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Periodic space crystals are well established and widely used in physical sciences.

Time crystals have been increasingly explored more recently, where time is

disconnected from space. Periodic relativistic spacetime crystals on the other

hand need to account for the mixing of space and time in special relativity

through Lorentz transformation, and have been listed only in 2D. This work

shows that there exists a transformation between the conventional Minkowski

spacetime (MS) and what is referred to here as renormalized blended spacetime

(RBS); they are shown to be equivalent descriptions of relativistic physics in flat

spacetime. There are two elements to this reformulation of MS, namely, blending

and renormalization. When observers in two inertial frames adopt each other’s

clocks as their own, while retaining their original space coordinates, the

observers become blended. This process reformulates the Lorentz boosts into

Euclidean rotations while retaining the original spacetime hyperbola describing

worldlines of constant spacetime length from the origin. By renormalizing the

blended coordinates with an appropriate factor that is a function of the relative

velocities between the various frames, the hyperbola is transformed into a

Euclidean circle. With these two steps, one obtains the RBS coordinates

complete with new light lines, but now with a Euclidean construction. One can

now enumerate the RBS point and space groups in various dimensions with

their mapping to the well known space crystal groups. The RBS point group for

flat isotropic RBS spacetime is identified to be that of cylinders in various

dimensions: mm2 which is that of a rectangle in 2D, (1/m)m which is that of a

cylinder in 3D, and that of a hypercylinder in 4D. An antisymmetry operation is

introduced that can swap between space-like and time-like directions, leading to

color spacetime groups. The formalism reveals RBS symmetries that are not

readily apparent in the conventional MS formulation. Mathematica script is

provided for plotting the MS and RBS geometries discussed in the work.

1. Minkowski spacetime (MS), (x, ct)

The goal of this work is to illustrate a transformation between

the conventional flat relativistic spacetime (also called the

Minkowski spacetime, MS, whose geometry is hyperbolic) and

what is referred to here as renormalized blended spacetime

(RBS, whose geometry is Euclidean). This will then form the

basis for a mapping of the RBS crystals to the well known

space crystals, which in turn will help enumerate the former.

To achieve this, we first briefly introduce the MS, followed by

two critical steps required to reformulate it into RBS, namely,

blending and renormalization. The former will largely retain

the structure of the MS except to describe it with Euclidean

angles and functions instead of hyperbolic angles and func-

tions. The latter will transform the hyperbola into a circle. We

largely adopt a geometric approach to special relativity and

work in the early sections with 2D spacetime to keep the

treatment accessible.

The geometry of a Euclidean 2D space spanned by unit

vectors x and y possesses a norm (square) that is positive, i.e.
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x � x ¼ y � y ¼ 1. (Bold font is used for vectors and roman font

for coordinates.) In 2D space, the length r of a vector r from

the origin to a point P is invariant under linear orthogonal

transformations such as Euclidean rotations, inversion or

mirror. Given the coordinates (x, y) of the point P in the

unprimed Euclidean coordinate system, and (x0; y0Þ in the

primed Euclidean coordinate system that shares the same

origin and is related to the unprimed coordinate system by a

linear orthogonal transformation, the length of the vector r

will remain invariant, i.e.

x2 þ y2 ¼ x0
2
þ y0

2
¼ r2: ð1Þ

In contrast, the geometry of special relativity is hyperbolic

as described elegantly by Dray (2012). Fig. 1 schematically

defines the three inertial frames of relevance in this work,

which for pedagogical purposes we label as the ground frame

(GF), the train frame (TF) and the bird frame (BF). The TF

and BF move at a velocity of v and u relative to the GF,

respectively. Two inertial observers, one in the GF and another

in the TF (depicted by the silhouette of girls shown on the

ground and on the moving train, respectively, in Fig. 1), are

observing an event (the bird flying) whose coordinates are

measured in the GF as (x, ct), and in the TF as (x0, ct0), where c

is the speed of light in vacuum. The hyperbolic angles � and �
can be defined by the relative frame velocities, given by

v=c ¼ tanh � and u=c ¼ tanh �. A geometric construction

illustrating the significance of the hyperbolic angles is shown

in Fig. 2. The frame co-moving with the event (i.e. flying with

the bird, or the so-called bird frame, BF, in Fig. 1) is typically

called the proper frame, or the wristwatch frame.

In 2D conventional relativistic spacetime spanned by unit

vectors x (space axis) and t (time axis), x � x ¼ �t � t ¼ 1 (note

the minus sign). In other words, if two inertial observers, GF

and TF, moving at a relative velocity of v to the GF (Fig. 1),

observe the same event (bird) and record its coordinates as

ðx; ctÞ and ðx0; ct0Þ, respectively, then,

x2
� ðctÞ

2
¼ x02 � ðct0Þ

2
¼ ��2; ð2Þ

where � is called the spacetime length, �2 is called the

spacetime interval, þ�2 corresponds to spacetime directions

from the origin along which space-like events occur (the them,

T, and us, U, hyperbola branches shown with black lines in Fig.

2 represent such events with a constant spacetime length) and

��2 to directions from the origin where the time-like events

occur (the future, F, and past, P, hyperbola branches shown as

purple lines in Fig. 2 represent such events with a constant

spacetime length). Equation (2) thus describes hyperbola

branches in the x� ct plane for a fixed �. In flat spacetime, �2 is

invariant across all inertial frames, i.e. independent of their

relative velocity v. In 2D, Lorentz transformation relates the

coordinates of an event (the bird) between a GF, ðx; ctÞ, and a

TF, ðx0; ct0Þ, moving along the +x axis with a speed of v, as

follows:

ct0

x0

� �
¼

cosh � � sinh �

� sinh � cosh �

� �
ct

x

� �

¼
�v ��v

v
c

��v
v
c �v

� �
ct

x

� �

¼ �
ct

x

� �
: ð3Þ

In equation (3), cosh �= �v ¼ 1=ð1� v2=c2Þ
1=2, sinh� ¼ �vv=c,

and hence tanh� ¼ v=c. Furthermore, �, a 2 � 2 matrix with

a determinant of 1, represents the Lorentz boost. It is also

readily confirmed that equations (2) and (3) are consistent.

In an effort to place space and time on an equal

footing, Poincaré (1906) and later Minkowski (1910)

defined an imaginary time (ct! ictÞ such that a spacetime

interval is defined now as x2 þ ðictÞ
2. Clearly, x2 þ ðictÞ

2 =

x02 þ ðict0Þ
2
¼ ��2 looks like a Euclidean norm and is identical

to equation (2). However, Misner, Thorne and Wheeler bid

‘farewell to ict’ in their classic book Gravitation (Misner et al.,

1973), providing several reasons for doing so: suppression of

the underlying metric structure [(þ�) in the 2D spacetime],

hiding the distinction between covariant and contravariant
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Figure 1
The schematic depicts the stationary ground frame (GF, x� ct) observer.
With respect to the GF, the train frame (TF, x0 � ct0) observer moves with
a velocity v in the þx direction. With respect to the GF, an event (a bird)
frame (BF) moves at a velocity u in the þx direction. The hyperbolic
angles (� and �) are defined by the velocities u and v relative to c as
indicated, and are illustrated in Fig. 2.

Figure 2
A 2D real Minkowski spacetime depicts hyperbolas given by
x2 � ðctÞ

2
¼ x02 � ðct0Þ

2
¼ ��2, where the purple pair of hyperbolas

correspond to ��2 (time-like events) and the black pair of hyperbolas
to þ�2 (space-like events). An arbitrary time-like event is shown
by a blue line from the origin to the event (the blue bird), and the
projection of its coordinates ðx; ctÞ = ð� sinh �; � cosh �Þ and ðx0; ct0Þ =
½� sinhð�� �Þ; � coshð�� �Þ� is depicted by broken lines on to the ground
(GF, black) and the train (TF, red) frames. The diagonal yellow lines are
the light lines given by � ¼ 0; their poles þð1;�1Þ and �ð1;�1Þ are
indicated. The four hyperbola branches are labeled F, P, U and T. See the
Mathematica script in the Mathematica notebook in the supporting
information to generate this plot.



quantities, hiding the interlocking causal structure imposed

by the light cones, and not being generalizable to curved

spacetime. Pedagogically, an imaginary time is somewhat non-

intuitive.

Several authors in the past have proposed geometric

constructions [see Guillaume (1918), Mirimanoff (1921), and

Gruner & Sauter (1921), Gruner (1921) for its historical roots]

that avoid imaginary time, and instead use real space and time

coordinates. One such construction by Enrique Loedel

Palumbo in 1948 (Loedel, 1948) was rediscovered indepen-

dently by Henri Amar in 1955 (Amar, 1955), and later re-

rediscovered independently by Robert W. Brehme in 1961

(Brehme, 1962). This construction (referred to here as the

LAB construction) makes the choice to draw the axes x?ct0

and x0?ct, a construction we will revisit next.

