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Faculty of Chemistry, A. Mickiewicz University, Poznań, Poland, and dCenter for Biocrystallographic Research, Institute

of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland. *Correspondence e-mail: bartnas@amu.edu.pl

The notion of the Euler characteristic of a polyhedron or tessellation has been

the subject of in-depth investigations by many authors. Two previous papers

worked to explain the phenomenon of the vanishing (or zeroing) of the modified

Euler characteristic of a polyhedron that underlies a periodic tessellation of a

space under a crystallographic space group. The present paper formally

expresses this phenomenon as a theorem about the vanishing of the Euler

characteristic of certain topological spaces called topological orbifolds. In this

new approach, it is explained that the theorem in question follows from the

fundamental properties of the orbifold Euler characteristic. As a side effect of

these considerations, a theorem due to Coxeter about the vanishing Euler

characteristic of a honeycomb tessellation is re-proved in a context which frees

the calculations from the assumptions made by Coxeter in his proof. The

abstract mathematical concepts are visualized with down-to-earth examples

motivated by concrete situations illustrating wallpaper and 3D crystallographic

space groups. In a way analogous to the application of the classic Euler equation

to completely bounded solids, the formula proven in this paper is applicable to

such important crystallographic objects as asymmetric units and Dirichlet

domains.

1. Introduction

The famous Euler formula V � E + F = 2 applies to any single

3D solid (polytope) with V vertices (or 0-cells), E edges

(1-cells) and F faces (2-cells) that is completely bounded by

those ‘surface’ elements. It could be a crystal, its model or

indeed any isolated solid, for example an icosadeltahedron

representing a spherical virus particle. However, if the solid is

not completely bounded, as is the case with space-filling

polytopes such as the crystallographic asymmetric units which

share the bounding elements with their neighbors, the Euler

sum is reduced by one, and the analogous modified (m)

formula takes the following form.

Theorem 1.1. The modified Euler characteristic of a space-

filling polytope

�m ¼
XN

i¼0

ð�1Þi
XnðiÞ
j¼1

1

mðijÞ
; ð1Þ

where we count each j-cell with a weight inversely propor-

tional to its multiplicity m(ij) and up to dimension N, satisfies

the equality
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�m ¼ 0: ð2Þ

The way to prove this theorem is to reinterpret first the

formula �m as the orbifold Euler characteristic �ðOÞ
(Section 3) of the orbifold O ¼ RN=� (Definition 7.2 and

Theorem 7.1) for the space group � acting properly discon-

tinuously (Definition 7.1) on the Euclidean space E ¼ RN, and

then to prove �ðOÞ ¼ 0 in Theorem 4.2.

The property �m = 0 proved above, in the form Vm � Em +

Fm � 1 = 0, was noted by Dauter & Jaskolski (2020) and

demonstrated for all standard 2D and 3D asymmetric units as

well as for Dirichlet domains. In a related paper (Naskręcki et

al., 2021) this property is expressed using the topological

notion of the Euler characteristic [which is an alternating sum

of all i-cells from i = 0 to N: � ¼
P

i ð�1Þini] with the inclusion

in the summation of the polytope itself (I or ‘interior’, or

N-cell in R
N). In the paper by Naskręcki et al. (2021) a

rigorous proof of the vanishing of the modified Euler char-

acteristic is also presented using a simple property of parity

group frequencies, but [like a similar but much more tedious

proof outlined by Coxeter (1948), equation 4.82] it is

strictly applicable to translational tessellation of space (i.e.

to the unit cell) and has to be extended to the asymmetric

unit (ASU) using the theorem presented by Whitehead (1949)

and Hatcher (2002). In the present paper, we provide a

completely general proof (applicable to any periodic tessel-

lation of space of any dimension by identical polytopes)

rooted entirely in the topological notion of the orbifold and its

properties.

Our aim in Section 2 is to provide a topological explanation

for the phenomenon of the vanishing of the modified Euler

characteristic as observed by Dauter & Jaskolski (2020). We

model our approach on the theory of orbifolds as introduced

by Satake (1956) (under the name of V-manifolds) and

Thurston (2002).

First, we introduce the necessary topological notions of

manifolds and orbifolds. Next, we discuss the essential prop-

erties of groups acting on topological spaces, and then we

discuss how the Euclidean 3D space E with the action of the

space group � can be considered in this new setting.

Our goal in Section 3 is to demonstrate the vanishing of the

Euler characteristic from the very basic topological properties

of the orbifolds attached to the pair (E, �). We recall the

fundamental properties of the Euler characteristic, which are

well known to topologists, i.e. invariance under the change in

cell decomposition, and the multiplicativity property for finite

covers of spaces. These ideas are extensively discussed in the

excellent textbook by Thurston (2002). We intertwine the

abstract topological concepts with down-to-earth examples to

illustrate our concepts.

In Section 4, we present the proof of Theorem 4.2 which

explains why the modified Euler characteristic attached to the

pair (E, �) vanishes in every case. The proof is brief and

uniform, without going into detailed combinatorics of parti-

cular examples, and our argument applies to the action of

crystallographic groups in arbitrary dimension.

2. Manifolds and orbifolds

An orbifold is a topological notion similar to a manifold.

