
534 https://doi.org/10.1107/S2053273321007762 Acta Cryst. (2021). A77, 534–547

research papers

The role of an objective function in the
mathematical modelling of wide-angle X-ray
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To decompose a wide-angle X-ray diffraction (WAXD) curve of a semi-

crystalline polymer into crystalline peaks and amorphous halos, a theoretical

best-fitted curve, i.e. a mathematical model, is constructed. In fitting the

theoretical curve to the experimental one, various functions can be used to

quantify and minimize the deviations between the curves. The analyses and

calculations performed in this work have proved that the quality of the model,

its parameters and consequently the information on the structure of the

investigated polymer are considerably dependent on the shape of an objective

function. It is shown that the best models are obtained employing the least-

squares method in which the sum of squared absolute errors is minimized. On

the other hand, the methods in which the objective functions are based on the

relative errors do not give a good fit and should not be used. The comparison

and evaluation were performed using WAXD curves of seven polymers:

isotactic polypropylene, polyvinylidene fluoride, cellulose I, cellulose II,

polyethylene, polyethylene terephthalate and polyamide 6. The methods were

compared and evaluated using statistical tests and measures of the quality

of fitting.

1. Introduction

The wide-angle X-ray diffraction (WAXD) curve of a semi-

crystalline polymer gives important and unique information

on its internal structure. By analysing such a curve we can

determine the unit-cell parameters, the degree of crystallinity,

the size of crystallites, the degree of orientation, the weight

fractions of polymorphic phases. Moreover we can investigate

the influence of different factors on all these data.

To perform these investigations and analyses, the intensity

contributions arising from crystalline and amorphous regions

of the polymer have to be isolated and separated from each

other. It means that we have to decompose the WAXD curve

into individual constituents. To this aim a theoretical curve is

constructed which is a best-fitted mathematical model of the

experimental one (Russell et al., 1993, 1997; Hu & Hsieh, 1996;

Chen & Yokochi, 2000; Sajkiewicz et al., 2005). The theoretical

curve is described by a function which is a sum of component

functions related to individual crystalline peaks, amorphous

halos and background scattering. Each component function

related to a crystalline peak or amorphous halo has four

parameters at least: angular position, height, width at half-

height and so-called shape coefficient (Hindeleh & Johnson,

1974, 1978). The number of peaks, their shape and size depend

on the polymer type, its crystalline structure and crystal-

lization conditions.

Because of the large number of unknowns, the multi-

dimensional space of solutions and the diversified shape of the
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functions which describe the crystalline and amorphous

components, the fitting procedure and determination of all

parameters is one of the most difficult non-linear optimization

tasks. As has already been shown (Rabiej, 2003, 2014; Rabiej

& Rabiej, 2005) the solution of this task can be made much

more unambiguous and reliable when we employ a bi-criterial

optimization procedure. It involves not only the best fitting of

the theoretical curve to the experimental curve, i.e. mini-

mization of the deviations between the curves, but also

simultaneous maximization of the area of amorphous

component. The latter criterion results from observations of

the early stages of crystallization of polymers in dynamic

synchrotron investigations (Bark et al., 1992; Wang et al.,

2000). This criterion ensures a smooth transition from the

WAXD curves of a molten polymer to the curves in which first

traces of crystalline peaks start to be visible. The two criteria

of the optimization procedure have different roles. The best

fitting of the curves is the superior, dominating and final

condition. The second criterion has a steering role and gives a

direction in which the space of solutions has to be searched.

Therefore the shares of the two criteria must be represented

by suitable weights (Rabiej, 2017b). Experimental practice has

shown that the classical optimization methods are not effec-

tive in performing bi-criterial optimization. This is why new

methods employing artificial intelligence have been elabo-

rated; they are much more effective, faster to converge and

lead to globally best solution procedures (Rabiej, 2013, 2014).

Recently, a procedure based on the particle swarm optimiza-

tion (PSO) method (Kennedy & Eberhart, 1995) has been

proposed (Rabiej, 2017a).

In this work it is shown that the quality of the mathematical

model of an experimental WAXD curve is clearly dependent

on the shape of objective function which is minimized in the

fitting procedure. To this end we have compared the models of

the WAXD curves obtained using two methods in which the

absolute errors are minimized (the least-squares method and

the least absolute deviations method), and four methods

where the relative errors are minimized (least-squared relative

deviations method, least absolute relative deviations method,

least relative squares method and weighted least-squares

method). The comparison and evaluation were performed

using WAXD curves of popular polymers. The methods were

compared and evaluated using statistical tests and measures of

the quality of fitting.

2. Experimental

To compare and evaluate the methods of fitting mentioned

above, the WAXD curves of seven polymers were recorded.