2. Blended spacetime coordinates, (x, ct000) and (x000, ct)
yield a Euclidean geometry

Rearranging terms in (3), one arrives at the following:

ct0

x

� �
¼

sech � � tanh �

tanh � sech �

� �
ct

x0

� �

¼

1
�v
� v

c

v
c

1
�v

 !
ct

x0

� �

¼ R
ct

x0

� �
: ð4Þ

This represents a Lorentz transformation between ðx; ct0Þ

and ðx0; ctÞ coordinates. Together, they are referred to here as

a pair of blended coordinates composing a blended spacetime.

These blended coordinates can be thought of as two inertial

observers adopting each other’s clock readings, while each

retains their original inertial spatial coordinates. (Equiva-

lently, they can adopt each other’s spatial coordinates while

retaining their own clocks.) This can trivially be performed

in a passive manner, post-measurement, assuming each

observer knows special relativity and the two have an agreed-

upon origin. By redefining 1=�v ¼ cos �, v=c ¼ sin � and

ð�vvÞ=c ¼ tan �, we can rewrite equation (4) as follows:

ct0

x

� �
¼

cos � � sin �
sin � cos �

� �
ct

x0

� �
¼ R

ct

x0

� �
: ð5Þ

Further, by rearranging equation (2), we get

x2 þ ðct0Þ2 ¼ x02 þ ðctÞ2 ¼ �2: ð6Þ

If we define ds0�2
¼ ðctÞ

2
þ x02 and ds�02 ¼ ðct0Þ

2
þ x2 as the

spacetime intervals in the blended coordinates, we gather from

equation (6) that ds0�2
¼ ds�02. These intervals describe the

Euclidean interval between the event and the origin in the

blended spacetime frames ðx; ct0Þ and ðx0; ctÞ, generated by the

blending of the GF and TF observers in Fig. 1. This looks like a

Euclidean measure. The Euclidean interval �2 is however not

an invariant across different inertial frames in the MS; it is a

function of both v and u, as derived next.

If we write � ¼ ��, then equation (6) motivates us to define

blended Euclidean coordinates as follows:

x; ct0ð Þ ¼ ��ðsin	; cos	Þ;

x0; ctð Þ ¼ ��½sinð	� �Þ; cosð	� �Þ�: ð7aÞ

Here, the angle definitions are: u=c ¼ sin	= cosð	� �Þ
(for events along time-like directions in MS), u=c =

cosð	� �Þ= sin	 (for events along space-like directions in

MS) and v=c ¼ sin �. In other words,

u

c
¼ min

x

ct
;

ct

x

� �
: ð7bÞ

Note in particular that these definitions ensure that v; u 	 c.

To find an expression for � as a function of the Euclidean

angles, we substitute the coordinates of equation (7a) into

equation (2) for events observed from the GF, namely,

x2 � ðctÞ
2
¼ ��2. One finds that �2�2½sin2 	� cos2ð	� �Þ�

¼ ��2; here the positive sign is for space-like events and the

negative sign for time-like events. Upon simplification, this

leads to �2 ¼ 
sec � secð2	� �Þ, where the negative sign is for

space-like events and the positive sign for time-like events.

Alternatively, one could substitute the hyperbolic coordinates

of a general event from Fig. 2 into equation (6) to show that

�2 ¼ cosh � coshð2�� �Þ> 0, since a cosh function is always

positive. One could therefore equivalently write �2 =
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Figure 3
Plots of the renormalization factor � from equation (8) as a function
of u=c ¼ sin	=cosð	� �Þ for (a) v ¼ u, 	 ¼ �, (b) v ¼ 0, � ¼ 0, (c)
v ¼ 0:9c. The light lines correspond to the vertical asymptotes at
u=c ¼ �1. See the Mathematica script in the Mathematica notebook in
the supporting information to generate this plot.



jsec � secð2	� �Þj (in order to ensure that it stays positive for

all Euclidean angles) and hence

� ¼ þ jsec � secð2	� �Þj½ �
1=2

¼ þ½cosh � coshð2�� �Þ�1=2

¼ þ�v�u= j1� �uuð�uu� 2�vvÞ=c2
j

� �1=2
: ð8Þ

Here the positive root is chosen without a loss of generality,

and �u ¼ 1=ð1� u2=c2Þ
1=2.

In a similar fashion, substituting equation (7a) into equation

(2) for events observed from the TF, x02 � ðct0Þ
2
¼ ��2, we get

the same expression for � as noted above. The term � is called

the renormalization factor, and is plotted in Fig. 3 as a function

of u=c for three different values of v=c, namely, v ¼ 0, v ¼ 0:9c

and v ¼ u. These three cases will be explored further in the

following sections. The light lines are the vertical asymptotes

at u=c ¼ �1 where the � diverges (i.e. �!1).

With the Euclidean coordinates in equations (7a) plus (8) in

hand, we are ready to replot the MS in Fig. 2 in terms of the

blended and the RBS coordinates. Fig. 4 plots the coordinates

of equation (7a) [along with equation (8)] for the special case

of � ¼ 0. This is the case of a stationary train in Fig. 1, with

v ¼ 0. Strikingly, one can capture all the four hyperbolas in

Fig. 2 including the time-like and space-like events by varying

	 (bird flying at varying speeds, u). When � ¼ 0�, the plot

reproduces the hyperbolas and the light lines shown in Fig. 2

with the x and x0 coordinates coincident (horizontal axis), ct

and ct0 coincident (vertical axis) and x?ct. This mathematical

exercise is important since it shows that the hyperbolas in the

MS can be captured equally well with Euclidean functions and

angles in Fig. 4, instead of hyperbolic functions and angles as

in Fig. 2.

However, when v 6¼ 0 as shown in Fig. 5, the hyperbolas are

rotated by a Euclidean rotation angle � which captures the

Lorentz boost [equation (5)] between the two pairs of

blended coordinates. The light lines given by x ¼ �ct result in

the condition sin	 ¼ � cosð	� �Þ, which, for example for

v=c ¼ sin � ¼ 0:9, yields the orientations of the two light lines

as 	 ¼ 77:079� and 	 ¼ �12:921� as shown in Fig. 5.

3. Renormalized blended spacetime (RBS) coordinates

Rearranging equation (7a), it is clear that

1

�
x; ct0ð Þ ¼

��

�
ðsin	; cos	Þ;

1

�
x0; ctð Þ ¼

��

�
½sinð	� �Þ; cosð	� �Þ�: ð9aÞ

Note that we are intentionally not ‘canceling out’ the �
terms on the right-hand side of equation (9a), since �!1
when u! c. In that special case, we should consider the limit

as follows:

lim
u!c;�!1

��

�
ðsin	; cos 	Þ ¼ �ðsin	; cos 	Þ and

lim
u!c;�!1

��

�
½sinð	� �Þ; cosð	� �Þ�

¼ �½sinð	� �Þ; cosð	� �Þ�: ð9bÞ

If we define the renormalized coordinates as follows:

�xx ¼ x=�; �tt ¼ t=�;

�xx0 ¼ x0=�; �tt
0
¼ t0=�; ð10Þ

then, the RBS coordinates can be rewritten as

x; ct
0

� 	
¼
��

�
ðsin	; cos	Þ;

x0; ctð Þ ¼
��

�
½sinð	� �Þ; cosð	� �Þ�: ð11aÞ

Again, in the limit of �!1 when u! c, one has to take

the limits on the right-hand side using L’Hôpital’s rule,

lim�!1ð�=�Þ ¼ 1, leading to the following:

x; ct
0

� 	
¼ �ðsin	; cos	Þ

x0; ctð Þ ¼ �½sinð	� �Þ; cosð	� �Þ�: ð11bÞ
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Figure 4
A plot of the 2D Euclidean blended spacetime coordinates in equation
(7a) with equation (8) substituted in it, for v ¼ c sin � ¼ 0. The
hyperbolas in Fig. 2 are recovered but the angles are now Euclidean.
For this case, the x and x0 coordinates are coincident (horizontal axis), and
the ct and ct0 axes are coincident (vertical axis), and x?t. See the
Mathematica script in the Mathematica notebook in the supporting
information to generate this plot.

Figure 5
A plot of the 2D Euclidean blended spacetime coordinates from equation
(7a) with equation (8) for v ¼ c sin � ¼ 0:9c. The two light lines are
oriented at the angles of 	 ¼ 77:079� and 	 ¼ �12:921�. See the
Mathematica script in the Mathematica notebook in the supporting
information to generate this plot.



