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The resolution function of a spectrometer based on a strongly bent single crystal

(bending radius of 10 cm or less) is evaluated. It is shown that the resolution is

controlled by two parameters: (i) the ratio of the lattice spacing of the chosen

reflection to the crystal thickness and (ii) a single parameter comprising crystal

thickness, its bending radius, distance to a detector, and anisotropic elastic

constants of the chosen crystal. The results allow the optimization of

the parameters of bent-crystal spectrometers for the hard X-ray free-electron

laser sources.

1. Introduction

The self-amplified spontaneous emission (SASE) radiation

pulses of an X-ray free-electron laser (XFEL) originate from

random current fluctuations in the electron bunch (Saldin et

al., 2000). As a result, the intensity and the spectrum vary from

one pulse to another. The spectral composition of every pulse

used in an experiment needs to be measured individually.

Diffraction at a bent crystal transforms the energy spectrum

of a pulse into the angular spectrum of the diffracted waves, as

shown in Fig. 1. Each wavelength in the initial polychromatic

highly collimated X-ray pulse, incident on a bent crystal, finds

a position on the crystal where the Bragg law is satisfied for

this wavelength, and diffracts to the respective Bragg angle.

Several bent-crystal spectrometers have been built and tested

at the XFEL sources. Zhu et al. (2012), Rich et al. (2016) and

Boesenberg et al. (2017) inserted bent crystals directly into the

X-ray beam, while Makita et al. (2015) and Kujala et al. (2020)

used the beams deflected by linear gratings for further

diffraction at bent crystals.

To resolve the entire spectrum of a pulse, the bending radius

needs to be chosen such that each wavelength in the spectrum

finds a position at the bent crystal where its Bragg condition is

satisfied. The Bragg conditions corresponding to a spectral

width up to 100 eV have to be fulfilled within the spatial width

of the X-ray pulse, which is below 1 mm at the XFEL sources.

That requires bending radii of the order of 10 cm. Bending

radii from 5 to 30 cm were used in the works cited above. A

practical limit on the thickness of the bent crystal comes from

the need to reach such small bending radii. The works cited

above employed 10 mm-thick silicon or 20 mm-thick diamond

plates in 110 and 111 orientations. Zhu et al. (2012) combined

two bent-crystal spectrometers, with different bending radii

and employing different reflections, one to cover the whole

energy range and the other to reach a high resolution in a

limited energy range.
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Zhu et al. (2012) proposed that the resolution of the bent-

crystal spectrometer is mainly limited by two different

contributions originating from the dynamical diffraction

parameters, the extinction depth � and the Darwin width ��B.

The applicability of dynamical theory for planar crystals to the

strongly bent ones was not argued, however. Boesenberg et al.

(2017) and Kujala et al. (2020) considered the detector pixel

size as a parameter limiting the resolution.

Recently, we have given a detailed theoretical description of

the X-ray diffraction at strongly bent crystals (Kaganer et al.,

2020). We found that, because of the strong bending, the

orientation of the crystal with respect to the incident X-ray

wave deviates from the Bragg condition within the Darwin

width ��B in an interval of distances that is small compared

with the extinction length �. As a result, diffraction for

bending radii smaller than the critical radius Rc ¼ �=��B is

kinematical. The kinematical diffraction approximation is

satisfied in a broad range of crystal curvatures and X-ray

energies. Spatial and angular distributions of the diffracted

intensity have been calculated. In modelling diffraction of the

XFEL pulses, it has been presumed that the scattering

amplitudes for different frequencies add up coherently.

In the present work, we thoroughly analyse the diffracted

intensity integrated over the pulse duration. We find that the

coherent sum of the amplitudes describes an instant diffrac-

tion signal. In the time-integrated signal, the intensities, rather

than the amplitudes, of different frequencies add up. Afanasev

& Kohn (1977) arrived at a similar conclusion when analysing

diffraction from a continuous incoherent X-ray source and

averaging over random time instants of the emission of indi-

vidual atoms.

We show that the spectral resolution of a bent-crystal

spectrometer is controlled by two parameters. In the case of

Fraunhofer diffraction, one parameter is simply the ratio of

the lattice spacing of the actual reflection to the crystal

thickness. The other parameter depends on the crystal thick-

ness, its bending radius, and the anisotropic elastic constants of

the crystal. These parameters are modified for finite crystal–

detector distances (Fresnel diffraction). Still, two parameters

controlling the resolution are derived.

2. Time-integrated diffraction intensity

We assume full transverse coherence of the incident XFEL

pulse and take into consideration only its time structure. The

electric field of the pulse can be represented by its spectrum:

Ein
ðr; tÞ ¼

R1
�1

~EEinð!Þ expðiks0 � r� i!tÞ d!: ð1Þ

Here, ! is the frequency of a plane-wave component, k ¼ !=c

is its wavevector, c is the speed of light and s0 is the unit vector

in the direction of the wave propagation.

