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Deformation twinning on a plane is a simple shear that transforms a unit cell

attached to the plane into another unit cell equivalent by mirror symmetry or

180� rotation. Thus, crystallographic models of twinning require the determina-

tion of the short unit cells attached to the planes, or hyperplanes for dimensions

higher than 3. Here, a method is presented to find them. Equivalently, it gives

the solutions of the N-dimensional Bézout’s identity associated with the Miller

indices of the hyperplane.

1. Introduction

How to determine a unit cell attached to a plane p ¼ ðh; k; lÞ?

This problem occurs for example in the crystallographic

models of twinning, when the obliquity or the shear values

must be calculated for many planes. It is intuitively solved for

low-index planes, but the solutions are more difficult to obtain

for high-index planes. In addition, if a unit cell can be found,

can it be reduced to a smaller one? In dimension N, the

difficulty of finding a small unit cell attached to a hyperplane

of dimension N � 1 becomes even more pronounced. Let us

express mathematically this ‘hyperplane unit-cell problem’ by

the notations detailed in Appendix A. We assume that a

hyperplane is known only by its Miller indices h; k; l which are

coprime integers, or equivalently by its normal which is

expressed as an integer vector of coordinates h; k; l in the

reciprocal space. We want to determine a small unit cell such

that one short integer vector of the cell points to a node of the

first layer parallel to the hyperplane, and the other N � 1 short

integer vectors lie in the hyperplane. The ‘out-of-plane’ vector

and the ‘in-plane’ vectors are noted b1 and b2; . . . ; bj; . . . ; bN ,

respectively. The vector b1 is such that ptb1 ¼ 1, and the N � 1

vectors b2; . . . ; bj; . . . ; bN are such that ptbj ¼ 0. The coordi-

nates of the vector b1 constitute a solution of the N-dimen-

sional Bézout’s identity formed on the coordinates of p. The

coordinates of any of the vectors bj, j 2 f2; . . . ;Ng, are solu-

tions of what is called an ‘integer relation’ with the coordi-

nates of p (Appendix A). For example, with N ¼ 3, the integer

coordinates u; v;w of b1 verify the equation uhþ vkþ wl = 1;

the integer coordinates u; v;w of the vector b2 (or b3Þ verify

the equation uhþ vkþ wl ¼ 0, as illustrated in Fig. 1.

Finding solutions to integer relations is not complicated. For

N ¼ 3, if we know a plane p ¼ ðh; k; lÞ with let us say k 6¼ 0, it

is not difficult to find two integer vectors b2 and b3 in this

plane, for example, b2 ¼ ½�k; h; 0� and b3 ¼ ½0;�l; k�. The

difficult part of the problem is to find vectors with small

coordinates by considering all the possible linear combina-

tions of the Miller indices h; k; l. Finding the shortest solutions

in dimension N is an NP-hard (non-deterministic polynomial-
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time) problem well known in computer science and crypto-

graphy. An algorithm called PSLQ gives short solutions to

integer relations with any vector p 2 RN (Ferguson et al., 1999;

see also Wikipedia, 2021a). It has permitted the discovery of

numerous previously unknown identities among real numbers;

one of them is the formula that allows the calculation of the

nth hexadecimal digit of � without computing the preceding

digits (Bailey et al., 1997; Raayoni et al., 2021). The algorithm

presented in the present paper gives only solutions for the

vectors p 2 ZN but, as we will show, the vectors we obtain are

shorter than those obtained by PSLQ. Our algorithm actually

provides simultaneously a short solution to the N-dimensional

Bézout’s identity and short solutions to the ‘integer relations’.

It gives the affine space of all the solutions of the N-dimen-

sional Bézout’s identity. From a crystallographic point of view,

it provides a small unit cell attached to a hyperplane.