The Lorentz transformation in equation (4) can now be

rewritten in the RBS coordinates as

c�tt
0

�xx

� �
¼

cos � � sin �
sin � cos �

� �
c�tt
�xx0

� �
: ð11cÞ

Equation (6) can be rewritten as an RBS invariant as

�xx2
þ c�tt

0
� 	2
¼ �xx02 þ c�ttð Þ

2
¼ �2

ð12Þ

where we take the limit limu!c;�!1½ð�
2�2Þ=�2� ¼ �2 on the

right-hand side. This provides the equation of a circle in the

RBS coordinates. This construction is equivalent to the LAB

construction (Loedel, 1948; Amar, 1955; Brehme, 1962) where

the choice made to draw the axes x?ct0 and x0?ct is implicit in

the Euclidean coordinate choice in equation (7a). Consider

next, four special cases of the RBS coordinates, namely v ¼ 0,

v ¼ 0:9c, v! c and v ¼ u.

Case I, v ¼ 0 (� ¼ 0). Here, the GF and the TF observers

are coincident; this could be considered as the limit where the

GF observer is self-blending. Upon renormalization by �
according to equation (10), the four hyperbola branches

depicted in Fig. 4 transform into four arc segments of a circle

as shown in Fig. 6, two of them time-like [purple segments,

where sec � secð2	� �Þ> 0], and the other two space-like

[black segments, where sec � secð2	� �Þ< 0]. This is essen-

tially the case of a renormalized Minkowski spacetime, or

RMS. Blending is essentially missing here; hence it is one of

the simplest cases of ‘Euclideanizing’ MS.

The RBS coordinates also possess RBS light lines as

u!�c. To see this, consider that the light lines are defined in

the MS by x ¼ �ct. When u!�c, �!1 from Fig. 3. From

equation (11b), ðx; ctÞ ¼ ½� sin	; � cosð	� �Þ�; hence the light

lines correspond to the condition sin	 ¼ � cosð	� �Þ. This

equality has a solution for 	 given any value of �. For example,

when v ¼ c sin � ¼ 0, the two RBS light lines are at angles of

	 ¼ �
=4 as shown in Fig. 6. The corresponding coordinates

for the light lines in the MS are therefore ðx; ctÞ =

�ð� sin	;�� sin	Þ ! þð1;�1Þ or �ð1;�1Þ, which is

consistent with the four infinity limits of the light lines in the

hyperbolic construction in Fig. 2. Conversely, starting from the

ðx; ctÞ ¼ �½� sin	; � cosð	� �Þ� coordinates in the MS and

renormalizing with � as shown in equation (9a), one

encounters a �=�!1=1 term as u!�c. However, there

is a well defined limit of lim�!1ð�=�Þ ¼ 1; in this limit the

RBS coordinates are ðx; ctÞ ! ½� sin	; � cosð	� �Þ�. Further-

more, as u!�c, sin	 ¼ � cosð	� �Þ; hence ðx; ctÞ

! �ð1;�1Þ, which are the light lines shown in Fig. 6. Thus, the

light lines in the RBS coordinates (Fig. 6) map to the

ð1;�1Þ or �ð1;�1Þ limits of the light lines in the MS

coordinates (Fig. 2). We will more formally discuss these

mappings in the next section.

A remarkable consequence of formulating this problem

with the Euclidean angle 	 is that it can be continuously varied

from 0 to 2
 around a circle without violating any relativistic

physics. This means that one can smoothly ‘rotate across’ the

RBS light lines in Fig. 6 which is not possible with the

hyperbolic angle, � in Fig. 2. This is because in the span that 	
varies from 0 to 
=4, � varies from 0 to 1, both of which

correspond to approaching the light line. Note that 	 ¼ 
=4

results in a well defined limit of ðx; ctÞ ¼ ð� sin	; � cos	Þ
¼ ½�=ð2Þ1=2

�ð1; 1Þ; this point lies on the light line in Fig. 6

just as expected, the same limit that was obtained earlier

when �!1 in Fig. 2. Now consider what happens when

	 changes by an infinitesimal amount, �, from a value

of 
=4, which is a deviation from the RBS light line

in either direction, i.e. 	 ¼ ð
=4Þ � �. Now, ðx; ctÞ =

�=ð2Þ1=2
ðcos �� sin �; cos �
 sin �Þ. As �! 0 in a continuous

manner, ð�xx; c�ttÞ ! �=ð2Þ1=2
ð1; 1Þ, namely one mathematically

approaches the light line smoothly as expected. Thus, the

mathematical crossing across the RBS light line by varying 	 is

smooth and continuous. This is a big departure from the

hyperbolic construction of spacetime in Fig. 2, where one is

unable to mathematically ‘cross’ the MS light lines by boosting

an event frame, and hence has to ‘stay put’ in one of the four

hyperbolic branches for a finite spacetime length, �. We will
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Figure 6
A special case of the blended and the RBS coordinates, equation (11b),
where v ¼ 0. RBS coordinates, given in equation (11b), transform the
blended coordinates plot in Fig. 4 into a circle of radius �, where the four
hyperbola branches in Fig. 4 become four arc segments of the circle here.
Purple (black) arc segments represent time-like (space-like) events. Light
lines are shown by yellow lines. See the Mathematica script in the
Mathematica notebook in the supporting information to generate
this plot.

Figure 7
Renormalized blended spacetime (RBS) coordinates that turn the four
hyperbolas (F, P, U and T) in Fig. 5 to arcs of a circle. An arbitrary event
(a bird) and its RBS coordinates are depicted. See the Mathematica
script in the Mathematica notebook in the supporting information to
generate this plot.



have more to say about the formal mapping between the MS

and RBS spaces in the next section.

Case II, v ¼ 0:9c. In this case, the hyperbola branches in the

blended coordinates in Fig. 5 transform into arcs of a circle in

the RBS coordinates of equation (11b). This is shown in Fig. 7.

The orientation of the RBS light lines is found by exploring

the limit of u!�c, �!1 (see Fig. 3). From equation

(11b), ðx; ctÞ ¼ ½� sin	; � cosð	� �Þ�; hence the RBS light lines

correspond to sin	 ¼ � cosð	� �Þ. When v ¼ c sin � ¼ 0:9c,

the two RBS light lines are at angles of 	 ¼ 77:079� and

	 ¼ �12:921�, respectively, as shown in Fig. 7. Interestingly,

the RBS light lines rotate in the Euclidean plane as v varies.

This is explored further next.

Case III, v! c. As v! c, the angle �! 
=2. This is a case

of blending between the GF and the TF where the latter is

moving at v! c. The resulting blended and RBS frame plots

are shown in Fig. 8. The light lines for this case can be found

by setting x ¼ �ct and x0 ¼ �ct0. From the coordinates in

equation (7a) and in the limit of �! 
=2, one can

therefore rewrite these relations as �� sin	 ¼ ��� sin	 and

�� cos	 ¼ 
�� cos 	. These relations imply that the RBS light

lines correspond to 	! 0 and 	!�
=2 as shown. As in the

previous case, one can show that for 	 ¼ ð
=2Þ � � or 	 ¼ ��,
the RBS coordinates smoothly approach the RBS light

lines as �! 0.

Case IV, v ¼ u. Here the TF and BF merge into each other,

i.e. the case of a proper frame. This can also be deduced by

noting that when v ¼ u in Fig. 5, � ¼ 	, and the coordinate

�xx0 ¼ 0, which corresponds to the set of events on the �tt
0

axis in

Fig. 2; by definition, those events are occurring in the

proper frame.

When the GF and the BF are blended without renormali-

zation, one gets the blended spacetime plot in Fig. 9(a). While

in the other cases (I–III) discussed in the text, v (and hence

TF) could have been thought of as fixed while u varied, in the

case of v ¼ u, the TF is moving along with the event. It is an

unusual (but a mathematically allowed) case of a coordinate

system ðx0; ctÞ that is moving with the event frame in MS. In

other words, let us say the GF girl observes an event 1 with a

spacetime length of � in the MS frame. This event becomes the

‘bird’. Now she blends her coordinates with the proper coor-

dinates in the BF of event 1. If she now observes a different

event 2 with a spacetime length of � but a different boost than

for event 1, she again repeats the process by blending with the

proper frame of event 2. The GF is thus directly blending with

the proper frame of any event she observes at a spacetime

length of � from the origin and with varying boosts.

In this special case, the hyperbola branches in the conven-

tional spacetime in Fig. 2 flatten into straight horizontal lines

at ��. This is understood mathematically as follows. The plot

of ðx; ct0Þ = ��ðsin	; cos 	Þ, where � = þ½jsec � secð2	� �Þj�1=2

can be simplified for this case of 	 ¼ � to � ¼ jsec 	j. Hence,

ðx; ct0Þ ¼ �jsec	jðsin	; cos	Þ. The reason for the ‘flattening’

of the ðx; ct0Þ plots is due to the jsec	j function, which diverges

(i.e. !1Þ at 	 ¼ �
=2. Thus, the coordinate x!1

diverges, while ct0 ¼ �jsec	j cos	!�1. This defines the two

purple horizontal lines shown in Fig. 9(a).