The wave packet (1) is incident on a bent-crystal spectro-

meter. We consider its diffraction on a bent crystal in the

kinematical (first Born) approximation. The applicability

limits of this approximation were established by Kaganer et al.

(2020) and are discussed in Section 5. We follow the descrip-

tion of the first Born approximation by Born & Wolf (2019,

Section 13.1.2), but keep explicitly the time exponent

expð�i!tÞ, which is usually implicit when considering

diffraction of a monochromatic wave, and keep the integration

over the frequencies !. The amplitude of the scattered wave is

Eout
ðr; tÞ ¼ re

Z1
�1

d!

Z
V

dr0 ~EE
in
ð!Þ

� expðiks0 � r
0
� i!tÞ%ðr0Þ

expðikjr� r0jÞ

jr� r0j
; ð2Þ

where re is the classical electron radius and %ðrÞ is the actual

quantum density of the electrons in the crystal lattice [see also

Landau & Lifshitz (1984), Section 124]. The spatial integration

is performed over the volume V of the crystal.

In the Fraunhofer limit r� r0 one has

jr� r0j ’ r� s � r0; ð3Þ

where s is the unit vector in the direction to the detector,

r ¼ rs. The correction to equation (3) at smaller distances

(Fresnel diffraction) is considered in Section 4. Using equation

(3), the scattered wave (2) can be represented as

Eoutðrs; tÞ ¼
re

r

Z1
�1

~EEinð!Þ expðikr� i!tÞf1ðs; s0; kÞ d!; ð4Þ

where the scattering amplitude in the first Born approximation

is

f1ðs; s0; kÞ ¼
R
V

%ðr0Þ exp½�ikðs� s0Þ � r
0� dr0: ð5Þ

Here, the dependence of the scattering amplitude f1 on the

length of the wavevector k is explicitly noted.

The intensity of the scattered wave at the time instant t is

Iðrs; tÞ ¼ Eoutðrs; tÞ
�� ��2
¼

r2
e

r2

Z Z1
�1

d!1 d!2 exp½ið!2 � !1Þt� exp½iðk1r� k2rÞ�

� ~EEinð!1Þ
~EEin�ð!2Þf1ðs; s0; k1Þf

�
1 ðs; s0; k2Þ; ð6Þ
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Figure 1
Schematic of a bent-crystal spectrometer. A collimated polychromatic
beam is incident on a bent crystal. Each wavelength in the beam is
diffracted at the position where the Bragg condition is satisfied for this
wavelength. The scattering angle for a reference wavelength is 2 ���, while
for another wavelength it is ��� þ �.



where the asterisk denotes the complex conjugate and

kn ¼ !n=c are the wavevectors (n ¼ 1; 2).

We consider the measurement of the scattered intensity by a

detector that integrates the intensity over the pulse duration

(otherwise, if the detector were able to resolve the time

structure of the pulse, the spectrometer would not be needed).

Hence, the measured intensity is a result of integration over

the pulse duration:

IðrsÞ ¼
R1
�1

Iðrs; tÞ dt: ð7Þ

Integration of the time-dependent term in equation (6) gives

rise to a delta function �ð!1 � !2Þ, so that the intensity inte-

grated over the time is

IðrsÞ ¼
2�r2

e

r2

Z1
�1

f1ðs; s0; kÞ
�� ��2 ~EEin

ð!Þ
�� ��2 d!: ð8Þ

This equation replaces equation (17) of Kaganer et al. (2020),

where a coherent superposition of the waves with different

wavevectors has been presumed.

The squared scattering amplitude jf1ðs; s0; kÞj2 in equation

(8) is a function of the frequency ! and the scattering angle

(the angle between vectors s0 and s). One can consider the

scattering angle as twice the Bragg angle for another

frequency !0, which is defined by this condition. Then, the

scattering intensity is represented as a function of !0. This

representation is used in all papers on the bent-crystal spec-

trometers cited in Section 1 since it allows one to conveniently

present the angular spectrum of the scattered intensity in the

same scale as the energy spectrum of the incident pulse.

Explicit expressions relating the scattering angle to the arti-

ficial frequency !0 are derived in the next section. Here we

denote ð2�r2
e=r2Þjf1ðs; s0; kÞj2 asRð!0; !Þ and rewrite equation

(8) as an integral:

J ð!0Þ ¼
R1
�1

Rð!0; !Þ ~EEinð!Þ
�� ��2 d!; ð9Þ

where J ð!0Þ is the intensity (8) after the change of variables

from � to !0. One can see that if the resolution is ideal, i.e.

Rð!0; !Þ is �ð!� !0Þ, the spectrum of the diffracted waves in

the !0 scale coincides with the spectrum of the incident wave.