The WAXD curves of the chosen polymers have clearly

different shapes: isotactic polypropylene (iPP), polyethylene

(PE) and polyvinylidene fluoride (PVDF) with several high

and narrow crystalline peaks, cellulose II (CeII) and poly-

amide 6 (PA6) with broad and not very high peaks, and finally

cellulose I (CeI) and polyethylene terephthalate (PET) with

both sharp and broad crystalline peaks.

The investigations were performed by means of a URD-6

Seifert (Germany) diffractometer using a symmetrical reflec-

tion mode and a copper target X-ray tube (� = 1.54 Å)

operated at 40 kV and 30 mA. The Cu K� radiation was

monochromatized with a graphite monochromator. For each

polymer the WAXD curves were recorded in the same 2�
range 5–60� with a step size of 0.1� and the same registration

time: 20 s step�1. The isotropic samples were prepared using

fibres made of the investigated polymers which were

powdered by means of a microtome and pressed into a sample

holder. The obtained samples had the shape of circular pills

with a diameter of 2 cm and thickness of 1 mm.

Before the main calculations a linear background scattering

composed of the incoherent Compton scattering, air scat-

tering, thermal diffuse scattering and radiation from external

sources was subtracted from the curves and all curves were

normalized in such a way that the total area under each curve

was equal to unity.

The curves were decomposed into crystalline peaks and

amorphous components using a bi-criterial PSO method

(Kennedy & Eberhart, 1995). The PSO algorithm is an arti-

ficial intelligence method. Its action imitates the behaviour of

a bird flock or a fish school. Instead of using one starting set of

parameters, this algorithm creates several tens of such sets by

a draw. In this way some population of solutions is created.

The population of candidate solutions is considered as a

swarm and individual solutions are called particles. In the

successive steps, particles move to new places, simulating

adaptation of a swarm to the environment. As the population

is created by a draw, the probability that the globally best

solution will be found is much higher than in the classical

optimization methods. Because the size and direction of the

search step are dependent on the best solution found at a

given stage of action, the algorithm is much less dependent on

the starting parameters. In the system used in this work a few

modifications have been introduced to the original PSO

method (Rabiej, 2017a). As a result, it is better adapted for

decomposing the WAXD curves.

Starting values of the angular positions of crystalline peaks

were determined based on the respective unit-cell parameters

of the investigated polymers. The crystalline peaks and

amorphous maxima were approximated by a linear combina-

tion of Gauss and Cauchy profiles.

Each curve of a given polymer was decomposed employing

five tested methods (M1, M2, M3, M4 and M6) described in

Section 4, implemented in the program WAXSFIT. To employ

and evaluate the weighted least-squares method (M5), the

diffraction curves of four polymers (iPP, PVDF, CeI and

CeII) were recorded five times using the same experimental

conditions.

Each decomposition procedure using a given method

resulted in one mathematical model of the curve. The quality

of models (i.e. the quality of fitting) was evaluated using the

measures and tests described in Section 5, implemented in the

WAXSFIT program as well. For a given curve and a given

method, the decomposition procedure was repeated ten times

using different starting parameters. Based on ten results of
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decomposition, the average value and standard deviation for

each parameter of a theoretical curve were calculated.

Furthermore, the final values of the information criteria and

statistical tests used for evaluation of the employed methods

of fitting were calculated by averaging the results obtained in

those ten runs.

All obtained data were elaborated using the computer

program WAXSFIT (Rabiej, 2017a).

3. Statistical evaluation of errors in a WAXD curve
recording

When a diffraction curve is recorded, the number of impulses

representing a local intensity yi of X-rays scattered at a given

diffraction angle ti (2�) is counted. The angle is changed with a

constant step in some arbitrarily assumed range. As a result we

obtain a set of values (y1, . . . , yn) related to the subsequent

diffraction angles (t1, . . . , tn). Each individual result yi can be

considered as one possible value of a random variable Yi. This

result is characterized by some measurement uncertainty

(random error) and should be treated as an approximation of

the real value, represented by the mathematical expectation

E(Yi) of the random variable Yi. Later on, the mathematical

expectation, i.e. the theoretical value of a model, will be

denoted as ŷyi in this paper.

The absolute error and relative error are defined by equa-

tions (1) and (2), respectively:

"i ¼ yi � ŷyi

�� �� ð1Þ

�i ¼
yi � ŷyi

�� ��
yi

: ð2Þ

Generally, the uncertainty of measurements results from the

equipment limitations and measurement conditions. The

intensity recorded at a given angle is the sum of a component

related to the structure of the investigated sample and the

background scattering. The latter component comprises

incoherent Compton scattering, air scattering etc. and must be

subtracted from the experimental curve before the mathe-

matical model of the curve is constructed. Usually the

diffraction curve for a given sample is recorded once. So, the

mathematical expectations ŷyi are not known and consequently

neither absolute nor relative errors can be calculated. A single

measurement says nothing about the random value Yi distri-

butions, their standard deviations �i and mathematical

expectations ŷyi.