When renormalized by � according to equation (11a), one

gets a circle of radiusþ� as shown in Fig. 9(b). Remarkably, all

the events in both Figs. 9(a) and 9(b) are along time-like

directions! This is seen by starting with the blended coordi-

nates in equation (7a) when � ¼ 	; namely, ðx; ct0Þ =

��ðsin	; cos	Þ and ðx0; ctÞ ¼ ��ð0; 1Þ, where from equation

(8), � ¼ jsec 	j. By substituting into equation (2), one gets

x2 � ðctÞ
2
¼ x02 � ðct0Þ

2
¼ ��2�2 cos2 	< 0, which indicates a

time-like direction.

Another unusual aspect of this case is that the two light

lines merge into a single blended or RBS light line parallel to

the x axis, as shown. The light lines are defined by x ¼ �ct,

which is equivalent to �� sin	 ¼ ���, which suggests that

	!�
=2 as shown. The light lines are also defined by
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Figure 8
A special case of the blended and the RBS coordinates, where v! c. (a)
A plot of the blended coordinates given in equations (7a) and (8). (b)
RBS coordinates, given in equation (11b), transform (a) into a circle of
radius �, where the four hyperbola branches in (a) become four arc
segments of the circle. Purple (black) hyperbola branches and arc
segments represent directions from the origin where time-like (space-
like) events occur for a fixed �. Blended and RBS light lines are shown by
yellow lines. See the Mathematica script in the Mathematica notebook in
the supporting information to generate these plots.

Figure 9
A special case of the blended and the RBS coordinates, where v ¼ u, and
hence � ¼ 	. (a) A plot of the blended coordinates given in equation (7a)
with equation (8) substituted in. (b) RBS coordinates, given in equation
(11b), transform (a) into a circle of radius �, where the four hyperbola
branches in (a) become four arc segments of the circle. Remarkably, all
the arc segments now represent directions from the origin along which
time-like events occur. Blended and RBS light lines are shown by the
horizontal yellow line. See the Mathematica script in the Mathematica
notebook in the supporting information to generate this plot.



x0 ¼ �ct0, which implies ��0 ¼ ��� cos 	, which again yields

	!�
=2. This implies that the blended and RBS light lines

coincide with the horizontal x axis in Fig. 9(a). This is perhaps

the simplest and somewhat surprising RBS geometry one

could imagine: a time-like circle of constant RBS interval with

a single light line.

4. Mapping of events from the Minkowski to the RBS
coordinates

Now we formally explore the transformation and the type of

mapping between the MS and the RBS coordinates. We

explore two cases: MS! RBS (in this section) and RBS!

MS (in the next section). This will be used to validate that the

RBS coordinates do indeed capture the relativistic physics

content of the MS coordinates.

Consider the transformation from the conventional rest

frame in the MS to the RBS frames as follows:

c�tt

�xx0

� �
¼

1

�

1 0

��v
v
c �v

� �
ct

x

� �
¼

1

�
�0�

ct

x

� �
and

c�tt
0

�xx

 !
¼

1

�

�v ��v
v
c

0 1

� �
ct

x

� �
¼

1

�
��0

ct

x

� �
: ð13Þ

Similarly, the transformation from the moving frame, TF, to

the RBS frames is as follows:

c�tt

�xx0

� �
¼

1

�

�v �v
v
c

0 1

� �
ct0

x0

� �
¼

1

�
�0��

ct0

x0

� �
and

c�tt
0

�xx

 !
¼

1

�

1 0

�v
v
c �v

� �
ct

x

� �
¼

1

�
��0�

ct0

x0

� �
: ð14Þ

Consider now starting from a general coordinate

ðx; ctÞ ¼ ð�; Þ in the conventional spacetime frames in Fig. 2.

How do they transform into the blended coordinates? From

equation (3), ðx0; ct0Þ = ½��vðv=cÞ þ ��v; �v � ��vðv=cÞ�.

By renormalization with �, we get the blended

coordinates ðx; ct
0
Þ = 1=�½�; �v � ��vðv=cÞ� and ðx0; ctÞ =

1=�½��vðv=cÞ þ ��v; �. For v 6¼ c, every MS event thus has

unique and well defined RBS coordinates.

How about the events along the light lines, x ¼ �ct? In

this case,  ¼ �� for which u ¼ c. Then, ðx0; ct0Þ =

��v½1
 ðv=cÞ;�ð1
 ðv=cÞÞ�, ð�xx; c�tt
0
Þ ¼ �=�½1;��vð1
 ðv=cÞÞ�

and ðx0; ctÞ ¼ �=�½�vð1
 ðv=cÞÞ;�1�. From Fig. 3, as u! c,

�!1. If v 6¼ c and �;  are finite, then ðx; ct
0
Þ ! ð0; 0Þ and

ðx0; ctÞ ! ð0; 0Þ. Thus, the events with finite coordinates on the

two MS light lines in Fig. 2 map to the RBS origin (such as in

Figs. 6 and 7), a many-to-one mapping from the MS to the

RBS. This is summarized in Fig. 10.

In linear algebra, this is expressed as follows: the kernel (or

nullspace) of the transformation ð1=�Þ�0� [and the transfor-

mation ð1=�Þ��0] from the MS to the RBS coordinates is the

set of all events that form the light line in the MS, namely, the

lines x ¼ �ct. The range of the transformation matrix

ð1=�Þ�0� is the 2D blended vector space spanned by the

column vectors of this transformation matrix, namely

ð0; �v=�Þ � ð0; 1Þ and ½1=�;�ð�v=�Þðv=cÞ� � ½1;��vðv=cÞ�.

The domain of the transformation is spanned by the column

vectors of the inverse of the ð1=�Þ�0� matrix.

What about the ðx; ctÞ ¼ ð�; Þ ! �ð1;�1Þ corre-

sponding to the infinity limits of the light lines in the MS

frame? This again corresponds to u! c, and hence �!1.

In the next section, it is shown that in the limit of u! c, the

four infinity limits of the light lines, ðx; ctÞ ! þð1;�1Þ and

�ð1;�1Þ, map to finite, well defined coordinates in the

RBS. These results are also summarized in Fig. 10.

5. Mapping of events from the RBS to the MS
coordinates

Consider a general event coordinate given by ð�xx; c�tt
0
Þ ¼ ð�;�Þ

in Figs. 6 or 7 in the RBS frame. Using equations (4) and (10),

one can determine the corresponding coordinates in the

ðx0; ctÞ frame and in the MS frames as follows. From the

definition of the normalized coordinates, it follows that

ðx; ct0Þ ¼ �ð�;�Þ. From equation (4), it follows that ðx0; ctÞ =

�½�ð�v=cÞ þ ð�=�vÞ; ð�=�vÞ þ ð�v=cÞ�. Renormalizing for a

finite � according to equation (10), one can find that ð�xx0; c�ttÞ =

ð�=�Þ½�ð�v=cÞ þ ð�=�vÞ; ð�=�vÞ þ ð�v=cÞ�. For v 6¼ c, all of

these coordinates are well defined, and there is a well defined

mapping from the RBS to the MS coordinates and between

the two RBS frames.

How about the events along the light lines, x ¼ �ct in

the RBS coordinates in Figs. 6 or 7? In this case, from

above, �� = ��ð�=�v þ �v=cÞ. Rearranging we get � =

�ð�=�Þ�v�ð1
 v=cÞ. Substituting this relation into the MS

coordinates above, we get ðx; ctÞ = ��½1;�ð�=�Þð1
 v=cÞ

þv=c�. However, light lines correspond to u ¼ c, and hence

�!1. Hence, ðx; ctÞ= lim�!1 ��½1;�ð�=�Þð1
 v=cÞ þ v=c�

= ��ð1;�1Þ ! ð1;�1Þ or �ð1;�1Þ, depending on the

sign of �. Thus, any arbitrary event ð�xx; c�tt
0
Þ ¼ �½1;��vð1
 v=cÞ�

on the light lines in the RBS frame (Figs. 6 or 7) maps to one of

the four infinity limits, þð1;�1Þ or �ð1;�1Þ, of the light

lines in the MS frame (Fig. 2) as shown in Section 4.

6. Summary of important results thus far leading to the
RBS coordinates

We pause to summarize the relationships between the MS,

blended spacetime and the RBS. This is done through Fig. 10

where the important equations and representative diagrams

are presented for each spacetime. The information content in

all three frames in terms of relativistic physics is equivalent,

i.e. all essential physics is captured in translating between

these frames. For v 6¼ c, every MS event has unique and well

defined RBS coordinates. Light lines in the MS frame map to

the origin in the RBS frame, while the light lines in the RBS

frame map to the þð1;�1Þ and the �ð1;�1Þ poles in the

MS frame. This is an example of a transformation where points

at infinity in the MS are transformed to finite Euclidean points

in the RBS. Both frames have a pair of equivalent light lines

that capture the same physics. Among significant qualitative

differences, the MS does not allow for a mathematical

‘crossing’ of the light line through a hyperbolic Lorentz boost,
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while this is possible in the RBS as shown above. This can be

succinctly understood as follows: in hyperbolic geometry, a

‘time-like event’ is represented by the coordinates

ðx; ctÞ ¼ �ðsinh �; cosh�Þ which approaches þð1;�1Þ and

�ð1;�1Þ as the event frame is boosted and it approaches

the light lines; hence its coordinates diverge, and the event

frame can only approach the light lines asymptotically. Using

the RBS transformation, these infinity limits of the MS light

lines can be transformed to finite Euclidean RBS coordinates,

given by ð�xx; c�tt
0
Þ ¼ �½1;��vð1
 v=cÞ�. Now the RBS light lines

can be ‘approached’ and even ‘crossed’ upon boosting an

event frame.