The aim of the next sections is to calculate the resolution

function Rð!0; !Þ for a bent-crystal spectrometer.

3. Resolution of a bent-crystal spectrometer:
Fraunhofer diffraction

The scattering amplitude (5) for an ideal crystal is governed by

the Fourier component %Q expðiQ � rÞ of the electron density

%ðrÞ for the actual reciprocal-lattice vector Q. The displace-

ment field uðrÞ due to the bending causes the change of the

electron density according to the change of the positions of the

atoms to %½r� uðrÞ� and the respective change of its Fourier

component to %Q exp½iQ � r� iQ � uðrÞ�.

The kinematical diffraction amplitude (5) can be written as

an integral over the scattering plane of the crystal:

f1 ¼ %Q

R1
�1

dx
RD=2

�D=2

dz expðiqxxþ iqzz� iQ � uÞ; ð10Þ

where D is the thickness of the crystal plate and

q ¼ ks� ks0 �Q. Here, the scattering plane is the xz plane

with the x axis tangent to the surface of the bent crystal at

x ¼ 0 and the z axis along the inner surface normal. The origin

is taken in the middle plane of the crystal plate (see Fig. 1).

Let us calculate the components of the scattering vector q in

this frame.

An X-ray pulse consists of plane waves of different

frequencies incident onto the crystal at the same angle ��� with

respect to the x axis. The angle ��� is the Bragg angle for some

reference frequency �!! with the wavevector �kk ¼ �!!=c. The

Bragg law for this frequency reads d sin ��� ¼ �= �kk, where

d ¼ 2�=Q is the lattice spacing of the chosen reflection. The x

and z components of the reciprocal-lattice vector in the

chosen coordinate system are Q ¼ ð0;�2 �kk sin ���Þ.
The wavevector of the incident wave with any other

frequency ! in the pulse possesses the same incidence angle ���
but another wavevector k, so that

ks0 ¼ k cos ���; sin ���
� �

: ð11Þ

The diffracted intensity is measured as a function of the angle

� between the x axis and the vector s (see Fig. 1). Hence, the

wavevector of the diffracted wave is

ks ¼ k cos �;� sin �ð Þ: ð12Þ

As mentioned in the previous section, it is convenient to

consider the scattering angle ��� þ � as twice the Bragg angle of

a wave with the frequency !0 defined by this condition. The

Bragg law reads d sin½ð ��� þ �Þ=2� ¼ �=k0, where k0 ¼ !0=c is the

respective wavevector. A straightforward calculation of the

components of the vector q ¼ ks� ks0 �Q gives [see also

Appendix B by Kaganer et al. (2020)]

qx ¼
2�

d

!0 � �!!

�!!
tan ���; qz ¼

2�

d

!0 � !

�!!
: ð13Þ

For symmetric Bragg reflections considered in the present

work, Q � u ¼ �Quz, so that only the uz component of the

displacement field is of interest. For a crystal cylindrically bent

to a radius R, it is (Kaganer et al., 2020)

uz ¼ ðx
2 þ �z2Þ=2R: ð14Þ

To achieve the cylindrical bending of a rectangular plate, the

bending momenta have to be applied to the perpendicular

edges of the plate. The same bending state can be approached

by applying a momentum to the apex of a triangle-shaped

plate (Terentyev et al., 2016).

The parameter � in equation (14) depends on the aniso-

tropic elastic constants of the crystal, particularly, for a 110-

oriented diamond plate, � ¼ 0:02, while for a silicon plate of

the same orientation � ¼ 0:18. For 111-oriented plates, the

respective values are � ¼ 0:047 for diamond and � ¼ 0:22 for

silicon. Exceptionally small values for diamond are a result of

compensation of the Poisson and anisotropy effects, which

gives rise to a little depth dependence of the lattice spacing.
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The term expð�iQx2=2RÞ in the integral (10) due to the

displacement field of a bent crystal gives rise to an x range

relevant to diffraction of the order of ðRdÞ
1=2, which is

comparable with D and much smaller than the lateral

dimensions of the crystal. Hence, the integration over x in

equation (10) can be performed in infinite limits. This inte-

gration results in a phase factor that drops out when calcu-

lating jf1j
2. In the remaining integral over z, we proceed to a

dimensionless variable � ¼ 2z=D. Then, the integral (10) gives

Rð!0 � !Þ ¼
R1
�1

expðig� � ib�2Þ d�

����
����

2

; ð15Þ

where it is denoted

g ¼ �
D

d

!0 � !

�!!
; b ¼

�

4

�D2

Rd
: ð16Þ

In the case of Fraunhofer diffraction, only the qz component

of the scattering vector in equation (13) is relevant. The

resolution function in equation (9) depends on the difference

!0 � !, so that we write it asRð!0 � !Þ, and the integral (9) is

a convolution integral.