While manifolds are simply ‘pieces’ of the Euclidean space RN

glued together by continuous maps, the former are more

complicated to describe. To state it simply, we will mainly

discuss manifolds and orbifolds which are subsets or quotients

of the Euclidean space R3. A manifold consists of a space X

with an atlas of charts {(U, �)} which satisfy certain compat-

ibility conditions [see Lee (2003) and Millman & Parker

(1977)]. On a manifold M, a chart (U, �) is a pair of an open

subset U � M and a homeomorphism � : U ! V � RN

where V is an open subset. An atlas is a collection {Ui, �i}i2I

of charts indexed by some set I and such that
S

i2I Ui ¼ M.

For example, a 2D sphere S2 is a subset ofR3 that consists of

triples of real numbers (x, y, z) which satisfy the relation x2 +

y2 + z2 = 1. As a manifold, it can be characterized by the

following atlas. We consider ðU1 ¼ S
2
n fð0; 0; 1Þg; �1Þ to be

the stereographic projection of �1 from the ‘north pole’ at

(0, 0, 1) onto the plane z = �1. Its inverse ��1
1 : R2

! U1 is

defined as

��1
1 : ð�; �Þ ! ðx; y; zÞ

¼
4�

4þ �2 þ �2
;

4�

4þ �2 þ �2
;
�4þ �2 þ �2

4þ �2 þ �2

� �
: ð3Þ

This map is a continuous bijection which covers all but one

point on the sphere. Similarly, we have a projection from the

‘south pole’ at (0, 0, �1) which provides the second chart

ðU2 ¼ S
2
n fð0; 0;�1Þg; �2Þ with analogous formulas. The

overlap U of the two charts is the sphere S2 with two points

removed, (0, 0, 1) and (0, 0, �1), and with a composite

map �1 � �
�1
2 which is a continuous bijection on

�2ðUÞ ¼ R
2
n fð0; 0Þg. The role of the atlas is to provide a

‘navigation’ on the manifold under consideration. Once given,

one can completely forget about the extrinsic model of S2 and

describe the whole topology using only the charts.

An orbifold is a similar notion where the open sets U � Rn

are replaced with U/H, where H is a finite group and U/H is an

orbit space (Satake, 1956; Thurston, 2002). We also point to

the work of Conway et al. (2008) for an intuitive introduction

to orbifolds.

The underlying space of the orbifold is usually not as nice as

for the manifold. It typically contains points which have a

neighborhood that does not resemble the usual Euclidean

space (singular points). This is caused by the application of the

group quotient. For the necessary definitions of the group

actions, quotients, orbifold atlas and orbifold covers that will

be used later, we refer the reader to Definitions 7.1, 7.2 and 7.3

in Appendix A.

In a given orbifold O we distinguish the set �O � XO of

singular points. Each point x 2 �O has the property that in

the chart ðeUU;�; �Þ where U ¼ ��1ðeUU=�Þ is a neighborhood

of x, any pre-image y 2 eUU of �(x) has a non-trivial stabilizer �y

6¼ 0. All these groups are conjugate and we denote any

representative of the conjugacy class by �x and call it the local

group of x. All points x 2 XO n�O are called non-singular and

their local group �x is trivial.
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For each singular point x of an orbifold space XO of a given

orbifold O, we consider a maximal connected set Zx in XO of

points y 2 XO for which the local groups �y are the same up to

conjugation. This leads to a natural stratification of the space

XO into a union of relatively closed connected submanifolds,

where on each stratum the local group (up to conjugation) is

constant for each point in the interior. Such a stratification is

called the local group stratification.

2.1. Example of an orbifold

The rotation of S2 around the z axis by 180� provides a

group action of the cyclic group C2 of order 2 on the space

X ¼ S2. This action has two obvious fixed points at the poles

(0, 0, 1) and (0, 0, �1) and nowhere else. The quotient space

X/C2 (Fig. 1) is topologically identified with the sphere itself,

but the neighborhoods of the two poles are isomorphic to the

orbit space R2=C2 with the action of C2 by rotations. The

stabilizer group of both poles is C2 and, since the action is

properly discontinuous, this provides a way of introducing an

orbifold atlas on X/C2 . The natural projection p : X! X/C2 is

an example of an orbifold cover, where the structure of the

orbifold on X is trivial (each point has a trivial stabilizer) and

the degree of this cover p equals 2, the order of the group C2 .

The pre-images of the points under the map p consist of two-

point sets, except for the pre-images of the points with a

nontrivial stabilizer, where they consist of a single point. More

examples can be found in the work of Caramello (2019),

Thurston (2002), Choi (2012), Conway et al. (2001) and

Conway & Huson (2002).

3. Orbifolds associated with space-filling polyhedra

Since each crystallographic space group � acting on the

Euclidean space E ¼ Rn is acting properly discontinuously,

the quotient space of orbits E/� has a natural structure of an

orbifold (Theorem 7.1). We denote by Isom(E) the group of

isometries of E and by Trans(E) the subgroup of translations

(Farkas, 1981).

Definition 3.1: index of a subgroup. Let H � G be a pair of

groups. The set G/H = {gH : g 2 G} is the set of cosets gH for

every g. If the set G/H is finite, we denote its cardinality by

[G : H] and call it the index of the group H in G.