There is no contradiction in the relativistic physics between

the two formalisms. For example, consider the simple case of

v ¼ u in the RBS coordinates as shown in Fig. 9. This case

leads to the condition � ¼ 	�m
, where m is an integer, and

u=c ¼ � sin	, which places no restriction on the angle 	. The

RBS light lines in this case are at 	 ¼ �
=2. When 	 increases

from zero to 	 ¼ 
=2, the event frame velocity, u, increases

from zero to u ¼ c. Upon crossing the RBS light line at

	 ¼ 
=2, when 	 exceeds 
=2, the u according to equation

(7b) slows down back from c and approaches a value of zero

when 	 ¼ 
. In the range 
 	 	 	 3
=2, the u speeds up again

to equal �c upon approaching the light line at 	 ¼ 3
=2.
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Figure 10
A summary of representative diagrams (top row diagrams simplified from Figs. 2, 5 and 7 for v ¼ 0:9c) and the key equations mapping the Minkowski
spacetime (MS), blended spacetime and the renormalized blended spacetime (RBS). The bottom row schematics indicate the mappings between the
three spacetimes shown by the dashed gray lines. In addition to the MS, blended spacetime and RBS coordinates, one could also express three more
coordinates: Minkowski polar (�; �Þ, blended polar (�; 	Þ and renormalized blended polar (�; 	Þ. Relations between all six of these coordinate systems
can be deduced from the above information and that given in the main text.



Finally, after ‘crossing’ the RBS light line a second time, the

event slows down again to zero upon reaching 	 ¼ 2
. All of

this is consistent with Einstein’s postulates in flat spacetime; at

no point does the speed, u, of the event frame exceed c.

Now consider the case when v 6¼ u. In all these cases in Figs.

4, 5 and 6 for example, there are two light lines. Consider the

specific case of v ¼ 0:9c in Fig. 5 and recall that v=c ¼ sin �,

and in accordance with equation (7b), u=c ¼ sin	= cosð	� �Þ
(for events along time-like directions) and u=c =

cosð	� �Þ= sin	 (for events along space-like directions).

Starting from 	 ¼ 0, which corresponds to u ¼ 0, and

traveling along the F branch, upon reaching the first RBS light

line at 	 ¼ 77:079�, u ¼ c. At this stage, the event switches

from being in time-like directions to space-like directions on

branch U, and u starts decreasing back down from c. When

	 ¼ 90�, u ¼ v. Upon further travel along the U branch,

when 	 ¼ 90� þ �, u ¼ 0. Continuing further on the U

branch and reaching the second RBS light line crossing at

	 ¼ 90� þ 77:079�, u ¼ �c. As 	 increases further, u

decreases, while the events are now along time-like directions

again on the arc P. At 	 ¼ 180�, u ¼ 0. On further travel along

the arc P, the speed u increases again until it reaches u ¼ c at

	 ¼ 257:079� where it meets the RBS light line again. Beyond

that, the events again switch to lying along space-like direc-

tions on the arc T. At 	 ¼ 270�, u ¼ v, and at 	 ¼ 270� þ �,

u ¼ 0. At 	 ¼ 347:079�, we mathematically cross the RBS

light line again, and u ¼ �c. Beyond that, the events are again

back on arc F along time-line directions. At 	 ¼ 360�, u ¼ 0,

and we are back a full circle.

7. Lorentz and Poincaré groups in the RBS coordinates

Consider now a generalization to the Minkowski 4D

spacetime, defined by the three contravariant space coordi-

nates, x1; x2; x3, and time coordinate, x0 ¼ ct. The proper

Lorentz group, L, comprises six operations within an isotropic

4D spacetime (Corson, 1953; Başkal et al., 2015): three inde-

pendent Euclidean rotations, ð�12; �23; �31
Þ, respectively,

within one of the three space planes, x1 � x2; x2 � x3; x3 � x1.

Their coordinate transformation matrices are, respectively,

given by

1 0 0 0

0 cos �12 � sin �12 0

0 sin �12 cos �12 0

0 0 0 1

2
6664

3
7775;

1 0 0 0

0 1 0 0

0 0 cos �23 � sin �23

0 0 sin �23 cos �23

2
6664

3
7775;

1 0 0 0

0 cos �31 0 � sin �31

0 0 1 0

0 sin �31 0 cos �31

2
6664

3
7775: ð15Þ

In addition, L has three independent Lorentz boosts,

ð�01; �02; �03Þ [similar to �, in equation (3)], each, respectively,

within one of the spacetime planes, x1 � ct, x2 � ct, x3 � ct.

Their coordinate transformation matrices are, respectively,

given by

cosh�01 � sinh �01 0 0

� sinh �01 cosh �01 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775;

cosh�02 0 � sinh �02 0

0 1 0 0

� sinh �02 0 cosh �02 0

0 0 0 1

2
6664

3
7775;

cosh�03 0 0 � sinh �03

0 1 0 0

0 0 1 0

� sinh �03 0 0 cosh �03

2
6664

3
7775: ð16Þ

In the RBS frame, the RBS proper Lorentz group, LRBS, the

same spatial rotation matrices as in equation (15) are valid,

except in the �xx1
� �xx2; �xx2

� �xx3; �xx3
� �xx1 planes, respectively.

However, one notices from equation (5) that the Lorentz

boosts given in equation (16) can instead be written as

Euclidean rotations. The three Lorentz boosts in equation (16)

are now rewritten in the RBS frame as Euclidean rotations:

cos �01 � sin �01 0 0

sin �01 cos �01 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775;

cos �02 0 � sin �02 0

0 1 0 0

sin �02 0 cos �02 0

0 0 0 1

2
6664

3
7775;

cos �03 0 0 � sin �03

0 1 0 0

0 0 1 0

sin �03 0 0 cos �03

2
6664

3
7775: ð17Þ

Here, �0i (i � 1; 2; 3Þ are the three Euclidean Lorentz boost

angles in the �xxi
� c�tt

0
planes given by sin �i ¼ vi=c. Typically,

one defines these rotations in the range �c< vi < c, which

translates to �
=2<�i <
=2. However, one is allowed to

vary �i smoothly across the light lines in the RBS coordinates

in the range 0<�i < 2
, without violating any relativistic

physics; the maximum vi will still remain c as discussed in the

previous section.

If now RBS spacetime inversion, �110RBS, is defined as

1
0

RBS : ðct
0; x1; x2; x3Þ ! ð�ct

0;�x1;�x2;�x3Þ, RBS time

reversal as 10RBS : ðct
0; x1; x2; x3Þ ! ð�ct

0; x1; x2; x3Þ and RBS

spatial inversion as �11RBSðc�tt
0
; �xx1; �xx2; �xx3

Þ ! ðc�tt
0
;��xx1;��xx2;��xx3

Þ,

then f1; �110RBS; 10RBS; �11RBSg forms a group, I , where 1 stands for

the identity matrix. Through a direct product of the proper

RBS Lorentz group with the group f1; �110RBS; 10RBS; �11RBSg, i.e.

LRBS � I , a new group is created, called the extended RBS

Lorentz group, LeRBS (Corson, 1953; Başkal et al., 2015). [A

note on notation: in crystallography, 10 denotes time reversal;

the superscript ‘prime’ has nothing to do with the ‘prime’ used

to represent the train frame, TF, here in special relativity.

Similarly, the overbar such as �11 in conventional crystal-

lography is used to denote spatial inversion; it has nothing to

do with the overbar used here for renormalization as in

equation (10). The coincidence is unfortunate, but the context
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should provide clarification: the use of prime and overbar in

conjunction with symmetry elements represent time reversal

and spatial inversion, respectively. If the prime and overbar

are used in conjunction with spacetime coordinates, as in

equation (10), they represent TF and renormalization

respectively.]

How about translations? So far, we have described

spacetime intervals observed from a common origin by GF

and TF observers in MS or by the blended observers in RBS.

A general translation would move the origin, which would, in

general, rescale the spacetime interval for a given event. In an

infinite space crystal with translational symmetry, there is a

periodic placement of atoms. Space groups describe their

global symmetry while point groups describe the local (site)

symmetry at individual locations within the crystal. Similarly,

one could create translational symmetry in a spacetime crystal

with periodic placement of events, where the global symmetry

is described by the Poincaré space groups and the local (site)

symmetry is described by the Lorentz point groups. In such a

case, a single observer (conventional or blended) at a selected

origin would observe all of these infinite series of periodic

events in the manner described so far with Lorentz groups.