When the number of counts is small, the probability that the

result of a single measurement amounts to yi can be described

by the Poisson distribution (Goldanski et al., 1963)

P Y ¼ kð Þ ¼
�k

k!
expð��Þ ð3Þ

where k = yi and � is the mathematical expectation � =

E(Yi) = ŷyi.

The deviation of a random value from its mathematical

expectation is described by its variance and standard devia-

tion, i.e. the square root of the variance. In the Poisson

distribution the variance �2 is equal to the mathematical

expectation �, thus

E Yið Þ ¼ �
2
i : ð4Þ

This means that the standard deviation �i of each result of a

single measurement yi is equal to the square root of the

mathematical expectation ŷyi:

�i ¼ ŷyið Þ
1=2: ð5Þ

As the mathematical expectation is not known �i can be

substituted by its estimator, standard error SEi:

SEi ¼ yið Þ
1=2: ð6Þ

Consequently, the bigger the number of counts yi, the smaller

is the relative uncertainty of the measurement:

SEi

yi

¼
yið Þ

1=2

yi

¼
1

yið Þ
1=2
: ð7Þ

According to the central limit theorem (Ash & Doleans-Dade,

2000), when the number of counts increases (k ! 1) the

Poisson distribution transforms smoothly into the Gauss

distribution N(m, �), with the mathematical expectation m

and standard deviation �. So, if the Gauss distribution

approximates the Poisson distribution, equations (6) and (7)

are still valid.

The mathematical expectations (ŷy1, ŷy2, . . . , ŷyn) of the

number of impulses representing local intensities at subse-

quent diffraction angles (t1, . . . , tn) can be determined in two

ways. The first method consists of sequential recording of

diffraction curves for a given sample. The second method

consists of the creation of a mathematical model of the curve.

3.1. First method

In this case, to obtain a credible estimation of the mathe-

matical expectations ŷyi, a diffraction curve of a sample has to

be recorded several times (N) at exactly the same experi-

mental conditions. Next, the average number of counts �yyi

[equation (8)] and root-mean-square error si [equation (9)] for

each diffraction angle ti (i = 1, . . . , n) have to be calculated:

�yyi ¼

PN
k¼1 yi;k

N
ð8Þ

si ¼

PN
k¼1 yi;k � �yyi

� �2

N N � 1ð Þ

" #1=2

: ð9Þ

According to the law of large numbers (classical Kolmogor-

ov’s SLLN) (Dekking, 2010), the obtained values are esti-

mators of the mathematical expectations ŷyi and standard

deviations �i, respectively.

3.2. Second method

The mathematical model of a diffraction curve should

ensure that the differences between the experimental yi

and theoretical ŷyi values of intensity at the subsequent
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diffraction angles (t1, . . . , tn) (i.e. the residuals) are as small as

possible.

At the first stage of modelling, the functions describing

crystalline peaks and amorphous halos are chosen, and the

number of optimized parameters is established. Next, the

optimization method is chosen. In all optimization methods

the objective function is defined which quantifies the differ-

ences between the experimental and theoretical values of

intensity. Moreover, the set of starting values of optimized

parameters and the criterion of accomplishment of the

procedure must be provided.

In the successive steps (iterations) of an optimization

procedure, the values of parameters are changed in such a way

that the value of the objective function becomes lower and

lower. The optimization procedure is finished when such a set

of parameters is found for which the objective function

reaches its minimum.

Let us analyse the influence of absolute and relative errors

on the value of objective functions in an optimization

procedure.

Figs. 1(a)–1(d) show the average intensity values �yyi, root-

mean-square errors si [equation (5)] and standard errors SEi

[equation (6)], for iPP, PVDF, CeI and CeII samples, calcu-

lated based on five diffraction curves recorded for each

polymer. As one can see, the values of the root-mean-square

error si are more or less proportional to the average intensities

�yyi, and they are clearly lower than those of the standard error

SEi. Only at a few points, where the intensity is very high, is

the si bigger than SEi.

Figs. 2(a)–2(d) show the relative errors, i.e. the ratios of the

root-mean-square error si and standard error SEi to the

average intensity �yyi. It is seen that the relative errors in the

range of the diffraction angle where high peaks are

localized (ti ’ 15–25�) are much smaller than those in the

range where no peaks are present (ti ’ 10–15�and 30–50�).

Of course, this is compatible with equation (7), according

to which the higher the intensity, the lower the relative

error.