Definition 3.2. A free abelian group is a group isomorphic to a

product of copies of the unique infinite cyclic group Z of

integers with addition.

It follows from the Bieberbach theorem [Farkas (1981),

Theorem 14] that a crystallographic subgroup � of Isom(E)

has a finite-index free abelian subgroup � = � \ Trans(E) of

rank dim E.

The quotient space E/� is a 3D torus. The point group G =

�/� is finite and determines a finite cover � : O� !O� of

orbifolds O�, O� of degree |G|.

An important point to make is that every manifold and

orbifold that we study in this paper has a structure of a CW

complex (cellular complex; Hatcher, 2002) or in particular

admits a triangulation of the space. A triangulation is a

structure on the space X which allows one to glue it from

‘topological triangles’, i.e. continuous images of the

k-dimensional simplices

ðx1; . . . ; xi; . . . ; xkþ1Þ : 0 � xi � 1;
Xkþ1

i¼1

xi ¼ 1

( )
: ð4Þ

Each k-simplex can be glued to another k-simplex only along a

(k � 1)-dimensional simplex, etc.

For example, a sphere S
2 can be triangulated in the

following way. We declare six 0-simplices which correspond to

the points (0, 0, �1), (0, �1, 0), (�1, 0, 0). These are glued

together by images of twelve 1-simplices that correspond to

pieces of large circles connecting each pair of 0-vertices

contained in the same hemisphere. The regions into which the

sphere is divided by the 1-simplices are images of 2-simplices

and there are eight of them. Note that this structure corre-

sponds to the division of the octahedron into vertices, edges

and faces (Fig. 2).

A more compact way of describing a space is when, instead

of dividing it into simplices, we divide it with respect to a

cellular division. The building blocks in this case are n-balls

(called n-cells) which are glued along their boundaries in a
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Figure 1
An illustration of the S2=C2 orbifold with two singular points.

Figure 2
Cellular division of a sphere and an octahedron.



much more flexible way than the structure of the simplicial

complex (Hatcher, 2002). For the sphere S2 one takes a closed

disk B2 and glues it along its boundary to a single point.

Topologically, this corresponds to the 1-point compactification

of the plane obtained by stereographic projection from one

point on the sphere.

Every orbifold obtained from the quotient of the Euclidean

space by a crystallographic group has a triangulation which is

compatible with the local group stratification (Choi, 2012). It

means that one can introduce a cell division on the underlying

space X of the orbifold such that for each cell there exists a

group � such that for each point x that belongs to the interior

of that cell the stabilizer group �x equals �.

For the example of the C2 action on the sphere S2, the

quotient space is divided into cells as follows: two 0-cells which

correspond to the south and north poles (0, 0, �1). These two

points have the stabilizer group equal to C2 . The C2 action

wraps the large circle going through the poles onto itself, so

that it becomes a half circle with endpoints at the poles. The

points in the interior (i.e. away from the endpoints) of this half

circle have a trivial stabilizer (they have two points in the pre-

image of the projection map p : S2
! S

2=C2). The large circle

described above is a boundary of two hemispheres which map

under the C2 action onto each other. One of these hemi-

spheres is taken as the unique 2-cell in this cellular decom-

position and the points in the interior are not fixed by C2

again.

4. Proof of the main theorem

In this section, we finally provide the proof of our main

theorem. Thurston (2002) generalized the notion of the Euler

characteristic of a manifold to a setting of orbifolds. Following

his work we define it in the following way.

Definition 4.1: orbifold Euler characteristic. For an orbifold O

and its underlying space XO, the Euler characteristic �ðOÞ is

defined as

�ðOÞ ¼
X
�

ð�1Þdim � 1

j�ð�Þj
; ð5Þ

where the summation goes over cells � of the cell division of

the space XO and �(�) is the stabilizer group of cell �. The cell

division must respect the constancy of the stabilizer group �x

of each point x in the interior of each cell �. We denote by

uðOÞ the vectorX
dim �¼0

1

j�ð�Þj
; . . . ;

X
dim �¼N

1

j�ð�Þj

" #
; ð6Þ

where N is the top dimension of the cell inO. We call uðOÞ the

weighted k-cells vector of the orbifold O.

In contrast to uðOÞ, the definition of �ðOÞ does not depend

on the particular choice of cell division and is always a finite

number when the orbifold is compact (which is the case forO�

and O�). This is a consequence of the homological

interpretation of the Euler characteristic [Hatcher (2002),

Theorem 2.44]. The orbifold Euler characteristic �ðOÞ of the

orbifold O which is modeled on a crystallographic ASU

provides a very elegant and formal interpretation of the

modified Euler characteristic �m introduced at the beginning.

Example 4.1. The orbifold Euler characteristic of a 3D torus

T
3 equals 0. We consider the torus T3 with a trivial group

action. We are going to justify this below.

We consider the space E ¼ R3 and the group of unit

translations � ¼ Z3 acting freely on E. The fundamental

region of this action is a unit cell without appropriate faces.