Recently, Gorfman (2020) proposed a method to find some

solutions to an intermediate problem that we will call the

‘column-constrained unimodular matrix’ (CCUM) problem in

order to differentiate it from the initial ‘hyperplane unit-cell

problem’. The CCUM problem consists of finding a uni-

modular matrix M such that the first column is equal to a fixed

integer vector t. We recall that a unimodular matrix has

integer entries and its determinant is �1. Note that, in Gorf-

man’s paper, it was the last vector (and not the first one) that

was imposed, but that does not change the problem. Gorf-

man’s approach involves a series of multiplication with

matrices called S containing 0, 1 and �1 in order to reduce the

imposed vector t to a unit vector (a vector for which one of its

coordinates is 1 and the others are 0). Gorfman showed that

the same algorithm applied in the reciprocal space to a vector

p gives a solution to the hyperplane unit-cell problem. Let us

explain how it works with our notations. For an imposed

reciprocal vector p, Gorfman’s method permits one to obtain a

unimodular matrix M� that has p for the first column vector.

Then, the inverse of its transpose M ¼ ðM�Þ�t is calculated.

Since M� is a unimodular matrix, the matrix M is also uni-

modular, which implies that its columns are integer vectors.

Let us call them bj. Since ðM�ÞtM is the identity matrix, its first

column is a vector that has 1 as the first coordinate and 0 for all

the other coordinates. This means that ptb1 ¼ 1 and ptbj ¼ 0

for j 2 f2; . . . ;Ng, which proves that the matrix M is a solution

of the hyperplane unit-cell problem. Gorfman’s idea of using

unimodular matrices is very interesting and his approach is

innovative and inspiring, but it does not give short solutions.

For example, for the plane pt ¼ ð12; 20; 225Þ, the solution

determined by his algorithm in which the first imposed column

vector is p is

M� ¼

12 2 3

20 3 5

225 4 56

2
4

3
5:

The inverse of its transpose is

M ¼

148 5 �595

�100 �3 402

1 0 �4

2
4

3
5:

The reader can check that the scalar product of ð12; 20; 225Þ

with the first column vector ½148;�100; 1� is 1, and that the

scalar product with the last column vectors ½�595; 402;�4�

and ½5;�3; 0� is 0. However, the vector ½148;�100; 1� solution

of the 3D Bézout identity and the vector ½�595; 402;�4�

solution of the integer relation are large. The vector

½�595; 402;�4� is even larger than the obvious solution

½0;�4; 45�. More generally, Gorfman suggests that the algo-

rithm could be ‘an alternative approach to calculate the

Bezout coefficients’, but we would like to show that the

opposite approach is possible. The aim of the paper is to show

that determination of the Bézout’s coefficients is an efficient

way to find short solutions of both the CCUM problem and

hyperplane unit-cell problem. The algorithm proposed in the

present paper is based on Euclidean division. An algorithm to

determine some short solutions to the N-dimensional Bézout’s

identity is proposed in Section 2. The algorithm to solve the

CCUM problem is detailed in Section 3. Sections 2 and 3 are

independent. In Section 4, we explain how to combine the two

algorithms to find short solutions to the hyperplane unit-cell

problem. Some examples will be given and compared with the

PSLQ algorithm. The method has been encoded in a Python

3.8 computer program called GeneralizedBezout. The exam-

ples given were obtained on a laptop computer equipped with

an Intel Core i7-4600 CPU 2.1 GHz, 64-bit Windows system

with a RAM of 8 GB. Note: the Python program General-

izedBezout is freely available from the author upon request.

2. N-dimensional Bézout’s identity

Given a set of integers fpi; i ¼ 1; . . . ;Ng we look for another

set of integers fui; i ¼ 1; . . . ;Ng such that
PN

i¼1 piui ¼ 1. In

other words, given an integer vector p of coordinates pi, we

want to get the coordinates ui of an integer vector u that is

such that ptu ¼ 1. If N = 2, the fast and well known algorithm

based on Euclidean division gives a solution that is also the

shortest one (Capparelli, 2020; Wikipedia, 2021b). Surpris-

ingly, we could not find in the literature algorithms in high

dimensions N. We propose here two recursive algorithms.
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Figure 1
Unit cell associated with the plane p ¼ ðh; k; lÞ. The out-of-plane vector
b1 points to a node of the layer q = 1, and the in-plane vectors b2 and b3 lie
in the layer q = 0. The vector b1 is a solution of the Bézout’s identity
ptb1 ¼ 1, and the vectors b2 and b3 are solutions of the integer relations
ptb2 ¼ 0 and ptb3 ¼ 0.



They give different solutions that are all valuable, but we will

see that the second one gives shorter solutions.

