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The puzzling observation that the famous Euler’s formula for three-dimensional

polyhedra V� E + F = 2 or Euler characteristic � = V� E + F� I = 1 (where V,

E, F are the numbers of the bounding vertices, edges and faces, respectively, and

I = 1 counts the single solid itself) when applied to space-filling solids, such as

crystallographic asymmetric units or Dirichlet domains, are modified in such a

way that they sum up to a value one unit smaller (i.e. to 1 or 0, respectively) is

herewith given general validity. The proof provided in this paper for the

modified Euler characteristic, �m = Vm � Em + Fm � Im = 0, is divided into two

parts. First, it is demonstrated for translational lattices by using a simple

argument based on parity groups of integer-indexed elements of the lattice.

Next, Whitehead’s theorem, about the invariance of the Euler characteristic, is

used to extend the argument from the unit cell to its asymmetric unit

components.

1. Introduction

The famous Euler characteristic that gives a simple relation

between the numbers of geometrical elements of an isolated

polytope in N-dimensional space can be expressed as follows:

� ¼
PN

i¼0

ð�1Þini ¼ 1

where ni is the number of i-dimensional cells (elements)

building up the polytope. In the three-dimensional space this

can be presented as an equation valid for any polyhedron

� ¼ V � Eþ F � I ¼ 1

where V, E, F, I are the numbers of vertices (0-dimensional

elements), edges (one-dimensional elements), faces (two-

dimensional elements) and the ‘interior’ or the polyhedron

itself (three-dimensional element). We emphasize that each

i-dimensional cell is considered always as a closed cell, i.e. with

its boundary. Each individual polyhedron has only one

‘interior’ and Euler’s formula is, therefore, often presented as

V � E + F = 2, as originally published by Euler (1758). The

classical N-dimensional Euler characteristic of a polytope was

derived by Schläfli (1901).

In a previous paper (Dauter & Jaskolski, 2020) in this

journal we demonstrated, by analyzing standardized asym-

metric units (ASUs) in all planar and space groups in the

International Tables for Crystallography, Vol. A (Aroyo,

2016), as well as selected Dirichlet domains, that the polytopes

in a lattice built from symmetrically arranged, space-filling
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polyhedra (or polygons in two dimensions) can be described

by a modified Euler characteristic:

�m ¼
PN

i¼0

ð�1Þi
PnðiÞ

j¼1

1=mði jÞ ¼ 0

where 1=mði jÞ is the fraction which the individual element j of

dimensionality i contributes to one selected polytope. In

three-dimensional space this can also be expressed as

�m ¼ Vm � Em þ Fm � Im ¼ 0

where Vm , Em , Fm , Im represent total fractions of elements of

different dimensionality ascribed to one polyhedron in the

three-dimensional lattice. It is obvious that one polytope

contains just one full ‘interior’ (representing in fact the

complete solid), Im = 1, and that each face is always shared by

two adjacent polyhedra so that Fm = F/2, but the values of Vm

and Em depend on the particular arrangement of the poly-

hedra in the lattice. The convenient way of counting

the contributions of individual elements to the modified

Euler characteristic uses as their weights 1=mðijÞ values

that are inversely proportional to the number of adjacent

polytopes mðijÞ sharing a given element. Obviously, for

three-dimensional polyhedra, m(31) = 1 (only one three-

dimensional ‘interior’) and m(2 j) = 2 (for any two-dimensional

face).

Our considerations and musings on the modified Euler

characteristic are not only of purely theoretical interest. For

example, the modified Euler characteristic could find a

very practical application in crystallography, as a kind of

‘checksum’ criterion in computer programs dealing with the

ASU or Dirichlet domains.