The underlying space of the orbifold E/� is the torus T3. To

compute its Euler characteristic, we consider the cell decom-

position in which we have one 0-cell, which corresponds to the

point V = (0, 0, 0). We have three 1-cells Ex, Ey , Ez that

correspond to three unit segments that stem from V. The

1-cells Ex, Ey , Ez span, pairwise, three faces (2-cells) Fx , Fy , Fz

and we have a unique 3-cell I. The stabilizer group �(�) is

trivial for each cell since the group action � is free on E.

Hence,

uðT3
Þ ¼ ð1; 3; 3; 1Þ; �ðT3

Þ ¼ 1� 3þ 3� 1 ¼ 0: ð7Þ

This of course agrees with the Euler characteristic of T3

computed in the standard way, as well as with the Euler

number computed as the sum
P

i ð�1Þi bi of the topological

Betti numbers bi [Hatcher (2002), Theorem 2.44 and Example

2.39].

A similar calculation leads to the conclusion that an

N-dimensional torus has the Euler characteristic equal to 0.

An elegant arithmetical interpretation of this fact is presented

by Naskręcki et al. (2021).

Theorem 4.1 [Thurston (2002), Proposition 13.3.4; Choi

(2012), Proposition 5.1.3]. For a finite cover of degree d of

orbifolds f : eOO! O it follows that

�ðeOOÞ ¼ d � �ðOÞ: ð8Þ

Example 4.2. For the sphere S2 and its degree 2 orbifold cover

p : S2
! S

2=C2 we compute the Euler characteristic. The

Euler characteristic of S2 equals 2, which follows from the

octahedral triangulation of the sphere. The cell decomposition

of the orbifold S2=C2 contains two 0-cells with stabilizer group

C2, one 1-cell with a trivial stabilizer and one 2-cell with a

trivial stabilizer: �ðS2=C2Þ ¼ 2 � 1
2� 1þ 1 ¼ 1. The degree of

the cover p is indeed 2 and hence �ðS2
Þ ¼ 2 � �ðS2=C2Þ.

Proof of Theorem 4.1. The proof of (8) follows from the simple

group theoretic properties of the orbifold covers [Thurston

(2002), Proposition 13.3.4; Choi (2012), Proposition 5.1.3]. The

degree d of the cover f is equal to
P

~xx j�xj=j�~xxj, where the sum

runs over ~xx points which map to x, i.e. f ð~xxÞ ¼ x and x is an

arbitrary point of XO. Note that the number d equals the

number of pre-images in the set f�1(x) if the stabilizer groups
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�x, �~xx are trivial. If they are not, this follows from the study of

the number of points in the pre-image of a regular point y in

the neighborhood of x. Alternatively, we can look at the pre-

images of cells under the covering map.

To prove the theorem, it is enough to note that any point

x 2 XO belongs to the interior of a unique cell in the cell

decomposition of XO . Thus, the stabilizer group �x is actually

the stabilizer group �(�) of the cell � such that x 2 �. For a

point x 2 � in the interior of �, we have

d �
1

j�ð�Þj
¼
X

~xx

j�xj

j�~xxj
�

1

j�ð�Þj
¼
X

~��

j�ð�Þj

j�ð ~��Þj
�

1

j�ð�Þj
¼
X

~��

1

j�ð ~��Þj
;

ð9Þ

where the summation over ~xx is such that f ð~xxÞ ¼ x and the

summation over ~�� is over cells ~�� such that f ð ~��Þ ¼ �. Taking

the sum over all cells � we obtain

d � �ðOÞ ¼
X
�

ð�1Þdim �
d �

1

j�ð�Þj
¼
X

~��

ð�1Þdim ~�� 1

j�ð ~��Þj
¼ �ðeOOÞ;
ð10Þ

which finishes the proof. Note that the equality dim � ¼ dim ~��
holds for any f ð ~��Þ ¼ � since the cover f has a finite degree.

&

Theorem 4.2. The orbifold RN=� obtained from the action of

the crystallographic space group � on the Euclidean space RN

has an orbifold Euler characteristic equal to 0.

Finally, we are ready to prove that for an ASU U � E, the

modified Euler characteristic of U computed by Dauter &

Jaskolski (2020) must be equal to 0. This is equivalent to

proving that the orbifold Euler characteristic of the space

R
N=� for a space group � vanishes.

Proof of Theorem 4.2. We impose a cell structure {�} on the

region U, which propagates via the crystallographic space

group � to the cell structure on the Euclidean space E. Our

choice of the cell structure is compatible with the action of

group �, i.e. for every cell � � E, a copy � � � generated by the

element � 2 � is again a cell in the decomposition of E. Note

that the number of cells which impose a cell decomposition on

U is finite, i.e. U ¼
P

i �i for finitely many cells �i. By the

symmetry reconstruction process, we obtain the decomposi-

tion E ¼
P

�2�

P
i � � �i where the intersections � � �i \ �

0 � �j

are unions of cells of the same decomposition.

The orbifold O ¼ E=� has an underlying space XO which is

obtained by appropriately glueing and identifying the cells in

the decomposition of E. That imposes a natural cell decom-

position f�g of XO where each cell � has infinitely many cells �
which map onto it by the projection map E!O. These cells

in the pre-image lie in the same orbit with respect to the group

action of �. The stabilizer group �ð�Þ � � of cell � is finite.