The presented figures indicate that when the objective

function is created based on the absolute errors, its value is

mostly dependent on the points from such ranges of WAXD

curves where the crystalline peaks are located. In contrast,

when the relative errors are taken into account, the biggest

influence on the objective function is from ranges where no

peaks are present.

Thus, in order to obtain the highest quality of fitting in the

ranges comprising the crystalline peaks we should choose the

first solution. On the other hand, if we assume that the quality

of fitting is most precisely described by the relative errors, the

second possibility should be chosen. In this paper the models

obtained with these two types of objective functions are

compared and evaluated.
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Figure 1
WAXD curves for (a) iPP, (b) PVDF, (c) CeI and (d) CeII; navy blue line, �yyi average intensity calculated based on five diffraction curves independently
recorded for each polymer; red line and circles, root-mean-square error si; black line, standard error SEi; inset, a magnified fragment of the plot indicated
by an arrow.



4. Methods of fitting a theoretical curve to the
experimental WAXD curve

In the bi-criterial optimization procedure the first requirement

for optimal fitting of a theoretical curve to the experimental

WAXD curve is the superior one. It can be reached by means

of different methods of fitting using different objective func-

tions F which are minimized to obtain the best quality of

fitting. The methods analysed and compared in this work are

listed below.

M1. Least-squares method. The method of least squares is

one of the fundamental tools in scientific investigation

(Nielsen, 2000, 2001). It consists of minimization of the sum F1

of squared deviations between experimental intensities yi and

theoretical ones ŷyi resulting from a mathematical model of the

WAXD curve,

F1 ¼
Pn
i¼1

"2
i ¼

Pn
i¼1

yi � ŷyið Þ
2; ð10Þ

where n is the number of experimental points (diffraction

angles) and "i is a random error.

This method assumes that the experimental measurements

are free of systematic errors and are performed with a

random, normally distributed error with the same variance at

each diffraction angle. The least-squares method is very

sensitive to the local outliers, i.e. single atypical intensity

values, considerably different from the remaining ones, which

are caused by various random factors.

M2. Least absolute deviations method. This method is less

sensitive to the negative influence of outliers on the obtained

parameters of the model. It consists of minimization of the

sum F2 of absolute deviations between experimental and

theoretical intensities,

F2 ¼
Pn
i¼1

jyi � ŷyij: ð11Þ

M3. Least relative squares method. This method takes into

account that the biggest standard deviations of intensity values

in WAXD curves are frequently observed in such ranges of

diffraction angle where strong crystalline peaks are located.

This is why the squared deviations between experimental and

theoretical intensities at a given diffraction angle are divided

by the local variance. In this way a lower weight is attributed

to the less accurate measurements and a higher weight to the

more precise ones (Strutz, 2016).

As the variance �2
i is not known, it is substituted by its

estimator – standard error SE2
i . Thus, the minimized objective

function F3 has the shape of equation (12):

F3 ¼
Xn

i¼1

yi � ŷyið Þ
2

�2
i

¼
Xn

i¼1

yi � ŷyið Þ
2

SEi

¼
Xn

i¼1

yi � ŷyið Þ
2

yi

: ð12Þ

M4. Least absolute relative deviations. The method is similar

to the previous one but this time the absolute deviations

between experimental and theoretical intensities at a given

diffraction angle are divided by the local experimental inten-

sity. The minimized objective function F4 is given by

F4 ¼
Xn

i¼1

yi � ŷyi

yi

����
����: ð13Þ

M5. Weighted least-squares method. Similar to the method

M3, this one also takes into account that the variance of

intensity is not the same at all diffraction angles. For this

reason, the squared differences between experimental and

theoretical intensities at a given diffraction angle are divided

by the local variance �2
i .

To employ this method the diffraction curve of each

polymer was recorded five times at the same experimental

conditions. Based on these data, the average intensity �yyi

[equation (8)] and root-mean-square error si [equation (9)] for

each diffraction angle were calculated. Next s2
i was used as an

estimator of the local variance �2
i .

The minimized objective function F5 is given by
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Figure 2
Relative errors si=�yyi (red circles) and SEi=�yyi (black line), calculated based on data presented in Fig. 1 for (a) iPP, (b) PVDF, (c) CeI and (d) CeII.



F5 ¼
Xn

i¼1

yi � ŷyið Þ
2

s2
i

: ð14Þ

M6. Least-squared relative deviations method. In this

method the minimized objective function F6 is calculated as

the sum of squared deviations between experimental and

theoretical intensities divided by the squared experimental

intensity at a given diffraction angle. In other words, it is the

sum of squared relative deviations,

F6 ¼
Xn

i¼1

yi � ŷyið Þ
2

y2
i

: ð15Þ

5. Measures and statistical tests for evaluation of the
fitting methods

A comparison and evaluation of the methods of fitting

described above and obtained mathematical models of an

experimental WAXD curve should encompass three aspects.