Method-0. We consider p1 and p2 the two first coordinates of

p, and we call ðu; vÞ their Bézout numbers, i.e.

up1 þ vp2 ¼ gcd ðp1; p2Þ. If we note fki; i ¼ 2; . . . ;Ng the

Bézout numbers in dimension N � 1 associated with the set

fgcd ðp1; p2Þ; p3; . . . ; pNg, a solution of the N-dimensional

Bézout’s identity is thus fuk2; vk2; k3; . . . ; kNg. This method is

easy to compute by recursion until the dimension decreases to

N = 2 for which the solution is given by the classical Bézout’s

algorithm. The problem related to this method is that the

absolute values of the Bézout numbers ui can be quite high.

One could screen all the pairs ðpi; pjÞ in place of ðp1; p2Þ to

determine the lowest Bézout numbers but this method would

be unrealistic for high dimensions N. We could find another

method for which the values are lower than those determined

by method-0.

Method-1. We consider the set of integers

fpi; i ¼ 1; 2; . . . ;Ng. If 9i; jpij ¼ 1, the solution of the Bézout

identity is immediately f0; . . . 0; pi; 0 . . . ; 0g. If none of the pi’s

has 1 as absolute value, the set fpig is sorted in decreasing

order of the absolute values of pi. The sorting permutation � is

kept in memory. The smaller non-null value is called pi0
. We

calculate the quotient set and the residue set {qi; i =

1; 2; . . . ; i0 � 1} and fri; i ¼ 1; 2; . . . ; i0 � 1g with qi ¼ bpi=pi0
c

and ri ¼ pi � qipi0
, quotient and remainder of the Euclidean

division by pi0
. If we note fu1; u2; . . . ; ui0�1; 0; . . . ; 0g the

Bézout numbers associated with the set {r1; r2; . . . ;
ri0�1; 0; . . . ; 0}, a solution of the N-dimensional Bézout’s

identity is fu1; u2; . . . ; ui0�1;�
Pi0�1

i¼1 qiui; 0; . . . ; 0g. This

method is easy to compute by recursion until one of the

absolute values of the input vector is 1. The correct order of

the Bézout numbers associated with the initial set

fpi; i ¼ 1; 2; . . . ;Ng is restored by applying ��1. The pseudo-

code is given in Fig. 2.

The Bézout numbers calculated with method-1 are smaller

than those obtained by method-0. Only method-1 will be

considered in the rest of the paper. With the vector

pt ¼ ð12; 20; 225Þ, it gives u ¼ ½�17;�1; 1�. With the vector

pt ¼ ð51; 450;�102; 240;�277; 54; 450; 532Þ, it gives u = [�3,

0, 0, 0, 0, �3, 0, 1]. The calculation lasts only a few ms. Even if

method-1 gives small Bézout vectors u, it may not give

systematically the smallest ones. We will see in Section 4 how

‘hyperplane shearing’ can give shorter Bézout vectors u with

the help of the CCUM algorithm detailed in Section 3.

3. Algorithm to solve the column-constrained
unimodular matrix problem

3.1. Case where one of the coordinates of t is �1

Now we consider the CCUM problem. There is a simple and

immediate solution if the first coordinate of t is 1. In that case,

any diagonal or even triangular matrix M with 1 in the diag-

onal and with t as the first column checks the condition det(M)

= 1. If the first coordinate of t is �1, changing one 1 into �1 in

the diagonal is sufficient to maintain det(M) = 1. The example

used by Gorfman (2020) with the vector t of coordinates

½�1; 4; 2� enters in this category. A direct solution is

M ¼

�1 0 0

4 1 0

2 0 �1

2
4

3
5:

Note that the result is obtained without any calculation. If one

of the coordinates of t is 1 in a position i > 1, then a simple

matrix of permutation P is sufficient to recalculate the matrix

M. We will not give more details here because the solutions

are actually included in the more general method based on

Bézout’s identity explained as follows.