As mentioned above, it follows from the Bieberbach

theorem [Farkas (1981), Theorem 14] that there is a finite-

index subgroup � isomorphic to Z
n contained in �.

The inclusion � � � induces an orbifold cover

O� ¼ E=�!O� ¼ E=� of degree [� : �]. It follows from

Example 4.1 and (8) that the orbifold Euler characteristic of

O� vanishes. &

4.1. Examples of orbifolds which arise from crystallographic
space groups

4.1.1. The wallpaper group p3. In this symmetry the ASU is

given by a rhombus, the vertices of which are stabilized by the

symmetries of order 3. The orbifold Op3 associated with this

construction has three vertices of weight 1/3, two edges with

endpoints at these three points, both of weight 1, and finally a

single face of weight 1. The details of this construction are

contained in Figs. 3(a) and 4. The total vector of weighted

k-cells is uðOp3Þ ¼ ð1; 2; 1Þ and �ðOp3Þ ¼ 0.

Description of the orbifold structure of Op3. The space XOp3

is obtained from the ASU by identifying the two edges

between points A and B in Fig. 4. The result of such an

identification constitutes a 1-cell denoted 	. Similarly we

obtain a 1-cell denoted 
. The top left and bottom right

corners are identified and form a 0-cell A. Corners B and C are

not identified and they form separate 0-cells of XOp3
. The

parallelogram ABAC forms the unique 2-cell of the orbifold.

Topologically, the space XOp3
is identified with a 2D sphere.

Each point p 2 XOp3
n fA;B;Cg has a neighborhood Up such

that for an open disk eUU of radius 1 in R2 and the trivial
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Figure 3
Orbifold ASU tessellation of the groups (a) p3, (b) p6 and (c) p6mm. A purple rhombus of index i represents a region which encircles the elements of the
tessellation which are subject to a counting function with parameter i.



group � = {0} acting on eUU there exists a homeomorphism

Up !
eUU ¼ eUU=�. For each point p 2 {A, B, C} there exists a

neighborhood of that point Up which is homeomorphic with

the unit open disk eUU of radius 1 divided by the group action of

� = C3, a cyclic group of order 3 generated by the counter-

clockwise rotations around the center point (0, 0) of the disk,

namely there exists a homeomorphism � : Up !
eUU=C3 where

�(p) = (0, 0). A circle of radius 1
2 centered at (0, 0) in eUU is

mapped through � to the corresponding image which we

depict in Fig. 4. For p = A, this image is the loop �1 [ �4, for p

= B, the loop is �2 , and for p = C, the loop is �3. Note that in

Fig. 4 the points x, y, w, z represented on the ASU are suitably

identified. The space XOp3
with the atlas of charts for each

point x 2 XOp3
described above constitutes the structure of the

orbifold Op3.

4.1.2. The wallpaper group p6. Here the ASU has a

deltoidal shape, with area 1
6 of the unit cell, and populates the

plane according to sixfold symmetry, as shown in Fig. 3(b). The

orbifold Op6 has one vertex of weight 1
6 (at the sixfold axis),

one of weight 1
3 (at the threefold axis) and one of weight 1

2.

Each of the four edges has weight 1
2, and the deltoidal face has

a weight of 1. The total vector of weighted k-cells is uðOp6Þ =

ð16þ
1
3þ

1
2 ; 4 � 1

2 ; 1Þ = (1, 2, 1) and �ðOp6Þ ¼ 0.

4.1.3. The wallpaper group p6mm. In this group the ASU is

a triangle with area 1
12 of the unit cell and populates the plane

according to the p6mm planar group [Fig. 3(c)]. The orbifold

Op6 has one vertex of weight 1
12 (at the point with symmetry

6mm), one vertex of weight 1
6 (at symmetry 3m) and one with

weight 1
4 (at symmetry 2mm). There are three edges of weight 1

2

and, obviously, one interior face with a full weight of 1. The

total vector in this group is uðOp6mmÞ = ð 1
12þ

1
6þ

1
2 ; 3 � 1

2 ; 1Þ =

ð12 ;
3
2 ; 1Þ, hence �ðOp6mmÞ ¼ 0.

4.1.4. The space group Pcc2. The symmetry relations in the

space group Pcc2 are illustrated in Fig. 5. In this group the

ASU is formed by one quadrant of the unit cell. Since the

vertical faces of the ASU lie at the glide c-planes, these faces

are divided and additional corners and edges have to be

counted as building k-cells of this ASU. Only four corners at z

= 0 and located on twofold axes are unique with a weight of 1
2,

while the other corners are symmetry equivalent by the lattice

translations or glide planes. Only four edges at z = 0 are

unique with a full weight of 1, and only the lower four vertical

edges are unique with a weight of 1
2. The unique basic face at z

= 0 has a weight of 1, and each of the four unique

lower vertical faces also has a weight of 1. With the ASU

interior of weight 1, the vector of k-cells is uðOPcc2Þ =

ð4 � 1
2 ; 4 � 1þ 4 � 1

2þ 1; 1þ 4 � 1; 1Þ = (2, 6, 5, 1) and

�ðOPcc2Þ ¼ 0.

