to define the projection

operators to operate in reciprocal space. We therefore intro-

duce Fmnh as the transform of the isolated molecule �mnðrÞ,

sampled at the reciprocal crystal lattice points, i.e.

Fmnh ¼ Ff�mnðrÞg, or

Fmnh ¼ FðRg
mnr�nhÞ expði2�r�nh � t

g
mnÞ: ð19Þ

Using this notation, (7) becomes

Fnh ¼
PMn

m¼1

Fnmh: ð20Þ

The data projection then involves finding the smallest change

to the complex numbers Fmnh, for m ¼ 1; . . . ;Mn, such that

Fnh ¼ ðInhÞ
1=2. This problem is a special case of approach B

described by Chen et al. (2016) and we follow their analysis.

Considering a particular crystal n and a particular reciprocal-

lattice point h, dropping the labels n and h, and letting

Fmnh ¼ am þ ibm, allows (20) to be rewritten as

jFj2 ¼
P
m

am

� 	2

þ
P
m

bm

� 	2

: ð21Þ

The quantity jFj2 in (21) can be considered to exist in a space

of dimension 2Mn, i.e. one dimension each for the real (am)

and imaginary (bm) parts of the structure factor for each m.

Transforming the coordinate system (Chen et al., 2016) such

that two coordinates are defined by ða�; b�Þ, where

a� ¼
P

m am and b� ¼
P

m bm, (21) can be written as

jFj2 ¼ a� 2 þ b� 2: ð22Þ

Equation (22) represents a circle in these two coordinates and

is independent of the remaining ð2Mn � 2Þ coordinates, in the

new coordinate system. Equation (21) therefore represents

a ð2Mn � 1Þ-dimensional circular-hyper-cylinder in the 2Mn-

dimensional space representing the iterate Fmnh for fixed n and

h. This cylindrical manifold, with the left-hand side of (21)

replaced by the measured intensity I, is the constraint set

representing the diffraction data for a particular crystal at a

particular reciprocal-lattice point. The required reciprocal-

space projection then moves an arbitrary point in the vector

space to the closest point on this cylinder. The projection can

be derived using the method of Lagrange multipliers as

described by Chen et al. (2016), giving the result

PD�mnðrÞ ¼ F
�1 Fmnh þ

1

Mn

Inhð Þ
1=2

jFnhj
� 1


 �
Fnh

� �
; ð23Þ

remembering that Fmnh ¼ Ff�mnðrÞg and Fnh ¼Ff
P

m �mnðrÞg.

Inspection of (23) shows that the new transform Fmnh is

obtained by taking the mean of the difference between the

data and the current individual transforms and adding it to the

current value of Fmnh. A flow chart of the operation of the data

projection approach B is shown in Fig. 1(b). The difference

between (23) and (18) corresponds to projecting onto a hyper-

cylinder, rather than onto a circle. Equation (23) can be

verified by substituting the case of a single cluster with equally

weighted objects into the projection derived by Chen et al.

(2016).

The data projection operator (23) is in fact a special case of

the data projection operator derived by Morgan et al. (2019)

for the case of phasing diffraction data from disordered

crystals. The two projection operators are formulated some-

what differently however, and the relationship between them

is outlined in Appendix B.

5.3. Object projection operator

Here we describe the operator PO that projects the iterate

onto the real-space, or object, constraints described above.

The two object constraints are satisfied, in the least-distance

sense, by averaging the electron densities over all molecules in

all crystals, and applying the support constraint. Again, we

consider approaches A and B.

5.3.1. Approach A. In approach A, the algorithm operates

on the unit-cell density unðrÞ. For application of the similarity

constraint, each molecule in each crystal is first extracted from

the unit-cell density. This is done by applying the support

operator, which corresponds to multiplying uðrÞ by SðrÞ, in the

appropriate position [step one in equation (24) below]. Each

extracted molecule is then aligned (by translation and rotation

back to the reference position), followed by averaging to

satisfy the similarity constraint (step two). The unit cells are

then rebuilt to obtain the new unit-cell densities (step three).

The complete object-space projection is then given by

�0mnðrÞ ¼ S Rg
mnrþ tg

mnð Þ unðrÞ

�p
ðrÞ ¼

1

N

XN

n¼1

1

Mn

XMn

m¼1

�0mn Rg
mn
�1 r� tg

mnð Þ
� �

POunðrÞ ¼
XMn

m¼1

�p Rg
mnrþ tg

mnð Þ: ð24Þ

A flow chart of the operation of the object projection

approach A is shown in Fig. 2(a).