(i) First of all we have to check if positions of crystalline

peaks determined with a given method agree with those

resulting from the unit-cell parameters of the investigated

polymer.

(ii) Next we should check if residuals, i.e. the final values of

differences between the experimental and theoretical best-

fitted curve, fulfil all conditions required by the methods. To

assess credibly the statistical correctness of a model we should

check if the residuals fulfil a set of conditions listed below. The

residuals should be:

(a) Unbiased, i.e. the expected value of residuals is zero.

(b) Symmetric, i.e. the numbers of positive and negative

residuals are the same.

(c) Random, i.e. the experimental points must be randomly

dispersed along the theoretical curve.

(d) Uncorrelated, i.e. a lack of autocorrelation of the resi-

duals – there are no hidden trends in their course.

(e) Homoscedastic, i.e. the variance of the residuals should

be constant.

Moreover, method M1 demands the residuals to be

normally distributed.

When the residuals do not fulfil the required conditions, it

means that the mathematical model of the curve is wrong and

should be rejected.

In this work the first four conditions were checked by the

following statistical tests: unbiasedness of residuals test

(Schwefel, 1981; Conover, 1999), symmetry of residuals test,

Wald–Wolfowitz series test (Wald & Wolfowitz, 1940),

Durbin–Watson test (Durbin & Watson, 1951; Hill & Flack,

1987). To verify the fifth condition, the whole range of

diffraction angles in which the WAXD curves were recorded

was divided into subranges and the average values of residuals

in the subranges were compared with each other, respectively.

The normality of residuals in method M1 was tested by means

of the chi-squared test (Greenwood & Nikulin, 1996).

(iii) Finally, we should assess the quality of fitting, i.e. the

quality of the obtained model of the curve.

In the literature we found various measures of similarity, so-

called information criteria, used for the statistical assessment

of the quality of models and for their comparison. Comparing

several models, the information criteria help to estimate which

one of them is most suitable for a given set of experimental

data. In this work two information criteria were employed:

Integral similarity index (Hofmann & Kuleshova, 2005) Ss:

Ss ¼
1

n

Xn

k¼1

Pk
i¼1 ŷyiPn
j¼1 ŷyj

�

Pk
i¼1 yiPn
j¼1 yj

�����
�����: ð16Þ

Normalized index (Hofmann & Kuleshova, 2005) R:

R ¼
1

n

Xn

i¼1

ŷyiPn
j¼1 ŷyj

�
yiPn
j¼1 yj

�����
�����: ð17Þ

By means of these parameters different models of the same

diffraction curve can be compared. More precisely, they allow

one to compare an experimental curve with different models

of this curve.

The best model is that one for which the information

criteria reach the smallest values. Both R and Ss are equal to

zero when the quality of fitting is the best, i.e. the theoretical

and experimental curves are identical. It is easy to notice that

the integral similarity index Ss is calculated as the average

value of the absolute differences between the normalized

integral theoretical and experimental intensities. In turn,

according to equation (17), the normalized R index is the

arithmetic average of the normalized absolute differences

between the experimental and theoretical curve.

Presenting in one plot the normalized theoretical integral

intensity

ŶYj ¼
Pj

i¼1

ŷiyi=
Pn
i¼1

ŷiyi ð18Þ

and normalized experimental integral intensity

Yj ¼
Pj

i¼1

yi=
Pn
i¼1

yi; ð19Þ

as functions of the diffraction angle, we obtain so-called

integral curves which allow for visual evaluation of the quality

of fitting. The better the quality of fitting, the closer the
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Table 1
Range of the degree of crystallinity values (%) obtained in ten runs of
calculations with a given method and the biggest difference �X between
the crystallinity obtained with different methods.

Method M5 was not employed in the case of PE, PA6 and PET.

M1 M2 M3 M4 M5 M6 �X

PP 57–58 50–54 58–59 50–57 55–57 54–58 9
PVDF 31–32 31–34 31–33 29–33 32–33 36–40 11
CeI 46–48 48–51 46–50 45–48 47–52 47–49 7
CeII 31–33 28–30 31–34 28–31 30–31 28–29 6
PE 62–63 61–62 62 60–62 – 60–62 3
PET 30–31 33–35 34–38 32–35 – 41–51 21
PA6 35–38 25–31 29–34 23–28 – 32–33 15



theoretical and experimental integral curves are to each other.

It is a very sensitive tool for the quality of fitting evaluation

(Hofmann & Kuleshova, 2005).

6. Results of investigations and evaluation of the
methods

The WAXD curves of all investigated polymers were decom-

posed by means of the PSO optimization procedure employing

the six tested methods M1–M6. Each decomposition

procedure by means of a given method resulted in one model

of the curve.