Just as in space crystals, translations would also create a

periodic set of observers (conventional or blended) related by

translational symmetry, each observing an identical environ-

ment of events around them. The translational symmetry of

spacetime captured by Poincaré groups is discussed next.

The proper Poincaré group, P, in 4D MS coordinates

consists of the proper Lorentz group, L, combined with four

translations, namely, ðx�Þ þ ðT0; 0; 0; 0Þ, ðx�Þ þ ð0;T1; 0; 0Þ,

ðx�Þ þ ð0; 0;T2; 0Þ and ðx�Þ þ ð0; 0; 0;T3Þ, where ðx�Þ �

ðx0; x1; x2; x3Þ and T� are the translations along the coordi-

nates � that vary from 0 to 3 (Corson, 1953; Başkal et al.,

2015). If, in addition, improper transformations are included,

namely spatial inversion, ðct; x1; x2; x3Þ ! ðct;�x1;�x2;�x3Þ,

and time reversal, ðct; x1; x2; x3Þ ! ð�ct; x1; x2; x3Þ, then one

forms an extended Poincaré group, Pe (Corson, 1953; Başkal

et al., 2015).

The proper RBS Poincaré group, PRBS, in 4D coordinates is

similarly defined as the proper RBS Lorentz group, LRBS, plus

four translations, namely ðx�RBSÞ + ð �TT
00
; 0; 0; 0Þ, ðx�RBSÞ +

ð0; �TT
1
; 0; 0Þ, ðx�RBSÞ þ ð0; 0; �TT

2
; 0Þ and ðx�RBSÞ þ ð0; 0; 0; �TT

3
Þ,

where ðx�RBSÞ � ð�xx
00; �xx1; �xx2; �xx3

Þ and �TT�
RBS � ð

�TT
00
; �TT

1
; �TT

2
; �TT

3
Þ

are the translations along the RBS coordinates, ðc�tt
0
; �xx1; �xx2; �xx3

Þ,

respectively. If these translations are included in the extended

RBS Lorentz group, LeRBS, one gets an extended RBS

Poincaré group.

8. 2D RBS point groups

A striking mathematical consequence of this formulation is

that the RBS Lorentz and Poincaré groups can now be

mapped to the Euclidean point and space groups for space

crystals, respectively; the latter are all fully listed (Aroyo et al.,

2011; Brown et al., 1978; Palistrant, 2012). Space crystals in

various dimensions can be classified into point and space

groups: 17 space and ten point groups in 2D; 230 space and 32

point groups in 3D; 4895 space and 271 point groups in 4D,

and so on (Aroyo et al., 2011; Brown et al., 1978; Palistrant,

2012). In contrast, to the best of my knowledge, only a handful

of relativistic crystal groups (in 2D) have been listed so far

(Janner & Ascher, 1969).

Let us first begin with 2D point groups, so called because all

the symmetry elements of the group must leave the coordi-

nates of at least one point in the object or spacetime

unchanged (invariant). In the discussion below, we will work

from the RBS plots in Figs. 6, 7, 8(b) and 9(b) in order to

identify the relevant symmetry groups. We notice in these

figures two features that are important to consider: light lines,

and events at a fixed RBS spacetime length of � along space-

versus time-like directions from the origin, represented by

black and purple arc segments, respectively. We consider black

versus purple line segments to be related by a color symmetry

as discussed further later. Consider the following cases:

Colorless symmetry including all the features of the RBS

diagrams. If one pays attention to the RBS light lines and the

distinction between space- versus time-like directions, one

notices a point-group symmetry of mm2 in the RBS diagrams

of Figs. 6, 7, 8(b) and 9(b). (Group labels are shown in bold

font, while the elements of the group are shown in roman; the

term ‘colorless’ recognizes the presence of black versus purple

arc segments, but does not introduce a new symmetry element

to switch between the two, as is done later on.) This is depicted

in Fig. 11. The complete point group for Figs. 6, 7, 8(b), 9(b) is

given as mm2 � {1, 2, mL1L2;mL1L2}. The element 1 represents

identity. The element 2 represents a twofold rotation (i.e. a
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Figure 11
The RBS plots from Figs. 6, 9(b), 7, 8(b) reproduced here in a lighter hue
as panels (a), (b), (c) and (d), respectively. The symmetry elements of the
extended RBS point group mm2 are overlaid on each diagram indicating
the twofold rotation at the center (black oval), and the two mirrors
(black lines).



rotation of 2
=2) in the x� ct0 plane. Note that such a proper

rotation transformation as the twofold does not exist in the

original MS construction of Fig. 2. This is thus a hidden

symmetry revealed in the RBS construction. The two mirrors

mL1L2 and mL1L2 bisect the four quadrants formed by the RBS

light lines, labeled by the subscripts L1 and L2 here. [Note that

there is only one RBS light line in Fig. 9(b), hence one of the

mirrors is parallel to the light lines, and the other perpendi-

cular to it.]

Four other subgroups of this symmetry group are also valid

groups describing the 2D RBS, namely, point groups

m � f1;mL1L2g or f1;mL1L2g, 2 � f1; 2g and trivially 1 � f1g.

Thus overall, there exist five 2D RBS colorless point groups:

mm2, m (two possibilities), 2 and 1. Note that, for Figs. 6 and

9(b), one of the mirrors is equivalent to the RBS space

inversion in 2D (previously labeled �11RBS). Similarly, the other

mirror is equivalent to the RBS time reversal mentioned

earlier (10RBS). Finally, the twofold is equivalent to the RBS

spacetime reversal, �11
0

RBS, mentioned earlier. Hence, one could

alternatively represent the mm2 group for the cases of Figs. 6

and 9(b) as mm2 � f1; �11
0

RBS; 10RBS; �11RBSg. These groups there-

fore represent extended RBS Lorentz groups, LeRBS.

Color symmetry including all the features of the RBS

diagrams. An antisymmetry such as time reversal, 10, will

switch between two time-states, t$ �t (Padmanabhan et al.,

2020). These two states can be associated with two colors, say

black and purple, and thus 10 switches between black and

purple colors representing the two time-states. Similarly, note

that time-like and space-like events are distinguished by the

parameter �2 which switches sign from negative (time-like) to

positive (space-like). If we introduce a new antisymmetry

operation, 1�:

1� : �2
$ ��2: ð18Þ

This operation thus switches the ‘color’ between time-like

(purple) and space-like (black) events. One could consider

implementing this operation as follows: 1� : x2 $ �x2 and

1� : t2 $ �t2. An alternative way to perform this operation is

1� : x$ t. In either case, note that neither of these operations

are elements of the LeRBS. Also note that 1� is a self-inverse

(i.e. 1� � 1� ¼ 1), commutes with all the elements of the LeRBS

point groups mentioned earlier for the

case of colorless symmetry groups

which includes all the features of the

RBS diagrams, and is not already an

element of those groups. These are

requirements for an operation to be an

antisymmetry with respect to a group

(Padmanabhan et al., 2020).

By performing the direct product

LeRBS � f1; 1�g, one can generate gray

RBS symmetry groups that explicitly

contain 1�. [The ‘gray’ is supposed to

reflect a mixture of black and white

(here purple is chosen instead of white)

because of the explicit presence of 1�

which switches between the two colors.]

Its subgroups which do not explicitly contain 1� are then called

the two-color RBS symmetry groups. From Figs. 6, 9(b), 7,

8(b), we can conclude that 1� is not explicitly present, i.e.

swapping time- and space-like events will change the

diagrams, hence it is not a symmetry element of the group.

Hence gray RBS groups are excluded.

Next, we consider two-color RBS groups in analogy with

two-color magnetic point groups (Litvin, 2001). Figs. 6, 9(b), 7,

8(b) exhibit the symmetry group 4nmmn. This is shown in Fig.

12. The group elements are 4nmmn � {1; 4�; 4�
�1

; 2;mL1L2,

mL1L2;m�
L1;m�

L2}. The elements 4� � 4 � 1� and m� � m � 1�.

The 4� and 4�
�1

represent Euclidean fourfold rotations by an

angle of �2
=4, respectively, followed by 1�. The colored
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Figure 12
The 2D RBS plots from Figs. 6, 7, 8(b) reproduced here in a lighter hue as panels (a), (b) and (c),
respectively. The symmetry elements of the extended two-colored RBS point group 4nmmn are
overlaid on each diagram indicating the 4� rotation axis at the center (red diamond), the two
colorless mirrors (black lines) and the two-colored mirrors (red lines).