3.2. Case where t has at least one pair of coprime coordinates

In the case N = 2, the general solution to the CCUM

problem is given by the classical 2D Bézout’s identity. We note

t ¼
t1

t2

� �

the imposed vector. There is a solution if and only if the

integers t1 and t2 are coprime, and the solution is simply

t1 �v

t2 u

� �
;

where u, v are the Bézout numbers associated with t1 and t2,

i.e. solutions of the equation ut1 þ vt2 ¼ 1. If t1 and t2 are not

coprime, the determinant of any matrix M with t in the first

column would be a multiple of gcd(t1, t2), the greatest common

divisor of t1 and t2, and thus cannot be equal to �1. The

resulting vector

�v

u

� �

is the shortest vector. The other vectors are

�vþ kt1

uþ kt2

� �

with k 2 Z.
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Figure 2
Pseudocode to find Bézout numbers associated with the coordinates of a
vector p.



Now, we consider the case where N > 2 and the vector t has

its two first coordinates t1 and t2 that are coprime numbers. We

consider the matrix M made of two blocks, the top left one is

t1 �v

t2 u

� �
;

where u, v are the Bézout numbers associated with t1 and t2,

and the bottom right one is the ðN � 2Þ � ðN � 2Þ identity

matrix. Then, the first column of M is replaced by t (t1 and t2

are not changed, and the zeros in Mi,1 are replaced by ti; i> 2Þ.

The matrix M is the solution of the CCUM problem.

When the two coprime coordinates of vector t, t1 and t2, are

not the first ones, the permutation matrices Pði; 1Þ and Pðj; 2Þ

are used to return to the previous case. We recall that a

permutation matrix Pði; jÞ is a N � N identity matrix, except

for the line i for which 1 is written in the column j, and for the

column j where 1 is written in the line i. Permutation matrices

are unimodular matrices and are equal to their inverse. The

unimodular matrix P = Pði; 1ÞPðj; 2Þ is such that the vector P 	 t

has for first coordinates the coprime numbers t1 and t2. We

thus return to the previous case. If we call M the two-block

solution of that case, the solution of the problem is given by

the matrix P�1M. Note that P�1 ¼ Pðj; 2ÞPði; 1Þ 6¼ P.

With t of coordinates ½12; 20; 225�, the algorithm gives

M ¼

12 1 0

20 2 1

225 0 �56

2
4

3
5:

The algorithm works very efficiently, even in high dimensions

and with large coordinates. For example, with t of coordinates

[1551, �540, 67, �102, 2140, �277, 32, 366, 450, 1532], the

algorithm gives immediately (less than 1 ms) a solution:

M ¼

1551 0 0 0 0 0 0 0 0 �463

�540 0 1 0 0 0 0 0 0 0

67 0 0 0 0 0 0 0 0 �20

�102 0 0 0 1 0 0 0 0 0

2140 0 0 0 0 1 0 0 0 0

�277 0 0 0 0 0 1 0 0 0

32 0 0 0 0 0 0 1 0 0

366 0 0 0 0 0 0 0 1 0

450 �1 0 0 0 0 0 0 0 0

1532 0 0 1 0 0 0 0 0 0

2
666666666666664

3
777777777777775

:

3.3. Case where none of the pairs of coordinates of t are
coprime

Now, let us consider the rarer cases in which none of the

pairs ðti; tjÞ of coordinates of t are coprime despite the fact that

the set of coordinates of t are coprime (as mentioned

previously, if they are not, there is no solution to the problem).

The set of integers fti; i ¼ 1; . . . ;Ng is said to be ‘coprime but

not pairwise coprime’. A classical example is {6, 10, 15}. Let us

recall that in large dimensions N, the probability that a set of

integers ftig is coprime but not pairwise coprime is very small

because the probability that two randomly chosen integers are

coprime is quite high: it is equal to 1=½�ð2Þ� ¼ 6=�2 ’ 61%,

where � refers to the Riemann zeta function (Wikipedia,

2021c). The exact calculation of the probability for a set of N

integers ftig to be coprime but not pairwise coprime as a

function of N is not straightforward and is beyond the scope of

the present study. Even if rare, these cases can be solved as

follows. We consider the two first coordinates t1 and t2 of the

vector t (any pair of coordinates would also work). As t1 and t2

are not coprime, they can be written t1 ¼ xy and t2 ¼ yz,

where x, y, z are three integers and y ¼ gcd ðt1; t2Þ> 1. It is

important to note here that there is at least another coordinate

ti with i> 2 that cannot be divided by y because if it were not

so the set ftig would not be coprime. We call ðu; vÞ the Bézout

numbers associated with ðt1; t2Þ, ut1 þ vt2 ¼ y. The pair ðu; vÞ

are also the Bézout numbers associated with ðx; zÞ,

uxþ vz ¼ 1, i.e. ðu; vÞ are also coprime. We call ð�; �Þ the

Bézout numbers associated with ðu; vÞ. We consider the matrix

u v

�� �

� �
;

its determinant is 1, and
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Figure 3
Pseudocode to find a column-constrained unimodular matrix associated
with an integer vector t.