According to Section 5, the evaluation of employed

methods was a three-step process. In the first step, the

correctness of the angular positions of crystalline peaks

determined with the methods was verified. Next, the statistical

tests checking if the residuals met the necessary conditions

listed in Section 5 were performed and, finally, the quality of

the models was assessed.

Before the evaluation procedure the degree of crystallinity

(X) of the investigated polymers was calculated based on

parameters found by means of the compared methods. It was

calculated as the ratio of the integral intensity contained in

crystalline peaks to the total intensity scattered by a sample.

Table 1 shows the ranges of X values obtained with each

method in ten runs of calculations performed for the investi-

gated polymers.

The table shows that, depending on the method employed,

the results obtained for a given polymer may differ even by

several %. As one can see, apart from PET the differences

between the crystallinity values determined for a given

polymer with a given method amount to several % but the

crystallinities obtained with different methods may differ by

more then a dozen % from one another, which means that the

differences are significant. In the case of PET, the differences

are even bigger. This fact clearly confirms that the objective

function used in an optimization procedure influences

considerably the shape of the theoretical curve and its

parameters. This is why the choice of the most credible

method is an important task.
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Figure 3
WAXD curve of iPP decomposed into crystalline peaks and amorphous
maxima: experimental curve – points, best-fitted theoretical curve and all
components – solid line.

Table 2
Angular positions of crystalline peaks of iPP determined by means of the PSO optimization procedure using methods M1–M6.

The presented values were calculated as the average of the results obtained from ten runs of the decomposition procedure. In all cases, the maximum value of the
standard deviation was smaller than 0.02�. Literature data were calculated based on the unit-cell parameters of iPP given by Mencik (1960).

Miller index (hkl)

300 110 020 040 130 400 111 121 060 200 220 013

Crystalline phase � � � � � � � � � � � �
Literature data, 2� (�) 13.9 14.1 16.1 16.9 18.5 18.6 21.3 21.7 25.5 27.0 28.4 42.5
M1, 2� (�) 14.0 14.1 16.1 16.9 18.6 18.7 21.2 21.9 25.5 27.2 28.7 42.9
M2, 2� (�) 14.0 14.1 16.1 16.9 18.6 18.7 21.2 21.9 25.5 27.3 28.7 42.9
M3, 2� (�) 14.0 14.1 16.1 16.9 18.6 19.1 21.2 21.9 25.5 27.2 28.7 42.9
M4, 2� (�) 14.0 14.1 16.1 16.9 18.6 18.6 21.2 21.9 25.5 27.3 28.7 42.9
M5, 2� (�) 13.9 14.1 16.1 16.9 18.5 18.6 21.2 21.9 25.5 27.2 28.7 42.9
M6, 2� (�) 14.0 14.1 16.1 16.9 18.6 18.8 21.2 21.9 25.5 27.2 28.7 42.9

Table 3
Angular positions of crystalline peaks of PVDF determined by means of the PSO optimization procedure using methods M1–M6.

The presented values were calculated as the average of the results obtained from ten runs of the decomposition procedure. In all cases, the maximum value of the
standard deviation was smaller than 0.02�. Literature data were calculated based on the unit-cell parameters of PVDF given by Lovinger (1982).

Miller index (hkl)

010 100 020 110 200 101 021 121 130 200 210 002 230 310

Crystalline phase � � � � � � � � � � � � � �
Literature data 2� (�) 9.1 17.9 18.4 20.1 20.7 26.4 26.7 32.4 33.2 36.2 37.5 39.0 46.3 56.5
M1, 2� (�) 9.3 17.8 18.5 20.0 20.3 26.6 26.7 32.3 33.2 35.9 37.1 38.7 46.4 56.1
M2, 2� (�) 9.3 17.8 18.5 20.0 20.1 26.6 26.7 32.6 33.2 35.9 37.1 38.7 46.5 56.1
M3, 2� (�) 9.3 17.8 18.5 20.0 20.2 26.6 26.7 32.3 33.2 35.9 37.1 38.7 46.4 56.0
M4, 2� (�) 9.3 17.8 18.5 20.0 20.3 26.6 26.7 32.5 33.2 35.9 37.1 38.7 46.5 56.1
M5, 2� (�) 9.3 17.8 18.5 20.0 20.1 26.6 26.7 32.3 33.2 35.9 37.1 38.8 46.4 56.1
M6, 2� (�) 9.3 17.8 18.5 20.0 20.2 26.6 26.7 32.3 33.2 35.9 37.1 38.8 46.3 56.0



6.1. Verification of the positions of crystalline peaks

As concerns cellulose I, cellulose II and PA6 the angular

positions of most of the crystalline peaks determined with all

six methods agree well with those resulting from the respective

unit-cell parameters. Only in the case of small, broad peaks

localized at large diffraction angles are the discrepancies

slightly higher. The same is true of the curves of iPP, PVDF

and PE. Of course, when comparing the angular position of

crystalline peaks one should remember that, even in the case

of the same polymer but crystallized at different conditions,

the positions of peaks may differ slightly. In contrast, in the

case of PET, the positions of peaks determined with methods

M4 and M6 do not agree with those resulting from the unit-cell

parameters.