Figure 13
Isotropic 3D RBS coordinates depicted for (a) v ¼ 0 and (b) v ¼ u,
similar to the 2D RBS in Figs. 6 and 9(b), respectively. The gray versus
purple sphere surfaces indicate space-like versus time-like events,
respectively. The yellow light cones are depicted in (a), while the light
plane is depicted in (b) as the equatorial plane. Panel (c) depicts one1-
fold rotation axis, one (of infinitely many) twofold rotation axis, one
horizontal mirror and one (of infinitely many) vertical mirror. The 3D
Curie point group for both (a) and (b) is ð1=mÞm.



mirrors m�
L1 and m�

L2 in Figs. 6, 7 and 8(b) are collinear with

the two light lines in each figure. The uncolored mirrors

mL1L2 and mL1L2 bisect the quadrants formed by the light

lines. The subgroups of 4nmmn such as 4n � f1; 4�; 4�
�1
; 2g,

m � f1;mL1L2g or f1;mL1L2g and mn � f1;m�
L1g or f1;m�

L2g are

also allowed symmetry groups for this case. In the case of Fig.

9(b), there are no colored symmetry elements since all events

are along time-like directions.

Colorless symmetry ignoring the RBS light lines and

the distinction between time- versus space-like events. In

such a case, the symmetry group is a Curie group

1m � f1;1;m . . .g and its subgroup1 � f1;1; . . .g in 2D.

The element1 represents an infinitesimal Euclidean rotation

angle of 2
=1 in the x� ct0 plane. The element m represents

a vertical mirror in the plane. There are infinitely many such

rotation and mirror elements in these groups, hence the ‘ . . . ’

in the group.

9. 3D and 4D RBS point groups

3D RBS would have the coordinates of ðc�tt
0
; �xx1; �xx2

Þ, while 4D

RBS would have the coordinates of ðc�tt
0
; �xx1; �xx2; �xx3

Þ. Fig. 13

depicts 3D RBS for two cases for (a) v ¼ 0 and (b) v ¼ u,

similar to the 2D RBS in Figs. 6 and 9(b), respectively. The

Curie group is ð1=mÞm for both cases. In both cases, there is

one1-fold axis and horizontal mirror (m in the denominator)

in the equatorial plane perpendicular to the 1-fold axis as

shown in Fig. 13(c). There are infinitely many vertical mirrors

(m in the numerator), one of them is depicted in panel (c), and

an infinite number of vertical mirrors are generated by the1-

fold axis. One twofold rotation axis is depicted and again there

are infinitely many twofolds generated by the1-fold axis. A

series of events in the form of a blue ring (a flock of birds

forming a ring?) in the upper and lower hemispheres is shown

in panel Fig. 13(c) reflecting the ð1=mÞm symmetry.

Existing symmetries of the isotropic 3D RBS can be broken

by arranging various events in the 3D RBS so as to break

certain symmetries and create RBS crystals with lower

symmetry. The following Curie subgroups of ð1=mÞm are also

valid groups describing 3D RBS if some symmetries are

broken: 1=m, 1m, 12 and 1 (Newnham, 2005). For

example, by placing a single event in the upper hemisphere in

Fig. 13(a) or 13(b) and nowhere else would break all the

symmetries depicted in Fig. 13(c); it would correspond to the

3D point group labeled 1 whose only element is identity, 1. By

placing two events, one related to the other by 3D RBS

inversion, 1
0

RBS : ðct
0; x1; x2Þ ! �ðct

0; x1; x2Þ, one obtains the

3D RBS group �110RBS � f1; �110RBSg as shown in Fig. 14(a) for the

v ¼ u case from Fig. 13(b).

The1-fold axis can be replaced by a p-fold rotation (p is a

natural number) using appropriately placed events. If one

restricts themselves to periodic 3D space crystals, only one-,

two-, three-, four- or sixfold rotation axes are allowed

(Newnham, 2005). Fig. 14 shows events placed as blue ovals on

the surface of an RBS surface for the v ¼ u case [shown in Fig.

13(b)] in order to create six of the seven holohedral point

groups in periodic 3D space crystals now applied to 3D RBS:
�110RBS , 2/m, mmm, 4/mmm, �33m and 6/mmm. [The only missing

holohedral group in Fig. 14 is the cubic group m3m which is

not consistent with the 3D RBS. This is because in breaking

symmetry through the placement of

events, some aspects of the RBS are

‘baked in’ and cannot be changed, such

as the RBS light lines, planes and cones,

and the resulting ‘crease’ between the

time-like and space-like events as seen

in Fig. 13(a)]. All other RBS point

groups are subgroups of these six RBS

holohedral groups (Newnham, 2005).

None of the 14 conventional colored 3D

Curie groups listed by Newnham (2001)

can be associated with the 3D RBS

structures in Fig. 14 by the inclusion of

1�. Since 1� results in ‘dissolving’ and

‘reforming’ the light cones, and the

crease between time-like and space-like

event surfaces in Fig. 13(a), it does not

conform to the definition of a typical

symmetry element where no cuts or

stitches to the object in question are

allowed; that is the domain of topolo-

gical distortions, and hence not

discussed further here.

One can construct similar 4D RBS

structures and the corresponding Curie

groups. All the point groups and space

groups for space crystals in 4D are listed
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Figure 14
Six 3D holohedral RBS point groups for periodic RBS crystals. The sphere from Fig. 13(c) for the
case of v ¼ u is shown in each panel, with appropriately placed events (blue ovals) on each
hemisphere to break specific symmetries and retain others. The blue arrows associated with the
events in panel (b) suggest a series of additional events stretching in the direction of the arrows. The
generating symmetry elements for each group are indicated.



in the literature (Brown et al., 1978). The group ð1=mÞm in

4D would be valid, except m would represent a hyperplane (of

dimension 3) in 4D. For the case of v ¼ u for the 4D

ðc�tt
0
; �xx1; �xx2; �xx3

Þ coordinates, the horizontal 4D hyperplane

mirror perpendicular to the 1-fold rotation axis will be

given by the diagonal tensor [�1, 1, 1, 1] (which is equivalent

to the RBS time reversal in 4D). One of the vertical 4D

hyperplane mirrors parallel to the 1-fold axis would be, for

example, the diagonal matrix given by [1, �1, 1, 1] perpendi-

cular to the �xx1 axis. The 1-fold axis parallel to the �tt
0

axis

would rotate the stated vertical hyperplane mirror to generate

infinitely many of them. The subgroups of this group would

again be valid descriptions of the RBS. Crystallographic 4D

RBS groups can also be deduced from the well enumerated

4D space crystallographic groups listed in the literature

(Brown et al., 1978).

10. Periodic RBS crystals

The defining feature of periodic spatial crystals is their

translational symmetry, namely, that they are periodic in

various spatial dimensions. In describing their symmetry, one

moves beyond point groups to add translations to create

space groups (Glazer & Burns, 2013; Hahn, 2016). In the

context of conventional MS, one moves from Lorentz

groups to Poincaré groups. The group theoretical procedure to

move from point groups to space groups is well established

(Glazer & Burns, 2013). Here, given the equivalence estab-

lished between space crystals and RBS crystals, one could

similarly move from the RBS point groups to RBS Poincaré

groups in analogy with space groups. Below, we limit our

discussion to 2D, but similar extensions will be possible in

higher dimensions.

There are 17 2D space-group types describing spatial crys-

tals (Cotton, 1990). In order to keep the discussion simple, let

us focus on the simplest case of v ¼ u depicted by the 2D RBS

group depicted in Fig. 9(b), where the blended coordinates are

between the GF and the event BF. Since the light line is

parallel to the space axis, �xx in this case, and the resulting

symmetry as seen before is mm2, let us restrict our discussion

to space groups whose site symmetries (point-group symme-

tries at individual locations within the crystal) are restricted to

point-group symmetries of mm2 or its subgroups. Fig. 15 shows

such 2D RBS space groups, where the group labels are picked

to be synonymous with the corresponding 2D space-group

labels for space crystals.

The RBS crystals can be imagined as a series of events

periodically arranged in the RBS being observed by an RBS

observer at the origin. In the 2D case, the periodicity arises

from translations along the �xx and the �tt
0

axes. Naturally, the

event periodicity will result in the RBS observer herself being

replicated periodically in the RBS as depicted. Glide planes

(dashed lines in Fig. 15) can be observed now where one

mirrors across the glide plane, and then translates by half a

unit cell along the glide plane. These types of symmetries are

not obvious in the conventional MS constructions of

spacetime depicted in Fig. 2.

How about 2D space groups with say three-, four- and

sixfold rotations? These are excluded in the case of a fixed

relative orientation of the light lines in the RBS; higher-fold

rotations than twofold will rotate the RBS light lines as well,

and hence these RBS space groups will have to be composed

with varying v in the RBS. Similar constructions can be made

in 3D and 4D RBS. These are interesting topics left to be

explored in future works.