4.1.5. The space group P23. In this space group the

counting of the contributions of weighted k-cells to the total

vector of uðOP23Þ is rather complicated. Here the ASU has the

shape of a tetrahedron with a volume equal to 1
12 of the unit

cell, but because some of its faces are bisected by the twofold

axes, as illustrated in Fig. 6(a), it has to be counted with seven

vertices, 13 edges and eight faces. Only one of the three

vertices lying at the sites of 23 symmetry at three of the

corners of the basic face of the cubic unit cell is unique with a

weight of 1
12, the fourth vertex at the center of the cell has the

same site symmetry and weight, one of the two vertices at the

half-cell edges is unique with symmetry 222 and a weight of 1
4,

and one vertex at the center of the basic face has the same

symmetry and a weight of 1
4. There are three edges lying at the

diagonal threefold axes having weights of 1
3, of which only two

are unique, three unique edges positioned at three perpendi-

cular twofold axes crossing at the center of the basic face, one

unique out of three diagonal edges within the basic face, and

one unique out of four symmetry-equivalent edges along the
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Figure 5
The unit cell (black edges) and ASU (blue edges) of the orthorhombic
space group Pcc2. Only some relevant symmetry elements are marked,
the twofold axis in purple and the glide c-planes indicated by orange
arrows. Additional parallel twofold axes pass through all corners and
half-edges of the cell, and additional glide planes lie at all vertical faces of
the unit cell.

Figure 4
The unit cell (gray edges) and the ASU (blue edges) with four
adjacent copies of the ASU (light blue) of the wallpaper group p3.
The green triangles indicate points with rotational threefold symmetry.
The arcs indicate the closed paths around singular points of the orbifold
Op3 and the labels 	, 
 indicate identified edges. See text for further
details.



full x and y edges of the basic face with a weight of 1
2, also

located on the twofold axes. All faces have a weight of 1 but

only some are unique. Only one of two faces equivalent by the

23-fold axis is unique, similarly to only one of the faces

equivalent by the vertical twofold axis passing through the cell

center. Within the basic cell face there are two unique facets

and the other two are symmetry equivalent. With the interior

having a full weight of 1, the total vector in this group is

uðOP23Þ = ð2 � 1
12þ 2 � 1

4 ; 2 � 1
3þ 3 � 1

2þ 1þ 1
2 ; 1þ 1þ 2; 1Þ =

ð23 ;
11
3 ; 4; 1Þ and �ðOP23Þ ¼ 0.

4.1.6. The space group Pm3m. The space R
3 in this

symmetry is populated by the ASU presented in Fig. 6(b),

which is a tetrahedron with two vertices of weight 1
48 and two

vertices of weight 1
16 , one edge of weight 1

6, three edges of

weight 1
4 and two edges of weight 1

8 . The orbifold has four faces

of weight 1
2 and one 3-cell of weight 1. The total vector u of

weighted k-cells is (1/6, 7/6, 2, 1) and the orbifold Euler

characteristic vanishes.

5. Coxeter’s Nj summation revisited

In this section, we reiterate the proof of Coxeter (1948) of

Euler’s formula for polyhedra and its generalization to the

tessellation of space with space-filling polyhedra.

Coxeter in his argument exhibited certain numbers vj which

are the leading terms of the growth of the number Nj(R) of

j-cells in the tessellation with respect to a given radius R

from a fixed vertex. With a limiting argument passing from

Nj (R) to the limits vj ¼ limR!1½NjðRÞ=Rn	 Coxeter shows that

PN
j¼0ð�1Þ jvj ¼ 0. The details of the proof are also presented in

the supplementary information of the paper by Naskręcki et

al. (2021).

This striking result should prod the attentive reader to

conclude that such a formula expresses the Euler character-

istic of the orbifold obtained by quotienting out the

Euclidean space by the space group. This is indeed the case

and we prove this relation here. In contrast to Coxeter’s

approach, our proof makes no restriction on the transitivity of

the vertices.

Let � be a crystallographic space group. Let � � � be the

unique maximal normal subgroup of translations. Let �
be a cellular decomposition of RN corresponding to �.

Decomposition � consists of translational copies of a single

parallelepiped P. Suppose that U is a polytope which, when

repeated by the group �/�, imposes a further cellular

decomposition of P. The corresponding refined cellular

decomposition of RN is denoted by �0. Let �00 be a further

subdivision of �0 such that each k-cell of �00 has a constant

stabilizer group along the interior of the k-cell under the

action of �.

Theorem 5.1. Let fvjg
N
j¼0 be the Coxeter parameters of �00. Let

�j denote the sum
P

dim �¼j ½1=j�ð�Þj	 where the summation

goes over the part of the subdivision �00 corresponding to the

polytope U. We prove that

vj ¼ C�j ð11Þ

for every j and some explicit absolute constant C. In particular,

since �ðRn=�Þ ¼ 0, then
PN

j¼0ð�1Þ jvj ¼ 0.