The examples of decomposed WAXD curves are shown in

Figs. 3–9 and determined positions of crystalline peaks are

collected in Tables 2–7.

Isotactic polypropylene (iPP). The WAXD curve of iPP

contains 12 crystalline peaks and two amorphous maxima (Fig.

3). The total number of unknown parameters determined with

the PSO optimization procedures was 56.

Polyvinylidene fluoride (PVDF). The WAXD curve of

PVDF contains 14 crystalline peaks and two amorphous

maxima (Fig. 4). The total number of unknown parameters

determined with the PSO optimization procedures was 64.

Cellulose I (CeI). The WAXD curve of cellulose I contains

ten crystalline peaks and two amorphous maxima (Fig. 5). The

total number of unknown parameters determined with the

PSO optimization procedures was 48.
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Figure 4
WAXD curve of PVDF decomposed into crystalline peaks and
amorphous maxima: experimental curve – points, best-fitted theoretical
curve and all components – solid line.

Figure 5
WAXD curve of cellulose I decomposed into crystalline peaks and
amorphous maxima: experimental curve – points, best-fitted theoretical
curve and all components – solid line.

Table 4
Angular positions of crystalline peaks of cellulose I determined by means of the PSO optimization procedure using methods M1–M6.

The presented values were calculated as the average of the results obtained from ten runs of the decomposition procedure. In all cases, the maximum value of the
standard deviation was smaller than 0.02�. Literature data were calculated based on the unit-cell parameters of cellulose I given by Ellefsen (1960).

Miller index (hkl)

110 101 101 120 002 121 221, 130 040, 103 301 004, 104

Crystalline phase � � � � � � � � � �
Literature data 2� (�) 13.9 14.7 16.6 20.4 22.7 22.7 29.2 34.9 36.3 46.3
M1, 2� (�) 13.6 14.9 16.6 20.4 22.4 22.7 29.4 34.5 36.2 46.3
M2, 2� (�) 13.2 14.8 16.6 20.3 22.4 22.7 29.5 34.5 36.4 46.6
M3, 2� (�) 13.8 14.9 16.6 20.3 22.4 22.7 29.4 34.5 36.1 46.6
M4, 2� (�) 13.6 14.9 16.6 20.3 22.4 22.7 29.4 34.4 36.1 46.7
M5, 2� (�) 14.1 14.9 16.5 20.4 22.4 22.7 29.5 34.5 35.9 45.8
M6, 2� (�) 13.1 14.9 16.6 20.3 22.4 22.7 29.6 34.4 36.0 47.2

Table 5
Angular positions of crystalline peaks of cellulose II determined by
means of the PSO optimization procedure using methods M1–M6.

The presented values were calculated as the average of the results obtained
from ten runs of the decomposition procedure. In all cases, the maximum value
of the standard deviation was smaller than 0.02�. Literature data were
calculated based on the unit-cell parameters of cellulose II given by Paralikar
& Batrabet (1981).

Miller index (hkl)

101 102 021 112 002

Crystalline phase � � � � �
Literature data 2� (�) 12.1 19.5 20.5 21.4 22.0
M1, 2� (�) 12.1 19.7 20.2 21.6 21.8
M2, 2� (�) 12.1 19.7 20.2 21.5 21.8
M3, 2� (�) 12.1 19.7 20.2 21.4 21.9
M4, 2� (�) 12.1 19.9 20.3 21.6 22.1
M5, 2� (�) 12.1 20.0 20.3 21.7 21.9
M6, 2� (�) 12.1 19.9 20.1 21.6 22.0



Cellulose II (CeII). The WAXD curve of cellulose II

contains five crystalline peaks and two amorphous maxima

(Fig. 6). The total number of unknown parameters determined

with the PSO optimization procedures was 28.

Polyethylene (PE). In the case of the WAXD curves of PE

the two strongest peaks (110) and (200) (Fig. 7) are slightly

asymmetric. This means that the models in which these peaks

are approximated by a linear combination of Gauss and

Cauchy profiles do not give a good fit to the experimental

curve. For this reason, the approach of Baker & Windle (2001)

has been employed in this work.