The necessity of extracting each molecule from the unit cell

may lead to problems in tightly packed crystals (which protein

crystals usually are). Since the support will always be a little

loose, it will generally contain density from neighbouring,

symmetry-related molecules, which will contaminate the

extracted molecular density. Implementation of the similarity

constraint will then be partially incorrect, since the common

component will be the density in the support region rather

than the density of the molecule. This in turn leads to a

defective unit-cell rebuild unðrÞ and errors in the updated

iterate. Obviously, these errors will be larger, the more the

envelopes overlap. Approach B, described below, circumvents

this problem.
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5.3.2. Approach B. In approach B, the iterate is the set of all

the individual positioned molecules �mnðrÞ, rather than the

unit cells. Since the individual molecules are carried through

the algorithm, they do not need to be extracted from the unit-

cell densities and the issues described above with overlap of

the envelopes do not arise. This is the key rationale, and

advantage, of approach B. In this case, both object constraints

can be satisfied in a single step. The first step in (24) is not

needed, and in the third step the averaged molecule needs

only to be rotated and translated into its correct position.

Thus, the object projection for approach B is given by

�pðrÞ ¼
1

N

XN

n¼1

1

Mn

XMn

m¼1

SðrÞ�mn Rg
mn
�1 r� tg

mnð Þ
� �

PO�mnðrÞ ¼ �
p Rg

mn rþ tg
mnð Þ: ð25Þ

A flow chart of the operation of the object projection

approach B is shown in Fig. 2(b).

With all the projection operators now defined, they are

easily incorporated into an IPA.

6. Simulations

Simulation results are presented to illustrate the proposed

algorithm. The objective is to evaluate the algorithm using

synthetic diffraction data that are calculated assuming iden-

tical molecules in the different crystal forms. For these tests,

we further assume knowledge of a molecular envelope and the

intercrystal position operators. Further tests with more

realistic data will be needed to fully evaluate the algorithm’s

practical potential.

Two sets of simulations were conducted. The first considers

the case of two quite different unit cells with different space

groups. Two lysozyme structures were used for these simula-

tions. The second considers the case of multiple unit cells with

similar dimensions, as might be obtained in a hydration series,

for example. Sets of unit-cell dimensions derived from an

X-ray free-electron laser (XFEL) experiment with photo-

system II were used for these simulations.

6.1. Lysozyme

For these simulations we use two crystal forms of lysozyme

in two different space groups (Fig. 3). The crystal forms used

are Protein Data Bank (PDB) code 132L, which has unit-cell

dimensions 30.6 
 56.3 
 73.2 Å and space group P212121,

with four molecules in the unit cell (Rypniewski et al., 1993),

and PDB code 193L, with unit-cell dimensions 78.54
 78.54


37.77 Å, space group P43212 and eight molecules in the unit

cell (Vaney et al., 1996). We refer to these as unit cells 1 and 2,

respectively.

Both crystals have fairly low solvent contents (44% and

39%), and thus diffraction data from one crystal form alone

are insufficient for ab initio phasing, with � ’ 0:86. However,

with data from two crystal forms and using the current

approach, � ’ 1:71 and ab initio phasing should be feasible.

An integral number of samples across the unit cells of

different dimensions necessitates different sample spacings,

and there are different orientations of the molecules with

respect to the sampling grids in the two crystals, requiring

interpolation of the electron density. The sampling grids in

real space are chosen such that the sample spacings are similar

for the two unit cells, and such that averaging over the

asymmetric units within the unit cells does not require inter-

polation. Unit cell 1 was sampled on a 32 
 60 
 80 grid,

giving sample spacings of 0.96 
 0.94 
 0.92 Å, and unit cell 2
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Figure 3
The unit cells for lysozyme in (a) crystal form 1 and (b) crystal form 2,
showing the four and eight molecules in the unit cell, respectively, in the
two crystal forms.

Figure 2
Flow charts showing operation of the object projection for (a) approach
A and (b) approach B.



was sampled on an 80 
 80 
 40 grid, giving sample spacings

of 0.98 
 0.98 
 0.94 Å. Averaging the densities between unit

cells, as well as redistributing the average density back into

each asymmetric unit in each unit cell to generate the updated

�mnðrÞ, was conducted using cubic interpolation.