Before calculating the integral (15), let us discuss its prop-

erties qualitatively. As long as the parameter b is small

enough, the second term in the exponent in equation (15) can

be neglected. Numerical examples presented below show that,

practically, b does not need to be very small: this term can be

neglected for jbj<	 2. When this condition is satisfied, the

resolution function is simply sinc2g, where sincðxÞ ¼ sinðxÞ=x.

We write hereafter jbj, where this is relevant, since the radius

R can be positive for a convex crystal bending, as shown in Fig.

1, or negative for a concave bending.

The condition jbj<	 2 imposes a lower limit to the radius R.

At the same time, the upper limit to the radius is the

requirement of the applicability of the kinematical approx-

imation, so that the radius should be small compared with the

critical radius Rc ¼ �=��B. The theoretical examples

presented in this section and the experimental examples in

Section 5 show that the interval between these limits is broad

enough and covers a practically feasible range of parameters.

The resolution can be quantified using the Rayleigh

criterion, formulated for spectral lines with the shapes

described by the function sinc2g (see Born & Wolf, 2019,

Section 7.6.3). Rayleigh proposed that two components of the

same intensity are just resolved, when the principal intensity

maximum of one coincides with the first intensity minimum of

the other. This criterion corresponds to g ¼ � and gives the

resolution �E=E ¼ ð!0 � !Þ= �!! ¼ d=D. Hence, provided

jbj<	 2, the relative resolution �E=E does not depend on the

X-ray energy and on the bending radius and is equal to the

ratio of the lattice spacing of the chosen reflection to the

thickness of the bent crystal.

The integral (15) can be calculated and expressed through

cosine and sine Fresnel integrals CðxÞ and SðxÞ as

Rð!0 � !Þ ¼ F
gþ 2b

2�jbjð Þ
1=2

� �
� F

g� 2b

2�jbjð Þ
1=2

� �����
����

2

; ð17Þ

where FðxÞ ¼ CðxÞ þ iSðxÞ.

Fig. 2 compares the Fraunhofer diffraction curves for

Si(440) and C*(220) reflections at the X-ray energy of 8 keV.

Fig. 2(a) compares Darwin curves, i.e. the diffraction curves

for non-bent infinitely thick crystals. The Darwin widths are

0.07 and 0.15 eV for silicon and diamond reflections, respec-

tively. Figs. 2(b)–2(d) compare the diffraction curves, calcu-

lated by equation (17), from the crystal plates of different

thicknesses bent to a radius of R = 0.1 m.

The curves in Fig. 2(b) are calculated for the crystal thick-

ness of D = 10 mm. The values of the parameter b given by

equation (16) are 1.47 and 0.125 for silicon and diamond

reflections, respectively. Both values are smaller than 2, the

shape of the resolution functions is given by sinc2g and gives

rise to the resolutions �E=E ¼ d=D. The diamond reflection

provides a slightly worse resolution, since the lattice spacing is

larger. Fig. 2(c) shows diffraction curves for a two times larger

thickness, D = 20 mm. The values of the parameter b increase

by a factor of 4. As a result, this parameter becomes larger

than 2 for silicon (b ¼ 5:9), which results in a substantial

broadening of the diffraction line. This parameter remains

smaller than 2 for diamond (b ¼ 0:5), and the resolution

improves by a factor of 2 compared with Fig. 2(b), since the

crystal thickness is two times larger. In Fig. 2(d), the thickness

is again increased by a factor of 2, to D = 40 mm. The factor b

becomes four times larger compared with the case of Fig. 2(c).

For silicon, it is large, b ¼ 23:6, and the diffraction curve

broadens further. For diamond, it just reaches the value b ¼ 2,

and the resolution improves by a

factor of 2 and reaches the value

�E ¼ 0:025 eV. Further increase of the

thickness causes a reduction in the

resolution for diamond as well. We note

that the resolution obtained for a

40 mm-thick strongly bent diamond

plate is six times better than that of a

planar crystal given by its Darwin width.

Thus, the recipe to get the best reso-

lution in Fraunhofer diffraction from a

strongly bent crystal is to maximize the

ratio D=d while keeping the parameter

b in equation (16) smaller than 2. The
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Figure 2
Fraunhofer diffraction curves for Si(440) and C*(220) reflections at the X-ray energy 8 keV: (a)
Darwin curves, (b)–(d) diffraction from crystals bent to a radius of 0.1 m, at crystal thicknesses (b)
10 mm, (c) 20 mm and (d) 40 mm calculated by equation (17).



exceptionally small value of � for diamond allows larger

thicknesses, while keeping b< 2, and results in a notably

better resolution. This recipe is modified at finite distances to a

detector, which is discussed in the next section.