Proof of Theorem 5.1. Let j be fixed. We consider the number

Nj(R) of j-cells in the cell division �00 which intersect non-

trivially with a ball BðRÞ of radius R centered at � = (0, . . . , 0)

of the space. We assume that � is a vertex of our cellular

division �00. Let m(R) denote the number of copies of the

parallelepipeds P which belong to the division � and are

completely contained in the ball BðRÞ. For each translational

copy (P) of P under  2� the number of translational copies

of a j-cell � which are contained in P up to translation under �
is j�=�j=j�ð�Þj: This follows from the fact that the quotient

group �/� populates P with the copies of �. The stabilizer

group order |�(�)| is the number of fixed elements which do

not move �. Hence we have the formula

NjðRÞ ¼ mðRÞ �
X

dim �¼j

j�=�j

j�ð�Þj
þ �ðRÞ; ð12Þ

where �(R) is an error function that satisfies

limR!1½�ðRÞ=RN	 ¼ 0 and the summation goes over the

unique cells � of dimension j in the orbifold Rn=�.

This leads to the conclusion that

vj ¼ lim
R!1

NjðRÞ

RN
¼ C �

X
dim �¼j

1

j�ð�Þj
¼ C � �j ð13Þ
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Figure 6
Orbifold ASU (bold red lines) of the space groups (a) P23 and (b) Pm3m.



and C ¼ j�=�j � limR!1½mðRÞ=RN	. The limit in the latter

expression exists and can be computed explicitly when the

explicit decomposition � is given. To conclude our proof we

apply Theorem 4.2. &

Now, we present a variant of Theorem 5.1 which works

nicely for invariant tessellations.

Theorem 5.2. Let � be a cellular decomposition of RN and

let � be a crystallographic space group acting on R
N .

Suppose that � is invariant under �, i.e. for every � 2 �
and every closed cell � � � we have that � � � is a closed

cell in �. Let O be the orbifold R
N=�. The orbifold O

has an induced cellular decomposition from �. Let �j denote

the sum
P

dim �¼j ½1=j�ð�Þj	 ranging over cells � of XO of

dimension j.

Let fvjg
N
j¼0 be the Coxeter parameters of �. Then there

exists a constant C such that vj = C�j for every j.

Proof of Theorem 5.2. Since � is invariant under � it follows

that each closed cell � has the stabilizer subgroup �� constant

on the interior of �. Let � � � be the unique maximal normal

subgroup of translations in �. The decomposition � is invar-

iant under � without fixed points, hence the quotient space

R
N=� which is a torus TN has an induced cell decompositione�� such that for each celle�� ine�� its pre-image via the projection

R
N
! R

N=� is a union of all cells  � � for  2 � and for a

particular lift � of e��. The quotient group G = �/� is finite

and acts on both T
N and its cell decomposition e��. The

quotient TN=G ¼ ðRN=�Þ=G is the orbifold O with the

cellular decomposition e��=G.

For each natural number n, let �n be the subgroup of � (of

index nN) spanned by translations {nv}, where {v} is a parti-

cular set of linearly independent generators of �. The quotient

space Tn ¼ R
N=�n is still an N-dimensional torus with an

induced cell decomposition e��n. For each cell � in T1 ¼ T
N

there are nN corresponding cells in Tn. For each �0 in O, there

are |G|/|�(�0)| pre-images in T1. Finally, we notice that the

quotient of volumes of an N-dimensional closed ball of radius

R and of the parallelepiped f
P

i xivi : 0 � xi � R,

vi 2 Generatorsð�Þg tends to a positive limit ~CC when R!1.

Summing up over all cells �0 of dimension j and passing to the

limit R = n ! 1 proves the theorem with constant

C ¼ eCC � jGj. &

Example 5.1. Table 1 presents the formulas for functions Nk(n)

of variable n which compute the number of k-cells in a

tessellation which respects a given group �, and n denotes the

number of translation steps in each direction, starting from a

fixed tessellation vertex. We note that these functions happen

to be polynomials due to the periodicity of the tessellation and

the choice of the counting metric. A weighted k-cells vector is

a tuple of sums of fractions which represent the orbifold

contribution of k-cells in each dimension taken with respect to

the appropriate stabilizers. Due to the compatibility of the

tessellation with the orbifold construction as in Theorem 5.1,

the leading terms of the polynomial growth functions are in

perfect agreement with the sums in the weighted k-cells

vectors.

6. Applicability

Since the present proof, in contrast to the proof by Coxeter

and our own arithmetic proof, does not require the inter-

mediate step of application to vertex transitive tessellations, it

is more general and makes the modified Euler characteristic

applicable to a larger class of tessellations. However, we

should point out that it is still limited to tessellations which are

invariant under the action of a certain crystallographic group.

This is a key condition in the present proof of the vanishing of

the orbifold Euler characteristic. Penrose tilings and quasi-

crystals violate this assumption and thus our proof is not
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Table 1
Polynomial k-cell growth functions computed for tessellations of groups p3, p6, p6mm, P23 and Pm3m and comparison with the orbifold weighted k-cell
vectors u.