The simulations were set up as follows. Using the corre-

sponding PDB molecular models for each crystal form, a

chosen reference asymmetric unit (molecule) in crystal form 1

was aligned with a chosen reference asymmetric unit in crystal

form 2, and the intercrystal position operators determined.

The difference between the aligned molecular structures in the

two crystal forms is small [C� r.m.s.d. (root-mean-square

deviation) calculated using Chimera (Pettersen et al., 2004) of

0.83 Å]. Structural differences are concentrated near the

periphery of the molecule, while the core structure is well

conserved. The reference molecule, or model, from crystal

form 1 was placed in crystal form 2 in the position defined by

the above-determined intercrystal position operators, thus

generating a crystal structure for crystal form 2 with the

identical molecule to that of crystal form 1. Using these

models, electron densities (for envelope and real-space error

calculations) and structure-factor amplitudes (for the

synthetic data) were calculated for each crystal form.

An envelope for the (common) molecule was determined

by convolving its electron density with a Gaussian with full

width at half-maximum (FWHM) of 10 Å and defining a

binary mask based on a threshold value of the blurred electron

density, giving an envelope resolution of approximately 10 Å,

as shown in Fig. 4(a). The solvent fractions of the molecular

envelope in unit cells 1 and 2 are 0.33 and 0.24, respectively.

These values are smaller than the actual crystal solvent frac-

tions (0.44 and 0.39), and thus the envelope forms reasonably

weak a priori information. The constraint ratio for the two

crystal forms based on these envelopes is � ¼ 1:40. The

overlap volumes of the envelope in unit cells 1 and 2 are 0.02

and 0.03 of the envelope volume, respectively.

Phase retrieval was conducted as described above using

approach B, with diffraction amplitude data calculated to a

resolution of 2 Å. The reconstruction algorithm consisted of

repeated cycles of 275 iterations, each cycle consisting of 250

iterations of the DM algorithm with � ¼ 0:9, and 25 cycles of

the ER algorithm. (Simulations using approach A produced

inferior electron-density maps, as a result of the incorrect

treatment of envelope overlap.) The algorithm was started

with a random electron density within the molecular envelope.

In this case, the electron-density iterate consists of 12 copies of

the molecule, i.e. the �mnðrÞ. The algorithm was run multiple

times with 5000 iterations in each run, and convergence to a

good solution was obtained for approximately 50% of the

runs. Convergence of the algorithm was monitored by calcu-

lating the normalized r.m.s. (root-mean-square) errors for the

structure-factor amplitudes (denoted E) and the electron

density (denoted e), and the mean phase error weighted by the

corresponding structure-factor amplitude (denoted �), all

between the current estimate of the electron density and the

true values, versus iteration. These error metrics versus

iteration for a typical converged run are shown in Fig. 4(b). In

this case, the final errors are E ¼ 0:06, � ¼ 9� and e ¼ 0:14.

The reconstructed electron density in the region of amino

acids 89 through 129 is shown in Fig. 4(c), with the PDB model

for reference. The quality of the map is clearly sufficient for

chain tracing. Other regions of the map are of similar quality.

Although the effects of differences between the molecular

structures in the two crystal forms and the effects of errors in

the data also need to be considered, the results show the

practical potential of the proposed algorithm.

6.2. Photosystem II

The second set of simulations is based on the results of an

XFEL experiment with photosystem II (PSII) crystals.

Diffraction was measured in a fixed-target, serial femtosecond

X-ray crystallography (SFX) experiment at the Linac

Coherent Light Source (LCLS) (Metz et al., 2021). Analysis

of the diffraction data from this experiment showed that

the crystals exhibited a range of unit-cell constants, due to
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Figure 4
(a) The lysozyme 10 Å resolution envelope, with the PDB structure 193L shown for reference, used for the simulations. (b) The error metrics E (black),
� (green) and e (blue), versus iteration for a typical converged run. (c) The corresponding reconstructed electron density associated with amino acids
89–129 contoured at 1.5�. The electron-density map is displayed using Chimera (Pettersen et al., 2004) with zoning applied to visualize the relevant
subregion of the map. The corresponding PDB atomic model of 193L is shown for reference.



variation in the relative humidity across the chip on which the

crystals were mounted. The unit-cell constants derived from

the experimental data are used as the basis for the simulations.