Since when writing the first paper we were unable to

construct a rigorous proof of the modified Euler’s formula (or

by extension of the modified Euler characteristic), we chal-

lenged our readers with this mathematical exercise. The

response has been beyond expectations, with a number of

contacts from fellow crystallographers received as soon as the

electronic preprint became available. In particular, some

colleagues recommended to us the classic textbook ‘Regular

Polytopes’ by Coxeter (1948). On reading this book we

realized that Coxeter’s argument could be interpreted as a

proof of the modified Euler characteristic, when applied to

translational lattices. In particular, equation 4.82 from that

book would be applicable to the three-dimensional case. A

similar conclusion was reached by Dr Jean-Guillaume Eon

(personal communication). An explanation of the rather

complex line of Coxeter’s thought is provided for interested

readers in the supporting information. It is important to stress

that, while Coxeter’s proof is sufficient for translational

lattices, or space filled with unit cells (hyper-parallelepipeds),

it cannot be automatically extended to situations where the

unit cell is subdivided into smaller polytopes, such as the ASU

or Dirichlet domains, which in general do not populate the

space by translations alone.

The goal of the present paper is to provide a complete proof

of the modified Euler characteristic. We do it in two steps.

First, we provide a simple proof applicable for translational

lattices of any dimension N. This proof is based on the concept

of parity frequencies of integer-indexed elements of the

polytopes. This proof is alternative to the argument provided

by Coxeter, but is based on a completely different arithmetic

concept, is much simpler and is more general (applicable to

any dimension N). In the second step, we use the theorem of

Whitehead (1949) (cf. Hatcher, 2002) to extend the validity of

the first step to polytopes that subdivide the unit cell in a

symmetric fashion, but are not related by pure translations

only. The second step completes the proof for ASUs and

Dirichlet domains.

2. Arithmetic proof for translational lattices

A primitive lattice consists of points mutually related by basic

translations along all existing dimensions of space. Their

coordinates may be represented by sets of N integer numbers,

where N is the dimensionality of the space. Such a lattice may

also be treated as a periodic set of translationally arranged

polytopes (parallelograms in two dimensions, parallelepipeds

in three dimensions etc.). If the origin of the system of coor-

dinates is selected at the center of one of the polytopes (unit

cell) and the length of each edge (along each direction) is

equal to two units of measure, then the centers of the

constitutive elements (vertices, edges,

faces etc.) of each cell will have coordi-

nates expressed as sets of N integer

numbers with different combinations of

parity (even or odd, e/o) specific for

each group of cell elements of particular

dimensionality.

As illustrated in Fig. 1(a), in one-

dimensional space, the lattice is a set of

points (vertices) arranged periodically

along a line. In one-dimensional space

all vertices (0-dimensional elements)

have odd coordinates ( . . .�3; �1; 1; 3;

5; . . . ), whereas the centers of all edges

(one-dimensional elements) have even

coordinates ( . . .�2; 0; 2; 4; . . . ).
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Figure 1
Regular polytopes with elements labeled by integer numbers and color (vertices, black; edges, blue;
faces, green; ‘interior’, red): (a) one-dimensional case (line segment), (b) two-dimensional case
(square), (c) three-dimensional case (cube).



In two-dimensional space, tiled by parallelograms [simpli-

fied in Fig. 1(b) as squares], all vertices have both coordinates

odd (�1,1; 1,1; 1,3; 3,5; etc.), all edges have one coordinate

even and one odd (0,1; 2,1; 3,2; etc.), and the centers of each

face (two-dimensional elements) have both coordinates even

(�2,�2; 0,0; 2,0; 2,4; etc.).

In three-dimensional space, tessellated by parallelepipeds

[presented in Fig. 1(c) as cubes], all vertices have all three

coordinates odd, all edge centers have one coordinate even

and two odd, all face centers have one coordinate odd and two

even, and all centers of the body (‘interiors’) have all coor-

dinates even.