Fig. 3 compares a spectrum of the XFEL pulse incident on

the bent crystal with the calculated spectra obtained with the

bent-crystal spectrometers. The pulse generated during the

SASE process at the European XFEL is simulated with the

code FAST (Saldin et al., 1999), which provides a 2D distri-

bution of electric field in real space at the exit of the undulator

for each time moment for various parameters of the electron

bunch and the undulator. Simulation results are stored in an

in-house database (Manetti et al., 2019). The pulse is simulated

for the electron energy 17.5 GeV and the active undulator

length corresponding to the low-gain regime of SASE

(Schneidmiller & Yurkov, 2014). Conversion from the time

domain to the frequency domain is performed using the

WavePropaGator package (Samoylova et al., 2016), which

provides a 2D distribution of electric field for each frequency

of the pulse. We use the spectrum at the centre of the pulse in

the frequency domain, assuming this distribution to be the

same across the beam.

The spectra obtained with the bent-crystal spectrometers

are calculated by equation (9) with the resolution function

(17). Two reflections from crystals bent to a radius R = 0.1 m

are compared: Si(440) from a 10 mm-thick plate and C*(220)

from a 20 mm plate. The latter gives two times better resolu-

tion compared with the former, cf. Figs. 2(b), 2(c). A char-

acteristic separation between the peaks in the spectrum is

0.12 eV. These peaks are well resolved by the C*(220) spec-

trometer with its resolution of 0.048 eV and still resolved with

the Si(440) spectrometer with the resolution of 0.08 eV.

4. Resolution of a bent-crystal spectrometer: Fresnel
diffraction

This section is devoted to evaluating the effect of a finite

distance between the bent-crystal spectrometer and a

detector. The finite distance to a detector is accounted for by

the subsequent term in the expansion (3):

jr� r0j ’ r� s � r0 þ
½r0 � ðr0 � sÞs�2

2r
: ð18Þ

Substituting r0 ¼ ðx; zÞ and s ¼ ðcos �;� sin �Þ in the coordi-

nates of Fig. 1, we find that equation (10) acquires an addi-

tional phase term exp½ikðx sin � þ z cos �Þ2=2L� in the integral.

Hereafter, the spectrometer–detector distance is denoted by L

instead of r for convenience. The wavevector k and the scat-

tering angle � can be replaced in this term with sufficient

accuracy with the reference values �kk and ���.

Calculation of the integral (10) with this additional phase

factor has been performed in our previous work (Kaganer et

al., 2020). After evaluation of the integral over x in the infinite

limits, we arrive at a modified equation (15),

Rð!0; !Þ ¼
R1
�1

expði~gg� � i ~bb�2Þ d�

����
����

2

; ð19Þ

where

~RR ¼ R 1þ
R sin ���

2L

� ��1

; ð20Þ

~�� ¼ �þ
~RR cos2 ���

2L sin ���
; ð21Þ

~bb ¼
�

4

~��D2

Rd
; ð22Þ

~gg ¼ �
D

d
1þ

R sin ���

2L

� ��1
!0 � !

�!!
�

R sin ���

2L

!0 � �!!

�!!

� �
: ð23Þ

Calculation of the integral (19) is the same as in equation (17)

above:

Rð!0; !Þ ¼ F
~ggþ 2 ~bb

2�j ~bbj
� �1=2

" #
� F

~gg� 2 ~bb

2�j ~bbj
� �1=2

" #������
������

2

: ð24Þ

The resolution function in equation (24) depends on ! and !0,
rather than the difference !� !0 in equation (17). As a result,

the diffracted spectrum is stretched or squeezed, depending on

the sign of the bending. This is discussed below.

Similarly to the Fraunhofer diffraction case described in the

previous section, a maximum resolution is reached as long as

j ~bbj<	 2. If this condition is satisfied, the resolution according to

the Rayleigh criterion, which follows from equation (23), is
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Figure 3
Spectrum of a SASE pulse incident on the bent-crystal spectrometers
(grey lines) and spectra of the diffracted waves for the C*(220) reflection
from a 20 mm-thick crystal (red lines) and for the Si(440) reflection from
a 10 mm-thick crystal (blue lines), both bent to a radius of 0.1 m.
Fraunhofer diffraction. (a) Whole spectrum, (b) magnified central part.



�E

E
¼

d

D
1þ

R sin ���

2L

� �
: ð25Þ

If R> 0, in the case of the convex bending shown in Fig. 1, the

resolution becomes worse compared with the Fraunhofer

diffraction. Conversely, for a concave bending R< 0, the

resolution is better than in the case of Fraunhofer diffraction.

The correction can be notable when the bending radius R and

the distance to a detector L are comparable. We expect,

however, that R
 L is a more common case. We take into

account this correction in the numerical calculations below but

do not discuss it further.