Details of the experiment are reported elsewhere (Metz et

al., 2021), but are outlined briefly here. Crystals of PSII with a

size range of 10–50 mm were grown in aqueous solution

(Kupitz et al., 2014). To collect diffraction data, the crystals

were spread on a Roadrunner II chip (a porous silicon chip

with dimensions of 33
 12 mm) and the mother liquor around

the crystals removed (Tolstikova et al., 2019). In order to

prevent complete dehydration of the crystals, the chips were

mounted in a humidity chamber supplied with saturated

helium. Due to the relatively large sample holder and the

space required for the translation stage, it was difficult to

maintain a constant humidity throughout the entire

measurement chamber.

As a result of humidity variations across the chip, the

crystals showed a range of hydration stages, which was

reflected in a continuously varying range of unit-cell dimen-

sions. The space group P212121 was retained in all crystals.

Information on the cell constants observed is reported

elsewhere (Metz et al., 2021), but for our purposes, each

diffraction pattern was assigned to one of 14 bins, based on the

unit-cell volume, and the data merged within each bin to give

14 diffraction data sets, with a corresponding narrow range of

unit-cell dimensions for each (Table 1). The relative unit-cell

volumes are also listed in the table. The largest relative change

in the unit-cell dimensions is about 7% for the a axis, and the

largest change in the unit-cell volume is about 11%.

This set of 14 crystal forms, with similar cell constants and

the same space group, was used as the basis for the simula-

tions. The ultimate idea is that data from such an experiment

could potentially be used for ab initio phasing.

PSII is a large membrane protein complex with a molecular

weight of about 350 kDa, with largest dimension of about

120 Å. It exists in nature, as well as in the crystal, as a

homodimer, with the two monomers in the dimer related by a

twofold symmetry axis (Zouni et al., 2001). The unit cell

contains four copies of the dimeric PSII complex in space

group P212121, and the twofold relationship between the two

monomers of a dimer is non-crystallographic. Although non-

crystallographic symmetry (NCS) can be used in phasing, for

our purposes we ignore the NCS and treat the whole dimeric

complex as the molecule �ðrÞ to be reconstructed.

Since the structure of photosystem II is known, the crystal

structure for each unit cell was determined by MR as

described by Metz et al. (2021). The structures are quite

similar and the atomic r.m.s.d.s to the structure in unit cell 1

are listed in Table 2. The reference electron density �11ðrÞ was

calculated on a 2.5 Å grid using the atomic coordinates and

temperature factors for the structure for unit cell 1, and set to

zero outside the molecular envelope (derived as described

below). The positions and orientations of the molecules in the

14 unit cells relative to the reference molecule were deter-

mined based on the atomic coordinates and using the Kabsch

algorithm (Kabsch, 1976). The rotations were very small and

so were set to zero in the subsequent calculations. The

reference electron density was then copied into the symmetry-

equivalent positions in 14 unit cells, using the derived inter-

crystal position operators and Fourier interpolation. To enable

the space-group symmetry operations to be performed

without interpolation, the unit cell constants in Table 1 were

rounded to an integral number of grid points. These electron

densities were used to calculate synthetic diffraction data for

each crystal form to 5 Å resolution. The lower resolution was

used here as a result of the larger unit cell compared with

lysozyme, to reduce the computational cost of the recon-

structions.

In order to study the effect of envelope resolution in this

case, the envelope used for PSII was calculated based on the

atomic coordinates. The envelope is defined as the union of

spheres, of radius re, centred on each atom, excluding the

hydrogen atoms. The resolution (and the volume) of the

envelope can then be easily manipulated by varying re. The
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Table 1
Average unit-cell constants for binned PSII diffraction data and relative
unit-cell volumes.

Vn = unit-cell volume of crystal form n.

n a (Å) b (Å) c (Å) Vn=V1

1 130.7 229.7 305.0 1.00
2 131.7 230.1 305.3 1.01
3 132.3 230.2 305.6 1.02
4 132.8 230.3 305.8 1.02
5 133.2 230.3 306.0 1.03
6 133.6 230.4 306.3 1.03
7 134.1 230.5 306.6 1.04
8 134.7 230.8 307.0 1.04
9 135.4 231.0 307.4 1.05
10 136.2 231.3 307.8 1.06
11 137.2 231.6 308.3 1.07
12 138.2 232.0 308.9 1.08
13 139.3 232.4 309.8 1.10
14 140.4 233.0 310.9 1.11

Table 2
Atomic r.m.s.d., protein fraction, and relative envelope volumes and
relative envelope overlap volumes for two values of re, for the PSII unit
cells, as described in the text.