The frequencies of groups of N integer numbers of different

parities correspond to the frequencies of polytope elements of

different dimensionalities in an N-dimensional lattice. Table 1

presents these frequencies for infinite lattices and for a single

isolated polytope. Since all the lattice-forming polytopes are

identical, the lattice frequencies must be proportional to the

concrete numbers of particular elements contributed by an

individual polytope in the lattice, i.e. they can be used as

contributions in the summation of the modified Euler char-

acteristic. In particular, the frequency of the ‘interior’ element

is always 1, underlying the fact that the Euler summation is for

a single lattice-embedded cell. The values for a single isolated

polytope in Table 1 correspond to the standard Euler char-

acteristic.

For example, the modified Euler characteristic for one unit

cell in the three-dimensional lattice built from paralellepipeds

is �m = Vm � Em + Fm � Im = 1 � 3 + 3 � 1 = 0.

The arithmetic argument presented in this section provides

in fact a proof of our main conjecture (vanishing Euler char-

acteristic), valid for any dimension, but limited to the case of

pure translations. We note that, because of the latter condi-

tion, this proof (as well as Coxeter’s proof) does not encom-

pass aperiodic tessellations of the space, such as Penrose

tilings.

3. Extension to the asymmetric unit

Each polytope discussed in Section 2 (parallelogram in two

dimensions, parallelepiped in three dimensions etc.) can be

divided into a number of identical, symmetrically arranged

unique smaller parts (asymmetric units, ASUs) according to

the space-group symmetry of the lattice. Such a procedure

involves inclusion of additional elements (faces, edges etc.)

into the unit cell and subdivision of the whole unit cell into

smaller, identical, symmetry-equivalent polytopes.

The Euler characteristic of a polytope X is a quantity which

is usually defined as the telescoping sum �ðXÞ ¼
P

ið�1Þini
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Table 1
Number of polytope elements, their parities and their coordinates, for the modified (infinite lattice) and standard (single polytope) Euler characteristic in
spaces of different dimensions.

Space elements
Infinite lattice Single polytope

Number Parities Number Coordinates

One dimension, linear
Vertices 1 (o) 2 (�1),(1)
Edges 1 (e) 1 (0)

Two dimensions, planar
Vertices 1 (o,o) 4 (�1,�1); (�1,1); (1,�1); (1,1)
Edges 2 (e,o); (o,e) 4 (�1,0); (1,0); (0,�1), (0,1)
Faces 1 (e,e) 1 (0,0)

Three-dimensional space
Vertices 1 (o,o,o) 8 (�1,�1,�1) etc.
Edges 3 (e,o,o); (o,e,o); (o,o,e) 12 (0,�1,�1) etc.
Faces 3 (e,e,o); (e,o,e); (o,e,e) 6 (0,0,�1) etc.
Interior 1 (e,e,e) 1 (0,0,0)

N-dimensional space†
0-dimensional elements (vertices) 1 (o)N 2N

One-dimensional elements (edges) N (e), (o)N�1 N�2N�1

i-dimensional elements N
i

� �
(e)i , (o)N�i

N
i

� �
�2N�i

N-dimensional element 1 (e)N 2N

Total elements 2N 3N

Euler characteristic �m ¼
PN

i¼0

ð�1Þi N
i

� �
¼ ð1� 1ÞN ¼ 0 � ¼

PN

i¼0

ð�1Þi N
i

� �
2N�i ¼ ð2� 1ÞN ¼ 1

† (e)x , (o)y means that there are x even numbers and y odd numbers in all permutations of their sequence.

Figure 2
(a) The unit cell of the planar group p4mm (black square) with some of
the symmetry elements shown in green. (b) Division of the unit cell into
ASUs, with one ASU highlighted in blue.



where ni is the number of i-cells of the polytope cellular

decomposition (Steinitz & Rademacher, 1934). This definition

clearly depends on the cellular structure of the polytope under

consideration. However, one can express the Euler char-

acteristic in the following way (cf. Hatcher, 2002, Theorem

2.44):

�ðXÞ ¼
P

i

ð�1ÞihiðXÞ

where hiðXÞ is the rank of the i th homology group of X. A

fundamental theorem of topology, which goes back to the

work of Whitehead (1949) about closure-finite weak (CW)

complexes, is the claim that the (singular) homology groups of

CW complexes (thus in particular of a polytope X with its

cellular division) are invariant under particular decomposition

of the space X into cells (Hatcher, 2002; p. 108).