B 	
xy

yz

� �
¼

y

ky

� �
;

with k 2 Z. We build the N � N matrix K from the 2� 2 block

B and from the ðN � 2Þ � ðN � 2Þ identity matrix. The first

coordinate ðK 	 tÞð1Þ of the new vector K 	 t is coprime with at

least one of the coordinates ðK 	 tÞðiÞ with i> 2. It means that

the method described in Section 3.2 can be applied to calculate

a matrix L such that detðLÞ ¼ 1, and its last column is the

vector K 	 t. The matrix M ¼ K�1L is then such that its

determinant is also 1 and its last column is t. As the deter-

minant of K is 1, K�1 is the adjugate (transpose of the cofactor

matrix) of K, and is thus an integer matrix. Consequently, M is

also an integer matrix, solution of the problem.

The algorithm is effective and fast, whatever the dimension

N of the vector t. The pseudocode is shown in Fig. 3.

We give an example with the classical set of coprime but not

coprime coordinates [6, 10, 15]. The algorithm gives immedi-

ately a solution (the vectors are written in columns):

M ¼

6 1 0

10 2 1

15 0 �7

2
4

3
5:

Let us build another example with a vector t of coordinates

½�42; 10; 15;�30; 6]. A solution is

M ¼

�42 0 4 0 1

10 0 �1 0 0

15 0 0 0 �7

�30 �1 0 0 0

6 0 0 1 0

2
66664

3
77775:

4. Hyperplane unit cell by oblique projection

Let us recall the hyperplane unit-cell problem. We are looking

for a set of N vectors fb1; . . . ; bj; . . . ; bNg such that the first

out-of-plane vector b1 is such that ptb1 ¼ 1 (pointing to a node

of the layer q ¼ 1), and the N � 1 in-plane vectors

b2; . . . ; bj; . . . ; bN are such that ptbj ¼ 0 (lying in the layer

q ¼ 0). The solution b1 of Bezout’s identity is placed in the

first position to be coherent with the notations we used in a

separate paper dedicated to the lattice reduction (Cayron,

2021). The method we propose uses a short solution to the N-

dimensional Bézout identity (Section 2) and a solution of the

CCUM problem (Section 3).

We start from the input vector p. The coordinates of the

vector b1 pointing to a node of the layer q ¼ 1 are the solution

of the Bézout’s identity associated with p. They are obtained

by the algorithm detailed in Section 2 (method-1). Now, how

to determine the N � 1 vectors in the layer q ¼ 0? We

consider the unimodular matrix M that is such that the first

column is the vector b1. The N � 1 next column vectors of the

matrix M are called vj for j 2 f2; . . . Ng. Each of these vectors

belongs to the lattice; thus, they verify ptvj ¼ qj 2 Z. The

vectors bj ¼ vj � qjb1 verify ptbj ¼ 0 for j 2 f2; . . . Ng; i.e. they

are in-plane vectors lying in the layer q = 0. Geometrically, the

vectors bj are obtained by oblique projection of the vectors vj

along b1 onto the plane p, as illustrated for N ¼ 3 in Fig. 4.