VSn = envelope volume in unit cell n, Vn = volume of unit cell n, V
overlap
Sn =

envelope overlap volume in unit cell n.

re = 7 Å re = 8 Å

n
R.m.s.d.
(Å)

Protein
fraction VSn=Vn V

overlap
Sn =VSn VSn=Vn V

overlap
Sn =VSn

1 0.00 0.37 0.70 0.05 0.74 0.07
2 0.08 0.37 0.68 0.03 0.72 0.05
3 0.12 0.37 0.68 0.03 0.72 0.05
4 0.13 0.36 0.68 0.03 0.72 0.05
5 0.13 0.36 0.68 0.03 0.72 0.05
6 0.14 0.36 0.68 0.03 0.72 0.05
7 0.15 0.36 0.68 0.03 0.72 0.05
8 0.17 0.36 0.68 0.03 0.72 0.05
9 0.19 0.35 0.66 0.03 0.70 0.04
10 0.19 0.35 0.66 0.03 0.70 0.04
11 0.22 0.35 0.66 0.03 0.70 0.04
12 0.23 0.34 0.66 0.03 0.70 0.04
13 0.27 0.34 0.66 0.03 0.70 0.04
14 0.28 0.33 0.63 0.02 0.67 0.03



PSII envelope for re = 8 Å (this can be thought of as an

envelope resolution of approximately 16 Å) is shown in Fig. 5.

The envelope volumes relative to the volume of the unit cell

for re = 8 Å and re = 7 Å are listed in Table 2. These quantities

decrease with increasing unit-cell size, and increase with

increasing re, as expected. Since a low-resolution envelope

generally includes solvent molecules, the volume fraction of

such an envelope will be larger than the protein fraction as

calculated by the Matthews coefficient. The protein fraction

calculated via the Matthews coefficient is also listed in Table 2.

The envelope fractional volumes are significantly larger than

the protein fractions, and thus represent rather weak a priori

information. The volume of the overlap regions between the

envelopes, relative to the envelope volume, is also shown in

Table 2. These also decrease with increasing unit-cell size, and

increase with increasing re. The relative volume of the overlap

region is small in all cases.

Using the intercrystal position operators and molecular

envelope as described above, phase retrieval, starting with a

random density, was conducted using the DM algorithm and

approach B, as for lysozyme. Different subsets of the 14 data

sets were used to examine the effect of the number of crystal

forms used. Since the algorithm sometimes fluctuated near

convergence, a small number of cycles of ER was used at the

end of each run.

For a single crystal form with the envelopes used here,

� ’ 0:7 and ab initio phasing from such a data set is not

expected to be feasible. Ab initio phasing was attempted using

our approach with data from a single crystal form and,

although a small reciprocal-space error was obtained, the

resulting density did not resemble the true density, confirming

non-uniqueness of the solution in this case.

The algorithm was run using two, three, eight and 14 of the

crystal data sets, for envelopes with re = 8 Å and re = 7 Å. The

results are summarized in Table 3, which shows the number of

converged and total runs in each case. Convergence was

defined by a normalized real-space error less than 0.2. As

expected, the proportion of runs that converge increases with

the number of crystal data sets used and for the tighter

envelope (re = 7 Å). For the converged runs, acceptable

electron densities were obtained in each case. The error

metrics versus iteration for a typical converged run are shown

in Fig. 6(a), and the corresponding reconstructed electron

density in Fig. 7, for data from 14 unit cells and re = 8 Å. A

good reconstruction at this resolution is evident.