To extend our discussion to the cases of the modified Euler

characteristic of ASUs, we need to note the following general

principle. For an n-fold covering map f : X ! Y of two CW

complexes, i.e. a map with n preimages of a point, the Euler

characteristic is preserved multiplicatively: �ðXÞ ¼ n�ðYÞ
(Spanier, 1982, p. 481, Theorem 3.1). The process of decom-

position of a unit cell into identical copies of the ASU is

necessarily associated with a covering map. It is natural then to

consider the contributions of k-cells in the ASU as the

contributions of k-cells of the cover divided by the number of

copies of the ASU in the whole unit cell in the neighborhood

of that k-cell. It is important to invoke the theorem of

Whitehead (1949) mentioned above to free ourselves from the

dependence on the choice of a particular cell decomposition.

This procedure is illustrated for the planar groups p4mm in

Fig. 2. It is easier to visualize the symmetry relations in two

dimensions than in three dimensions, but the conclusions are

applicable to spaces of all dimensions.

A planar lattice built from square unit cells belongs to the

p4mm symmetry group, as illustrated in Fig. 2. The ASU is a

triangle with 1
8 of the area of the whole unit cell. For the initial

whole unit cell in Fig. 2(a) the modified Euler characteristic is

�m = Vm � Em + Fm = 1 � 2 + 1 = 0, since all vertices are

shared by 4 cells, Vm = 4 � 1
4 = 1, all 4 edges are shared by 2

cells, Em = 4 � 1
2 = 2 and there is one unique face, Fm = 1,

obviously not shared.

After division of the unit cell according to the p4mm

symmetry, it consists of 8 smaller triangular faces (ASUs),

shown in Fig. 2(b). Its 9 vertices and 16 edges are shared with

neighboring unit cells in different degrees, so that the resulting

modified Euler characteristic is �m = Vm � Em + Fm =

4 � 12 + 8 = 0. If only one triangular ASU is selected [1–5–6,

marked in blue in Fig. 2(b)] as a representative polytope, it has

the following Euler characteristic. Vertices 1 and 5 are shared

by 8 neighbors each, and vertex 6 is shared by 4 neighbors,

thus Vm = 2� 1
8þ 1� 1

4 ¼
1
2. All 3 edges are shared by 2

neighbors, thus Em = 3 � 1
2 = 11

2. With 1 ‘internal’ face, Fm = 1,

�m = Vm� Em + Fm = 1
2� 11

2 + 1 = 0. Since the whole unit cell is

comprised of 8 triangular ASUs, the contributions Vm , Em , Fm

of one individual ASU are 8 times smaller than for the whole

unit cell, but the resulting value of �m is zero in both cases.

An illustration of the modified Euler characteristic calcu-

lations for crystallographic symmetry groups (including a case

with translational symmetry elements) is presented in the

supporting information for the examples of the two-

dimensional space groups p4mm and pg, and for the three-

dimensional space group P23.

4. Related literature

The following reference is cited in the supporting information:

Cauchy (1813).

Acknowledgements

We wish to thank all colleagues who showed interest in our

work and suggested ways of attacking the proof.

References

Aroyo, M. I. (2016). Editor. International Tables for Crystallography,
Vol. A, 6th ed., Space-group Symmetry. Wiley: Chichester.

Cauchy, A.-L. (1813). J. Ecole Polytech. 16, 68–86.
Coxeter, H. S. M. (1948). Regular Polytopes. London: Methuen.
Dauter, Z. & Jaskolski, M. (2020). Acta Cryst. A76, 580–583.
Euler, L. (1758). Novi Commun. Acad. Sci. Imp. Petropol. 4(1752–3),

109–140 [Opera Omnia (1), 26, 72–93].
Hatcher, A. (2002). Algebraic Topology. Cambridge University Press.
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