The parameter ~bb in equation (22) can be rewritten as

~bb ¼ bþ
D2 cos2 ���

�L
1þ

R sin ���

2L

� ��1

; ð26Þ

where � is the wavelength, and the Bragg law 2d sin ��� ¼ � is

used. Kaganer et al. (2020) considered this parameter in the

case � ¼ 0 (and hence b ¼ 0) and stated that the Fraunhofer

limit is reached when the diameter of the first Fresnel zone

ð�LÞ
1=2 exceeds the crystal thickness seen from the direction of

the diffracted beam, D cos ���. In the general case b 6¼ 0, both

contributions to ~bb need to be taken into account, to provide

the desired condition j~bbj<	 2.

Since the sign of b coincides with the sign of R, the condition

j ~bbj<	 2 is satisfied at different distances L for the convex and

the concave bending. The effect of finite distances is especially

strong for diamond, since the parameter �, and hence b, are

especially small. As an illustration, Fig. 4 presents the

dependencies of the parameter ~bb on the distance to a detector

L at the X-ray energy of 8 keV for the bending radii

R ¼ �0:1 m. We choose a 10 mm-thick silicon and a 20 mm-

thick diamond since such crystal thicknesses have been used in

the experimental works discussed in the next section.

Fig. 4(a) shows the parameter ~bb for a 10 mm-thick silicon

plate in the reflection (440). At a distance L = 1 m, the values

of ~bb are close to the Fraunhofer limit jbj ’ 1:47. For a convex

bending, the value of ~bb remains smaller than 2, and hence

a maximum resolution is provided, down to a distance of

0.3 m. For a concave bending, j ~bbj remains smaller than 2 for

distances exceeding 0.1 m, as a result of the compensation of

the curvature of the lattice planes and the curvature of the

wavefront.

Fig. 4(b) shows a corresponding calculation for a 20 mm-

thick diamond plate in the reflection (220). A notable devia-

tion from the value jbj ’ 0:5 in the Fraunhofer limit takes

place already at a distance of 10 m. A critical value ~bb ¼ 2 is

reached at a distance of 0.8 m for a convex bending and at a

distance of 0.55 m for a concave bending. As expected, finite

distances to a detector give rise to a stronger effect for

diamond since the finite distance correction in equation (26) is

added to a smaller b.

Fig. 5 compares resolution functions for the same diffrac-

tion conditions as in Fig. 4 at different distances to a detector

and the convex crystal bending, R = 0.1 m. When the distance

L is reduced, the resolution curves calculated for Si(440) in

Fig. 5(a) change only a little, in agreement with Fig. 4(a),

where the value of ~bb remains smaller than 2 for the distances L

exceeding 0.3 m. In contrast, the resolution curves for C*(220)

in Fig. 5(b) are notably modified and broadened since ~bb in Fig.

4(b) increases with the reducing distance L and exceeds the

value of 2 for L < 0.8 m. We note that Figs. 4 and 5 compare

silicon and diamond crystals of different thicknesses. For a

silicon crystal of the same thickness of 20 mm as diamond, the

value of ~bb would increase by a factor of 4, and the desirable

resolution by equation (25) could not be reached.

Fig. 6 shows the same selected region of a SASE pulse

spectrum as in Fig. 3(b), and the spectra of the diffracted

waves calculated by equation (9) with the resolution function

(19) for the C*(220) reflection from a 20 mm-thick crystal bent

to radii R ¼ �0:1 m at the distance to a detector of L = 0.6 m.

At this distance, as follows from Fig. 4(b), the parameter ~bb is

slightly larger than 2 for the convex bending and somewhat

smaller than 2 for the concave bending. As a result, the

diffracted wave spectrum for the concave bending in Fig. 6(b)

reveals somewhat better resolution compared with the convex

bending case in Fig. 6(a).

The diffracted spectra in Fig. 6 are scaled with respect to the

incidence spectrum. The spectrum is stretched for R> 0 and
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Figure 4
The dependence of the parameter ~bb given by equation (22) on the
distance L to a detector for the X-ray energy of 8 keV, bending radii
R ¼ �0:1 m, and (a) Si(440) reflection at 10 mm crystal thickness and (b)
C*(220) reflection at 20 mm crystal thickness.

Figure 5
Resolution curves for Fresnel diffraction at the X-ray energy of 8 keV for
(a) Si(440) reflection, crystal thickness 10 mm, and (b) C*(220) reflection,
crystal thickness 20 mm. Bending radius R = 0.1 m, distances to a detector
0.3, 0.6 and 1 m.



squeezed for R< 0. This effect reduces with the increasing

distance to a detector and vanishes in the Fraunhofer limit. As

discussed in Section 3, the curves of diffracted intensity are not

a real spectrum. Rather, they are a representation of the

angular distributions of the intensity in terms of energy

distributions. For Fraunhofer diffraction, such recalculation of

the angular spectrum differs from the incident spectrum

because of the finite resolution. At finite distances between

the bent-crystal spectrometer and a detector, the diffracted

spectrum is also scaled with respect to the incident spectrum.