A further, more realistic, set of simulations was conducted

in which reflections with resolutions lower than 50 Å and

higher than 5 Å were excluded from the data, and errors

added to the diffraction amplitudes. Gaussian noise was added

to the diffraction data such that I=�ðIÞ ¼ 1:7 in the highest-

resolution shell (5.5–5.0 Å), which represents a reasonably low

signal-to-noise ratio (SNR) in practice. In this case, it was

found that allowing the excluded structure amplitudes to float

(i.e. the current amplitude values are retained at each itera-

tion, rather than setting them to zero) in a thin resolution shell

at the highest resolution, while decreasing the convergence

rate, helped to circumvent the effects of a sharp resolution
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Figure 6
Error metrics E (black), � (green) and e (blue), versus iteration for
converged runs of the reconstruction algorithm. (a) Using noise-free
5 Å resolution diffraction data from 14 crystal forms with re = 8 Å. (b)
Using noisy diffraction data with a resolution range of 50–5 Å, with data
from 14 unit cells and re = 7 Å, as described in the text.

Figure 5
The PSII envelope for re = 8 Å (black mesh), derived as described in the
text. The PSII model is shown for reference, with the helices in red, beta
sheets in yellow, and loops and metal ions in green. (Figure displayed
using PyMOL Molecular Graphics System Version 2.4, Schrödinger, Inc.)

Table 3
Number of converged (‘conv’) and total runs (‘runs’) for different
numbers of data sets (N), with noise-free diffraction data and envelope
radii (re) for the simulations with PSII.

N
re = 8 Å
Conv/runs

re = 7 Å
Conv/runs

2 0/150 13/150
3 7/250 113/150
8 42/100 92/100
14 52/100 100/100



cutoff. Phase retrieval was successful for three or more crystal

data sets and with an envelope with re = 7 Å (Table 4). The

quality of the final solution was improved by averaging the

maps over multiple converged runs, a common strategy with

use of these kinds of algorithms (Morgan et al., 2019). The

error metrics versus iteration are shown in Fig. 6(b), and the

reconstructed density in Fig. 8, for a typical converged run

using 14 data sets. Inspection of the figure shows a good-

quality reconstruction at this resolution. Overall, the algo-

rithm shows good convergence behaviour in the presence of

realistic noise and missing data.

7. Discussion and conclusions

It is not uncommon for different crystal forms to be observed

in protein crystallization experiments, without additional

experimental effort. Frequently, data from only the best

diffracting crystal are used for structure determination,

utilizing conventional phasing techniques. For difficult struc-

tures however, data from additional crystal forms may be

used to advantage to help resolve problems with phasing.

Data from multiple crystal forms have been used in various

situations, where experimental or MR phases with a single

crystal have been insufficient to obtain a solution.

We have considered here the use of diffraction data from

multiple crystal forms for potential ab initio phasing. Data

from three or more crystal forms, or from two crystal forms in

favourable cases, with some additional information, such as

molecular envelope information, are sufficient to define a

unique solution in the absence of initial phase information. An

algorithm with good global convergence starting from random

phases, to find the solution, is developed using the method of

iterated projections. The algorithm incorporates a novel

method to circumvent difficulties posed by envelope overlap.
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Table 4
Number of converged (‘conv’) and total runs (‘runs’), and final error
metrics, for different numbers of data sets (N), with noisy diffraction data
and envelope radius re = 7 Å for the simulations with PSII.

N Conv/runs E � (�) e

2 0/300 - - -
3 25/300 0.12 20.2 0.17
8 96/200 0.17 24.1 0.08
14 88/200 0.18 23.8 0.09

Figure 7
Reconstruction of PSII using noise-free 5 Å resolution diffraction data
from 14 crystal forms with re = 8 Å. (a), (b) Orthogonal views of the
electron density of the dimer, (c) of chain z and (d) of the manganese-
stabilizing protein, part of the oxygen-evolving complex (black mesh),
with the true model shown overlaid. Note that these are Fobs maps with no
model refinement. (Figure displayed using PyMOL Molecular Graphics
System Version 2.4, Schrödinger, Inc.)

Figure 8
Reconstructions of PSII using noisy diffraction data with a resolution
range of 50–5 Å, with data from 14 unit cells and re = 7 Å, as described in
the text. (a), (b) Orthogonal views of the electron density of the dimer, (c)
of chain z and (d) of the manganese-stabilizing protein (black mesh), with
the true model shown overlaid. (Figure displayed using PyMOL
Molecular Graphics System Version 2.4, Schrödinger, Inc.)



Assuming knowledge of a low-resolution molecular envelope

and the positional relationships between the molecules in the

different crystals, the algorithm is effective in recovering an

accurate electron density from simulated data.