G Nk(n) Vector uðO�Þ Figure

p3 N0(n) = 12n2 + 4n + 1 (3 � 1/3, 2 � 1, 1) 3(a)
N1(n) = 24n2

N2(n) = 12n2
� 4n

p6 N0(n) = 24n2 + 8n + 1 (1/6 + 1/3 + 1/2, 1 + 1, 1) 3(b)
N1(n) = 48n2 + 8n
N2(n) = 24n2

p6m N0(n) = 24n2 + 8n + 1 (1/12 + 1/6 + 1/4, 3 � 1/2, 1) 3(c)
N1(n) = 72n2 + 8n
N2(n) = 48n2

P23 N0(n) = 64n3 + 48n2 + 12n + 1 (2 � 1/12 + 2 � 1/4, 4 � 1/2 + 2 � 13 + 1, 4 � 1, 1) 6(a)
N1(n) = 352n3 + 144n2 + 12n
N2(n) = 384n3 + 96n2

N3(n) = 96n3

Pm3m N0(n) = 64n3 + 48n2 + 12n + 1 (2 � 1/48 + 2 � 1/16, 2 � 1/8 + 3 � 1/4 + 1/6, 4 � 1/2, 1) 6(b)
N1(n) = 448n3 + 144n2 + 12n
N2(n) = 768n3 + 96n2

N3(n) = 384n3



applicable in such cases. For such tessellations different

invariants exist, based on the Čech cohomology of a tiling

space (Penrose, 1992).

As a final conclusion, we note that in spite of its mathe-

matical appearance, our article is strongly rooted in crystal-

lography. Firstly, its inspiration is fully based in the

crystallographic concept of the asymmetric unit. As the clas-

sical Euler equation applies to fully bounded solids, the

modified version describes crystallographic asymmetric units

and Dirichlet domains. Secondly, the modified Euler char-

acteristic �m provides a topological basis for a strictly correct

(i.e. minimal) definition of ASU in crystallography as

presented by Grosse-Kunstleve et al. (2011).

APPENDIX A
Formal definitions

In this section we gather the necessary but distracting

standard mathematical definitions which have been used

throughout the text. For the convenience of the reader they

are trimmed and adjusted to the purposes and notation of the

main text.

Definition 7.1: group actions. Consider a set X which is

equipped with a (left) action of a group G, i.e. there is a map

m : G 
 X! X which satisfies m(g, m(h, x)) = m(g � h, x) and

m(e, x) = x for the identity element e 2G. For brevity, we write

g � x instead of m(g, x).

(i) An orbit of a point x 2 X is G � x = {g � x : g 2 G}.

(ii) A stabilizer subgroup Gx of a point x is the subgroup

{g 2 G : g � x = g} of elements which fix the point x 2 X.

(iii) A quotient space X/G is the set {G � x : x 2 X} of orbits

of the action of G on X.

(iv) Free action of a group G on X is an action such that g � x

= x if and only if g = e.

(v) A topological group G acts properly discontinuously on

a topological space X if each point x 2 X has an open

neighborhood Ux such that {g 2 G : g � Ux \ Ux 6¼ ;} is a finite

set.

Let us now formalize the notion of an orbifold. We follow

closely the definition of Thurston (2002; Section 13.2).

Definition 7.2. An orbifold O is a pair which constists of a

Hausdorff space XO and a set C ¼ fUigi2I of open subsets in

XO such that XO ¼
S

i2I Ui, and for every i 6¼ j if Ui;Uj 2 C

then Ui \ Uj 2 C. Moreover, there exists a positive integer

n such that for each i 2 I there exists a finite group �i , an

open subset eUUi � R
n, a group action of �i on eUUi and a

homeomorphism �i : Ui !
eUUi=�i . The maps �i satisfy the

following compatibility conditions:

(i) For i, j 2 I if Ui � Uj , then there exists an injective

homomorphism of groups fij : �i,!�j and an inclusione��ij : eUUi,!eUUj which satisfies the condition

8�2�i
8x2 ~UUi

e��ijð�xÞ ¼ fijð�Þe��ijðxÞ: ð14Þ

(ii) The following diagram of maps commutes.

The map �ij is a natural map obtained from e��ij by passing to

the quotient by �i. The map �ij is obtained from the injection

fij . A triple ðeUUi;�i; �iÞ is called a chart.

In general, the choice of two covers of the space XO for an

orbifold O is considered equivalent if there exists a larger

(finer) cover which is built by intersections from the two

(coarser) covers.

Although the definition of an orbifold looks complicated, it

encodes an intuitive idea that in some quotient spaces one can

find a family of compatible charts which have a finite group

action.

Theorem 7.1 [Thurston (2002), Proposition 13.2.1]. Let M be a

manifold and � a group which is acting properly discontinu-

ously on M. The quotient space M/� has the structure of an

orbifold in the sense of Definition 7.2.

A critical idea that we exploit in this article is the existence

of certain covering maps between orbifolds. We encode the

essential features in the following definition [modeled on

Thurston (2002), Definition 13.2.2)].

Definition 7.3: orbifold cover. Let p : eOO! O be a surjective

continuous map of orbifolds, i.e. a surjective map of the

underlying topological spaces p : X ~OO ! XO . Such a map p is a

degree d cover of orbifolds if for each x 2 XO there exists a

chart ðeUU;�; �Þ over the point x 2 U ¼ ��1ðeUU=�Þ such that for

each component Vi of p�1(U) we have:

(i) Each Vi has an orbifold chart ðeUU;�i; �iÞ where

�i < �, �i : Vi !
eUU=�i is a homeomorphism and p lifts to the

identity map eUU ! eUU.
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(ii) The cardinality of the pre-image set p�1(x) equals d for

any regular point, i.e. Gx = {e}.
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