5. Discussion

Table 1 compares the resolutions of the bent-crystal spectro-

meters, reported in the experimental studies, with the calcu-

lated resolutions. The accuracy in determination of both

quantities is limited by a number of factors. In the experi-

ments, the spectrum of the incident pulse is not known. The

resolution inferred from the oscillations in the diffracted

spectrum can provide only an upper bound for the resolution

since a resolution better than the widths of the oscillations will

not show up. An additional smearing of the diffracted intensity

is caused by a detector resolution, given by its pixel size and a

finite distance to it.

In the calculations, even the diffraction of a monochromatic

incidence wave gives rise to complicated intensity profiles like

the ones shown in Figs. 2 and 5, which need to be characterized

by a single number representing the resolution. The full width

at half-maximum (FWHM) of the calculated diffraction curves

seems a reasonable characteristic of the curves, although it

ignores their internal structure. However, we would like to

keep the resolution given by the Rayleigh criterion for the

cases of the best available resolution, when the resolution

function is given by sinc2g, as in Figs. 2(b) and 5(a). In these

cases, the Rayleigh resolution is 1.13 times larger than the

FWHM of the respective peak. Therefore, we define the

resolution �E as 1.13 � FWHM. The values thus obtained

from the intensity curves calculated by equation (24)

are presented in Table 1 for the respective experimental

conditions.

As a first step of the analysis, we calculate the critical radii

Rc for the applicability of the approximation of kinematical

diffraction employed in the present work. The critical radius is

given by the ratio Rc ¼ �=��B of the Bragg case extinction

length � to the Darwin width ��B (Kaganer et al., 2020). If the

bending radius is small compared with the critical radius, the
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Table 1
Resolutions of the bent-crystal spectrometers reported in the experiments and the corresponding calculated resolutions.

The critical radius Rc for applicability of the kinematical calculation is given by the ratio of the extinction length to the Darwin width �=��B. Bending radii R,
crystal thicknesses D and the distances L to a detector are taken from the corresponding publications. The parameter ~bb is calculated by equation (22). The
calculated resolution �E is obtained from the FWHMs of the intensity curves calculated by equation (24). The experimental resolutions are the ones reported in
the corresponding publications.

Resolution

Reference Reflection Energy (eV)
Critical radius
Rc (m)

Bending radius
R (m)

Thickness
D (mm)

Distance
L (m) ~bb

Calculated
�E (eV)

Experiment
�E (eV)

Zhu et al. (2012) Si(111) 8330 0.05 0.30 10 0.33 1.55 0.30 0.5
Si(333) 8330 0.96 0.15 10 0.44 1.63 0.10 0.13

Makita et al. (2015) Si(333) 8330 0.96 0.078 10 0.33 2.85 0.14 0.30
Si(220) 8330 0.09 0.05 10 0.2 3.61 0.57 –

Rich et al. (2016) Si(440) 8330 0.60 0.10 10 0.5 1.86 0.09 0.15
Si(220) 8330 0.09 0.05 20 0.5 9.41 0.83 –

Boesenberg et al. (2017) C*(220) 7610 0.25 0.10 20 0.35 3.44 0.17 0.24
C*(440) 10500 1.71 0.10 20 0.35 1.82 0.04 0.32
Si(220) 7610 0.08 0.05 10 0.27 2.88 0.24 0.61
Si(440) 7610 0.46 0.05 10 0.27 3.41 0.26 0.32

Kujala et al. (2020) Si(220) 9310 0.10 0.10 10 1 1.25 0.19 0.55
Si(440) 9310 0.77 0.10 10 1 1.77 0.10 0.15
Si(333) 9310 1.19 0.075 10 1 2.55 0.12 0.15
C*(220) 9310 0.35 0.125 20 1 2.05 0.07 0.25

Figure 6
A selected region of a SASE pulse spectrum, the same as in Fig. 3(b), and
the spectra of the diffracted waves for the C*(220) reflection from D =
20 mm crystal and the distance from the bent-crystal spectrometer to a
detector L = 0.6 m. (a) Convex bending, R = +0.1 m, (b) concave bending,
R = �0.1 m.



length of the path of the incident wave in the crystal, where it

remains in conditions of dynamical diffraction, i.e. within the

angular range ��B, is small compared with the length �
needed to produce a strong diffracted wave. Then, the

diffracted wave remains weak compared with the transmitted

wave and can be calculated kinematically. Both quantities, �
and ��B, are calculated using Sergey Stepanov’s X-Ray Server

(Stepanov, 2004, 2021) for respective energies and reflections,

and the resulting critical radii Rc are presented in Table 1.