Simulations show that our approach has good prospects for

an ab initio phasing algorithm using data from multiple crystal

forms. Our simulations used some simplifications in terms of

identical molecules in each crystal form and a well defined

protein boundary, and some more work is needed to relax

these restrictions. The main additional ingredient required for

ab initio phasing is a method for determining the molecular

envelope and intercrystal position operators a priori. Mol-

ecular envelope information may come from another source

such as solution scattering or electron microscopy. Even in the

absence of experimental envelope information, a priori deri-

vation and refinement of an envelope are possible (He & Su,

2015; Marchesini et al., 2003). Note also that steric constraints

on the envelope will be stronger when considering the

different packings in multiple unit cells. Determination of

intercrystal position operators is the same problem as is

encountered in molecular replacement and multi-crystal

averaging. The intercrystal rotation operators should be

obtainable from a cross-rotation function. Determination of

the translation operators is, as usual, more difficult, but X-ray

agreement and steric searches can be effective in constraining

the possible translations. In summary then, determination of

these other parameters to allow ab initio phasing would

appear to be feasible. Success with this approach would allow

ultimately for the practical realization of a phasing method

that was first proposed long ago in early work by Perutz and

Rossmann.

Improvements will be needed to make the method effective

with experimental data. In the simulations used here, a mol-

ecular electron density with a sharp cutoff at the envelope

boundary was used to calculate the data. In practice, a softer

support projection may help to reduce the effect of ripples in

the Fourier domain that are introduced by a sharp cutoff in

real space. The interpolation methods used are also important.

Real-space interpolation methods, such as cubic interpolation,

have the disadvantage that they tend to smear the electron

density, whereas Fourier interpolation tends to extend the

density beyond the molecular boundary. These effects are

important since interpolation is conducted over many itera-

tions. Fourier interpolation being inconsistent with the

support boundary was circumvented in the simulations by

using data sets which were calculated from molecular densities

that included the Fourier artefacts. Further investigation of

suitable interpolation methods is needed.

Different crystal forms can occur with routine crystal

screening and provide data suitable for the approach

described here. Systematic manipulation of parameters such

as humidity, salt concentrations etc. may also provide a range

of crystal packings. Recent SFX experiments with PSII (Metz

et al., 2021) show a potential method for obtaining data from a

range of crystal forms.

APPENDIX A
Noise amplification due to a shifted sample

Ideally, the samples of the continuous transform intensity are

distributed evenly in reciprocal space. However, as described

in Section 3, it is likely that with data from multiple crystal

forms, at least some samples will be close together. Here we

consider the effect of close proximity of samples of the

diffracted amplitude.

The effect on signal reconstruction of a finite number of the

Nyquist samples being shifted to new positions has been

considered by Yen (1956). He showed that such a sampling

sequence allows unique reconstruction of the signal, and

derived the corresponding interpolation functions. Using his

results, we consider the effect of two sampling points being

close together.

Following Section 3, consider a 1D real-space lattice of

spacing a, so that the Nyquist spacing for the Fourier

intensity is 1=ð2aÞ, although the intensity data from a single

crystal form are spaced by only 1=a. Consider now a regular

sampling sequence with spacing 1=ð2aÞ, except that one

sample is shifted to a distance �=ð2aÞ from its neighbouring

sample, as considered in Section 3. Let the shifted sample be

indexed n ¼ 1 and shifted to the left so that its new

position is q ¼ �=ð2aÞ, and it is thus a distance �=ð2aÞ from

the sample n ¼ 0 at the origin q ¼ 0 (Fig. 9). The effect of

shifting a finite number of samples is that the sampling func-

tions for samples close to a resulting bunch of samples take on

large values at positions q that are close to the resulting gaps

between the samples. This results in noise amplification close

to the gaps, the amplification being larger for larger sample

shifts. For our case, the sample positions at the bunch are at

n ¼ 0; 1. Since we wish to reconstruct the signal at the original,

regular sample position q ¼ 1=ð2aÞ (which is in the resulting

gap), and since the interpolation functions are unity at the

sampling points, the noise amplification factor is equal to the

magnitude of the interpolation function at q ¼ 1=ð2aÞ, and we

denote this value by inð�Þ, for n ¼ 0; 1, as a function of �.