Now, we have a cell U ¼ ðb1; . . . ; bj; . . . ; bNÞ attached to

the plane p such that detðUÞ ¼ 1, ptb1 ¼ 1 and ptbj ¼ 0 for

i 2 f2; . . . Ng. It is thus the unit cell we were looking for. As

the vectors used for the projection are short, the unit cell is not

large. It can be reduced even more. There are different

methods to find a reduced unit cell U0 ¼ ðb01; . . . ; b0j; . . . ; b0NÞ,

with b0j that have the same properties as bj with the vector p,

but with shorter lengths and with angles between them closer

to orthogonality. One could apply for example the LLL

algorithm well known in computer science (Lenstra et al.,

1982). We realized however that the algorithm developed in

Section 4 can also be used to define the operation of ‘hyper-

plane shearing’ which consists of shearing the unit cell such

that the vector b1 becomes b01 nearly normal to the plane p as

illustrated in Fig. 4, and that this operation can be coupled

with other lattice reduction methods to rival LLL imple-

mented in Mathematica. The hyperplane reduction and its

application to lattice reduction are detailed in a separate

paper (Cayron, 2021). The pseudocode of the set of operations

Bézout–CCUM–Projection–Hyperplane reduction is shown in

Fig. 5.

The program written in Python 3.8 called General-

izedBezout incorporates the lattice reduction operation

described by Cayron (2021). Let us give some examples we

obtained:

(i) With pt ¼ ð12; 20; 225Þ. The Bézout vector associated

with the plane p given by method-1 described in Section 2 is

b1 ¼ ½�17;�1; 1�. After determining a first unit cell by

projections along b1, and after lattice reduction, this vector

becomes b01 ¼ ½�7;�7; 1�. The final reduced unit cell is given

by the matrix

U0 ¼

�7 �5 20

�7 3 33

1 0 �4

2
4

3
5;
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Figure 4
Projections of the vectors v2; v3 along b1 onto the plane p ¼ ðh; k; lÞ. The
vector b1 is a short solution of the Bézout’s identity pt

1b1 ¼ 1. The vectors
v2; v3 are the solutions of the b1–CCUM problem. The vector b1 is a short
vector that can be further shortened into a vector b01 by ‘hyperplane
shearing’ (Cayron, 2021).



where the vectors are written in columns. The first vector is the

short solution of the 3D Bézout’s identity and the other

vectors are short solutions of the integer relations with the

coordinates of p.

(ii) With pt = (�54, 131, �48, 632, 23, 177, 333, 99, �581,

377). The coordinates were randomly chosen. The Bézout

vector associated with the plane p given by method-1

described in Section 2 is b1 ¼ ½1; 0; 0; 0; 11; 0; 0;�2; 0; 0�.

After determining a first unit cell by projections parallel to b1,

and after reducing this unit cell, this vector becomes

b01 ¼ ½0; 1; 1; 0; 1; 0; 0; 1; 1; 1�. The reduced unit cell is

U0 ¼

0 �1 1 1 0 0 0 0 0 0

1 0 0 �1 �2 1 �1 0 0 �1

1 �2 �2 �1 �2 0 1 1 0 1

0 0 0 0 0 0 0 0 1 0

1 0 1 �1 1 2 0 0 �1 1

0 �2 1 0 0 �1 0 1 �1 �1

0 0 1 1 �1 0 0 �1 �1 1

1 0 �2 0 1 0 �2 0 �1 0

1 �1 0 �1 0 0 0 �1 0 0

1 �1 �1 �2 1 0 1 �1 0 0

2
666666666666664

3
777777777777775

;

where the vectors are written in columns. The first vector is a

short solution of the 10D Bézout’s identity and the other

vectors are short solutions to the integer relations with the

coordinates of p. The calculation lasted 20 ms. The PSLQ

method implemented in Mathematica under the function

FindIntegerNullVector gives only one solution which is

½1; 0;�2; 0; 2; 0; 2; 0; 0;�2�. We notice that this vector is

larger than all the vectors b0j in columns j 2 f2; . . . Ng of the

matrix U0.

The matrix U0 is interpreted crystallographically/geome-

trically as the unit cell attached to the hyperplane p. From an

algebraic point of view, U0 ¼ ðb01; . . . ; b0i; . . . ; b0NÞ can

equivalently be understood as the infi-

nite set of solutions of the N-dimen-

sional Bézout’s identity, where b01 is a

short solution of the equation ptb01 ¼ 1,

and the other vectors are short solutions

of the integer relation ptb0j ¼ 0,

j 2 f2; . . . Ng. The set of solutions of

Bézout’s identity is thus b01 þ fZ: b0jg

with j 2 f2; . . . Ng, where {Z:} means all

the linear combinations with integer

coefficients. This N � 1-dimensional

affine space represents all the solutions

of Bézout’s identity made on the coor-

dinates of p.