11. Conclusion

In conclusion, while time crystals are of great current interest

(Shapere & Wilczek, 2012; Wilczek, 2012), this work extends

the concept to relativistic spacetime crystals. By considering

blended inertial frames between two inertial observers and

then renormalizing the coordinates of an event observed by

them by � [which is a function given in equation (8) of the

relative velocity between the ground and the train frames, v,

and between the ground and the event frames, u], one can

generate the RBS coordinates (ct
0; x) and (ct; x0). These

coordinates transform the hyperbolic geometry of the

Minkowski spacetime (MS) into a renormalized blended

spacetime (RBS) that exhibits a Euclidean construction. The

Lorentz boosts become continuous Euclidean rotations, and

the RBS geometry also exhibits a new set of light lines.

Mapping between the MS and the RBS frames shows that they
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Figure 15
Examples of 2D RBS space groups adopting the same labels as the
corresponding 2D space groups for space crystals. A unit cell is shown in
each case by a gray rectangle. The faded purple circle at each lattice site is
the same as the RBS circle in Fig. 9(b) for the case of v ¼ u. The blue arcs
represent a series of events (an RBS spacetime flock of birds?) being
observed in RBS coordinates as indicated by the axes ðx; t

0
Þ. Dashed black

lines are glide planes, solid black lines are mirrors, yellow lines are light
lines, and the black ovals represent twofold rotation axes.



have equivalent relativistic physics content: every point not on

the light lines in MS maps to a unique point in RBS. Every

point on the light lines in MS maps to the origin in RBS.

Conversely, the light lines in the RBS map to the þð1;�1Þ
or �ð1;�1Þ limits of the light lines in the MS. Points

not on the light lines in the RBS uniquely map to points in

the MS.

These mappings between MS and RBS give rise to

equivalent representations of the relativistic physics in both

descriptions. This is based on three considerations: (i) the

equivalence mapping in Fig. 10 between the MS and RBS

coordinates. (ii) Einstein’s first and second postulates hold

still. Blending of the frames does not modify them, since one

can always revert back from the RBS to the MS coordinates

and recover these postulates. (iii) Lorentz transformation

[equation (3)] and the invariance of the spacetime interval �2

[equation (2)] are still valid, since the equivalent RBS state-

ments in equations (11c) and (12), respectively, were derived

from them.

However, mathematically speaking, the Euclidean

geometry in RBS allows one to smoothly mathematically

‘cross’ the RBS light lines, which is not possible in the

hyperbolic geometry in the MS. This feature allows us to write

Lorentz boosts as Euclidean rotations, which in turn helps

map the Lorentz group of the RBS to equivalent crystal-

lographic symmetry groups already well known in space

crystals. The RBS point groups in 2D, 3D and 4D are identified

to be those associated with cylinders in various dimensions:

rectangle in 2D, cylinder in 3D and hypercylinder in 4D. With

the addition of translations, examples are given for 2D RBS

space groups that describe RBS crystals; RBS space groups of

higher dimensions should be straightforward in a similar

manner. A Mathematica file is provided in the supporting

information for a reader to plot the MS and RBS constructions

for themselves.

On a more general mathematical note, this approach could

allow one to straddle between Euclidean and hyperbolic

coordinate systems in flat space or spacetime. For a set of n

linearly independent coordinates x�, � : 1� n, if the eigen-

value of the metric tensor for the first k coordinates is�1, and

that for the remaining (n� k) coordinates is +1, and if a

linear transformation between x� and ðx�Þ0 coordinates exists

that leaves the interval ðx1Þ
2
þ ðx1Þ

2
þ . . .þ ðxkÞ

2

�ðxkþ1Þ
2
� ðxkþ2Þ

2
�ðxnÞ

2 invariant before and after the

transformation, then one can define a blended coordinate

system between primed and unprimed coordinates with a

Euclidean interval ðx1Þ
2
þ ðx1Þ

2
þ . . .þ ðxkÞ

2
þ ðxkþ1Þ

02

þðxkþ2Þ
02
þ . . .þ ðxnÞ

02
¼ �2. If �xx� ¼ x�=� is defined, thenP

� �xx�
2

¼ 1 is a unit circle in a Euclidean frame. Going

forward, it will be interesting to explore quasi-1D

RBS magnetic groups, periodic and aperiodic RBS crystal-

lographic groups in various dimensions, RBS quasicrystals,

and the full scope of the renormalized blended frames in

covariant electrodynamics, relativistic physics and quantum

gravity. Appendix A provides a preliminary sketch for

how one might consider extensions of this work to general

relativity.

APPENDIX A
Sketch of blended coordinates in the Rindler and
Schwarschild geometries

The line element in Rindler geometry in a flat 2D spacetime is

given by the differential line element ds2 = dx2 � c2dt2 =

d�2 � �2d�2 which captures many of the same properties as the

Schwarzschild geometry in general relativity (Dray, 2015). The

second equality uses the hyperbolic polar coordinates (�; �)

shown in Fig. 2, which are also called the Rindler coordinates.

Upon computing ds02 ¼ dx02 � c2dt
0 2

in the train inertial frame

(TF) moving at a constant relative speed of v ¼ c tanh � with

respect to the ground frame (GF), one can show that

ds02 ¼ d�2 � �2dð�� �Þ2 ¼ d�2 � �2d�2, since � is assumed

constant; thus, ds2 ¼ ds02 is an invariant.

If we now define a Rindler differential line element in the

blended frame as dso02 ¼ dx2 þ c2dt02 ¼ dx02 þ c2dt2 ¼ ds0o2,

then one can show that dso 02 ¼ �2ðd�2 þ �2d�2Þ þ �2�d�d�,

where �2 ¼ sinh 2�þ sinhð2�� 2�Þ. Both the factors � and �
are functions of � which determines the relative speeds of the

two inertial frames (GF and TF).

Consider two special cases in the Rindler geometry

above: a constant acceleration (d� ¼ 0), and (trivially) a

constant velocity (d� ¼ 0) of the bird. In the former case

(d� ¼ 0), dso 02 ¼ �2�2d�2, and thus one could define

renormalized blended coordinates d��xx�xx = ð1=��Þðdx=d�Þ and

cd��tt�tt
0
¼ ðc=��Þðdt0=d�Þ, such that d��xx�xx2

þ c2d��tt�tt
02
¼ 1, a unit circle

for any worldline in the Rindler geometry with a constant

acceleration. In the latter case (d� ¼ 0Þ, dso 02 ¼ �2d�2, and

one could define renormalized blended coordinates

d��xx�xx ¼ ð1=�Þðdx=d�Þ and cd��tt�tt
0
¼ ðc=�Þðdt0=d�Þ, to again recover a

unit circle. More generally, one could define d��xx�xx ¼ dx=dso0 and

cd��tt�tt
0
¼ dt0=dso0, such that d��xx�xx2

þ c2d��tt�tt
02

¼ 1 for any worldline in

the Rindler geometry.

Now let us consider the curved spacetime. The Schwarzchild

metric describes the gravitational field of a point mass, m, at

the origin; it is a spherically symmetric solution of Einstein’s

equation in vacuum (Dray, 2015). The line element is given in

polar coordinates, ðr; �; 	Þ, with the origin centered at the

mass by

ds2 ¼ ��t2
þ �r2

þ r2d�2 þ r2 sin2 �d	2 ð19Þ

where �t2 ¼ ð1� 2m=rÞdt2 and �r2 ¼ dr2=ð1� 2m=rÞ, where

the abbreviation ct! t and mG=c2 ! m has been used. As a

specific example, consider a shell observer sitting on an

imaginary shell at a radius r from the mass, on the equator at a

fixed � ¼ 
=2 (d� ¼ 0Þ and a fixed azimuth (d	 ¼ 0Þ. Note

that as r!1, this metric reduces to that of the Minkowski

metric of flat spacetime. Consider the rain coordinates of a

radial geodesic (for example, a radial worldline from r!1

towards r! 0). The relative speed of the radial observer as

she crosses the shell observer can be shown to be

v ¼ c tanh � ¼ �cð2m=rÞ1=2, where the minus sign indicates

motion in the �r̂r, or the inward radial direction. A Lorentz

transformation between the shell coordinates (�t; �r) and the

rain coordinates (�T; �R) is given by �T

�R

� �
¼ � �t

�r

� 	
, where
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�T
¼ dt þ

dr 2m
r

� 	1=2

1� 2m
r

� 	 and

�R ¼
2m

r

� �1=2

dt þ
dr

1� 2m
r

� 	 : ð20Þ

Further, the metric is invariant, namely, ds2 =

��t2 þ �r2 ¼ ��T 2
þ �R2

. If we now consider a blended

reference frame between the shell and the rain coordinates,

then dso02 = �T 2
þ �r2 ¼ �t2

þ �R2
¼ ds0o2. Rearranging, we

can rewrite this as ð�T=dso0Þ
2 + ð�r=dso0Þ

2
¼ 1, where

���T
¼ �T=dso0 and ���r

¼ �r=dso0. Thus, in principle, blended

renormalized Euclidean coordinates are possible locally on a

manifold in general relativity.
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