Evaluation of the interpolation functions given by Yen (1956)

for this case shows that the noise amplification factors for

samples in the bunch are given by

i0ð�Þ ¼
1��

�
’

1

�
for small �

i1ð�Þ ¼
�ð1��Þ

sinð��Þ
’

1

�
for small �: ð26Þ

Hence, for small �, where the effect of the bunching is more

significant, the noise is amplified by a factor 1=�. For example,

if say 5% of the samples were a fractional distance 0.1 (i.e.
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Figure 9
A regular sampling sequence of spacing 1=ð2aÞ, except that one sample
has been shifted to a position that is a distance �=ð2aÞ from one of its
neighbouring samples, shown by the circles. The original position of the
shifted sample is shown by the cross.



� ¼ 0:1) from another sample, the noise amplification in the

reconstructed electron density would be about 50%.

APPENDIX B
Alternative formulation of (23)

As mentioned in Section 5.2.2, the data projection operator

for approach B (23) can be formulated in an alternative

fashion that makes an interesting connection to the data

projection operator for the case of a reconstruction problem

for disordered crystals described by Morgan et al. (2019). This

formulation of our projection operator is derived here.

Consider the Bragg-sampled Fourier transform of the

iterate, Fmnh, but now first take the discrete Fourier transform

(DFT) of Fmnh with respect to m, which we denote F̂Fknh, i.e.

F̂Fknh ¼ DFT m Fmnh

� �� �
k

¼
PMn

m¼1

Fmnh exp½i2�ðm� 1Þðk� 1Þ=Mn�

for k ¼ 1; . . . ;Mn; ð27Þ

where ðDFT m½��Þk denotes the 1D DFToperation with respect

to m, and k is the variable conjugate to m. We now treat F̂Fknh as

the iterate, and note, referring to (27), that for k ¼ 1,

F̂F1nh ¼
PMn

m¼1

Fmnh ¼ Fnh; ð28Þ

so that the data constraint becomes jF̂F1nhj ¼ ðInhÞ
1=2. Letting

P̂DPD be the projection operator acting on the iterate F̂Fknh, the

projection is then given by

P̂PDF̂F1nh ¼ Inhð Þ
1=2 F̂F1nh

jF̂F1nhj

P̂PDF̂Fknh ¼ F̂Fknh for k 6¼ 1: ð29Þ

The data projection operator PD, which acts on the iterate

�mnðrÞ in real space, is then given by

PD�mnðrÞ ¼ F
�1
DFT

�1
k P̂DPD DFT m F �mnðrÞ

� � �� �
k

� �� 
: ð30Þ

Equation (30) is then equivalent to (23).

Geometrically, the effect of taking the DFT of Fmnh with

respect to m is to rotate the vector representing the electron

density (the iterate) such that the circular cross section of the

hyper-cylinder lies in the complex plane of the k ¼ 1

component of F̂Fknh. The projection then involves simply

rescaling the magnitude of F̂F1nh to the data and leaving the

other components unchanged, followed by rotating back to

the original coordinate system (by taking the inverse DFT).

Simplification of the projection operator by rotating the

coordinate system via the DFT is identical to the approach

used by Morgan et al. (2019) to simplify the projection

operator in the case of phase retrieval for diffraction data

from disordered crystals.

The equivalence of (23) and (30) can be shown directly as

follows. Referring to equations (27), (28) and (29), we can

write the projection operator in reciprocal space as

P̂PDF̂Fknh ¼
XMn

m¼1

Fmnh exp½i2�ðm� 1Þðk� 1Þ=Mn�

þ
ðInhÞ

1=2

jF̂F1nhj
� 1

" #
F̂F1nh�k1

¼
XMn

m¼1

Fmnh exp½i2�ðm� 1Þðk� 1Þ=Mn�

þ
ðInhÞ

1=2

jFnhj
� 1


 �
Fnh�k1 ð31Þ

where �ij is the Kronecker delta function. Substituting (31)

into equation (30) and writing out the inverse DFT gives

PD�mnðrÞ ¼ F
�1

(
1

Mn

XMn

k¼1

exp½�i2�ðm� 1Þðk� 1Þ=Mn�




"XMn

m0¼1

Fm0nh exp½i2�ðm0 � 1Þðk� 1Þ=Mn�

þ
Inhð Þ

1=2

jFnhj
� 1


 �
Fnh�k1

#)

¼ F
�1 Fmnh þ

1

Mn

Inhð Þ
1=2

jFnhj
� 1


 �
Fnh

� �
ð32Þ

which is (23).
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