5. Conclusion

The problem treated in the present

paper called the ‘hyperplane unit-cell

problem’ consists of finding, for any

hyperplane p of N dimensions, one short

vector b1 that is such that ptb1 ¼ 1 and
N � 1 short integer vectors

b2; . . . ; bj; . . . ; bN that are such that ptbj ¼ 0. The short out-

of-plane vector b1 is the solution of Bezout’s identity with p,

and the short in-plane vectors bj, j 
 2, are solutions of the

integer relation with p. These vectors constitute a unit cell

attached to the hyperplane p. The algorithm to find a short

solution to the N-dimensional Bézout’s identity is presented in

Section 2. The algorithm to find a solution to a connected

problem called the column-constrained unimodular matrix

(CCUM) is detailed in Section 3. Both algorithms are then

combined with the help of an oblique projection to determine

a small unit cell attached to any hyperplane p (Section 4).

The vectors b1; . . . ; bN are short and can be further shortened

by lattice reduction. We have shown in some examples that

the solutions of the integer relation are even shorter than

those determined by the PSLQ algorithm computed with

Mathematica.

APPENDIX A
Notations, Bézout’s identity and integer relations

We note ui the ith coordinate of a vector u. Sometimes, the

notation uðiÞ will be equivalently used. It should not be

confused with ui which is the ith vector in a set of vectors fuig.

The coordinates of a vector u are written in columns and

those of a vector ut are in rows. From a crystallographic point

of view, column and row vectors belong to direct and

reciprocal spaces, respectively. The matrix multiplication

notation is adopted. It means that even a ‘simple’ scalar

(inner) product p 	 u ¼
P

i piui is written ptu where pt means

transpose of p.

Bézout’s identity in 2D is an arithmetic theorem that states

that for a and b which are integers with d for greatest common
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Figure 5
Pseudocode of the sequence of operations to determine a short unit cell associated with a
hyperplane p. The unit cell is made of N short vectors U0 ¼ ðb01; . . . ; b0j; . . . ; b0NÞ, such that ptb01 ¼ 1
and ptb0j ¼ 0.



divisor, there exist integers u and v such that auþ bv ¼ d.

More generally, the linear combinations of the form auþ bv

are exactly the multiples of d. It can be generalized to any

dimension N and written as follows. For any integer vector p,

calling d the greatest common divisor of the coordinates of p,

there exist integer vectors u such that ptu ¼
P

i piui ¼ d. In

the paper, we suppose that the coordinates of p are coprime,

i.e. d = 1.

An integer relation between a real vector x exists if and only

if there is an integer vector u such that xtu ¼
P

i xiui ¼ 0.

There are different algorithms to determine integer relations,

such as the PSLQ (Ferguson et al., 1999). Searching for an

integer relation between a set of powers of x {1, x, x2, . . . , xn}

permits one to determine whether a given real number x is

likely to be algebraic. Integer relations are also searched

between some mathematical constants such as e, � and

ln(2) in order to establish new arithmetic conjectures.

In the paper, only the cases where x is an integer vector (called

p) are studied. (The equivalences between the mathematical

and crystallographic terms used in the paper are given

in Table 1.)
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Table 1
Equivalence of mathematic/crystallographic terms.

Mathematics Crystallography
Bézout’s identity: given an integer vector p, find an integer

vector b1 such that that ptb1 ¼ 1
Given a plane p, find a lattice vector b1 that points to a node

of the first layer of p. The vector b1 represents a translation
between the layer q = 0 and q = 1

Integer relation: given an integer vector p, find N � 1 integer
vectors bj such that that ptbj ¼ 0

Given a plane p, find N � 1 lattice vectors bj that lie in the
layer q = 0 of the plane p

Set of solutions of Bézout’s identity b1 þ fZ: bjg with
j 2 f2; . . . Ng

The lattice unit cell made of vectors b1; b2; . . . ; bN

Lattice reduction of the unit cell attached to p: find the
vectors b01 and b0j as short as possible and such that ptb01 ¼ 1
and ptb0j ¼ 0

Lattice reduction of the unit cell attached to p: find a unit cell
such that the vector pointing to the first layer and the in-
plane vectors are as short as possible
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