The bending radii R are smaller than the respective critical

radii Rc in all cases listed in Table 1, except for the Si(111)

reflection reported by Zhu et al. (2012). This reflection was

chosen to cover the whole spectrum of the pulse at the cost of

lower resolution. We calculate the energy resolution in the

kinematical approximation for this case as well, for the sake of

completeness.

Next, we calculate, for every experiment listed in Table 1,

the parameter ~bb by equation (22). As long as j ~bbj<	 2, the

optimum resolution given by equation (25) is reached. The

Si(220) reflection by Rich et al. (2016) corresponds to a large

value ~bb ¼ 9:4 and gives rise to a low energy resolution. In all

other cases, ~bb does not exceed 3.6, and the resolution is worse

than the optimum one, up to a factor 3.4.

The calculated energy resolutions �E presented in Table 1

are obtained by simulating the respective resolution curves by

equation (24) and numerically obtaining the FWHMs of the

curves. The resolution is defined to be 1.13 � FWHM, as

suggested above. In all cases, the calculated resolutions in

Table 1 are smaller than the corresponding experimental

resolutions. This is expected since our calculations do not take

into account a finite detector resolution, partial incoherence

of the SASE pulse, the X-ray amplitude variation across

the pulse, and further possible inhomogeneities in the

experiments.

The energy resolution of a bent-crystal spectrometer is

given mostly by the ratio d=D. The finite-distance correction

factor R sin ���=2L in equation (25) is about 0.1 or less for the

spectrometers in Table 1. To improve the resolution, one

would need to increase the crystal thickness D. However,

there is almost no room for that since ~bb is proportional to D2

and should not exceed 2, while in Table 1 it is at that limit or

above in most cases. A possible way to increase the silicon

crystal thickness is to use concave bending, R< 0. Then, the

two terms in equation (21) have different signs and partially

compensate each other. For diamond with its small �, an

increase of the distance to a detector L allows one to increase

D and hence increase the resolution. For a large crystal–

detector distance, as exemplified in Fig. 2(d), a resolution

�E ¼ 0:025 eV, or �E=E ¼ 3� 10�6, can be obtained at a

thickness of the diamond crystal of 40 mm.

The general formulas are illustrated in Sections 3 and 4 by

calculations at an X-ray energy of 8 keV since this value is

close to the energies in the experiments listed in Table 1. In the

case of Fraunhofer diffraction, the parameter b in equation

(16) and the relative energy resolution �E=E ¼ d=D are

energy independent. However, at higher X-ray energies, one

can proceed to higher reflection orders. If other parameters

are kept unchanged, the parameter b increases (b / d�1) and

may exceed the value of 2, which will result in a loss in reso-

lution. As soon as b is smaller than 2, the absolute resolution

�E remains the same in higher reflection orders.

In the case of Fresnel diffraction, the parameter ~bb in

equation (22) and the energy resolution (25) depend on the

X-ray energy through the variation of the Bragg angle ���. This

effect seems minor, at least for R
 L. Let us take a two times

greater X-ray energy of 16 keV for a comparison. Then, the

second orders of the reflections considered in Section 4,

namely Si(880) and C*(440), can be used and give just the

same Bragg angles as the ones in reflections Si(440) and

C*(220) at 8 keV. If other parameters are not changed, the

value of ~bb increases by a factor of 2. It follows from Fig. 4 that

at the convex bending the values of ~bb will be larger than 3,

which results in a decrease in resolution. For concave bending,

the diamond crystal can be still used without a loss in reso-

lution for the distances L to a detector of 1 m or more, while

the silicon crystal can be used at smaller distances.

6. Conclusions

We have shown that the angular distribution of the intensity

diffracted by a bent crystal and integrated over the pulse

duration is given by a convolution of the spectrum of the

incident X-ray pulse with the resolution function of the bent-

crystal spectrometer. This result does not depend on the

degree of temporal coherence.

We have evaluated the resolution of the bent-crystal spec-

trometer. It is controlled by two parameters. One parameter is

the ratio d=D of lattice spacing of the chosen reflection to the

thickness of the bent crystal. This ratio is the best achievable

resolution, �E=E ¼ d=D. It is reached if j ~bbj<	 2, where the

parameter ~bb given by equation (22) combines in a single

parameter the crystal thickness D, the curvature radius R, the

distance to a detector L, the lattice spacing of the actual

reflection d, and the parameter � representing the anisotropic

elastic properties of the crystal. As an example, for the

C*(220) reflection and a crystal thickness of 40 mm, the reso-

lution of �E=E ¼ 3� 10�6 can be reached. These results

allow one to optimize the parameters of the bent-crystal

spectrometers for the XFEL radiation pulses.
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