According to these authors, the peaks (110) and (200) seem

to be asymmetric because two smaller and broader peaks are

localized on their left, low-angle side. Baker and Windle have

proposed that these additional peaks [denoted here as (110)*

and (200)*] are related to a third, partly ordered phase, the

density of which is intermediate between those of crystalline

and amorphous phases. Because the third phase is much less

ordered than the crystalline one, it does not contribute to the

remaining crystalline peaks located at higher angles (Baker &

Windle, 2001). The hypothesis of Baker and Windle on the
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Figure 7
WAXD curve of polyethylene (PE) sample decomposed into crystalline
peaks and amorphous maxima: experimental curve – points, best-fitted
theoretical curve and all components – solid line [16 crystalline peaks, two
peaks, (110)* and (200)*, arising from the partly ordered phase and two
amorphous halos].

Figure 9
WAXD curve of PA6 decomposed into crystalline peaks and amorphous
maxima by means of the PSO algorithm: experimental curve – points,
best-fitted theoretical curve and all components – solid line.

Table 6
Angular positions of crystalline peaks of PET determined by means of the PSO optimization procedure using methods M1–M4 and M6.

The presented values were calculated as the average of the results obtained from ten runs of the decomposition procedure. In all cases, the maximum value of the
standard deviation was smaller than 0.02�. Literature data were calculated based on the unit-cell parameters of PET given by Daubeny et al. (1954).

Miller index (hkl)

011 010 111 011 112 100 103 111 101 105 201 112

Literature data 2� (�) 16.4 17.5 21.3 23.4 24.6 25.6 26.4 27.9 32.7 42.6 47.13 53.4
M1, 2� (�) 16.4 17.7 21.7 23.0 24.3 25.9 26.3 27.5 32.7 42.5 46.8 53.6
M2, 2� (�) 16.4 17.7 21.7 22.9 24.8 25.6 26.3 27.3 32.7 42.5 46.9 53.6
M3, 2� (�) 16.4 17.7 21.7 22.9 24.8 25.9 26.4 27.6 32.6 42.6 46.9 53.5
M4, 2� (�) 15.0 16.3 20.0 21.4 22.7 24.2 24.7 25.9 30.6 39.7 43.6 49.9
M6, 2� (�) 16.0 17.3 21.4 23.0 24.2 26.0 26.3 27.7 32.7 42.6 46.9 53.7

Figure 8
WAXD curve of PET decomposed into crystalline peaks and amorphous
maxima by means of the PSO algorithm: experimental curve – points,
best-fitted theoretical curve and all components – solid line.

Figure 6
WAXD curve of cellulose II decomposed into crystalline peaks and
amorphous maxima: experimental curve – points, best-fitted theoretical
curve and all components – solid line.



existence of the third, partly ordered phase in PE is fully

consistent with the results presented by other authors (Wang

et al., 1991; Kitamaru et al., 1996; Suzuki et al., 1985; Popli et al.,

1984, etc.). Thus, the WAXD curve of PE was decomposed into

16 crystalline peaks, two peaks (110)* and (200)* arising from

the partly ordered phase and two amorphous maxima. The

total number of unknown parameters was 76.

The angular positions of crystalline peaks of PE determined

by means of the PSO optimization procedure were identical

for all five tested methods and identical to those resulting from

the unit-cell parameters of PE. This is why a respective table

comparing the experimental and literature data is not

presented. Literature data were calculated based on the unit-

cell parameters of PE given by Swan (1962).

Polyethylene terephthalate (PET). The WAXD curve of

PET and best-fitted theoretical curve are shown in Fig. 10. The

curve contains 12 crystalline peaks and two amorphous

maxima. The total number of unknown parameters deter-

mined with the PSO optimization procedures was 64. The

angular positions determined with the PSO algorithm are

listed in Table 6. For the methods M1, M2 and M3 they agree

well with the literature data calculated based on the unit-cell

parameters of PET (Daubeny et al., 1954). However, in the

case of methods M4 and M6 big discrepancies between

experimental and literature data are observed.

Polyamide 6 (PA6). The WAXD curve of PA6 and best-

fitted theoretical curve are shown in Fig. 11. The curve

contains five crystalline peaks and two amorphous maxima.

Their angular positions determined with the PSO algorithm

agree well with the literature data calculated based on the PA6

unit-cell parameters given by Holmes et al. (1955).

6.2. Analysing and testing of the residuals

Figs. 10(a)–10(d) present a comparison of the errors SEi and

si with the absolute values of residuals obtained in the tested

methods for iPP in the 2� ranges with high intensities [(a) for

the methods M1, M3 and M5 and (b) for the methods M1, M2,

M4 and M6] and in the 2� ranges with low intensities [(c) for

the methods M1, M3 and M5 and (d) for the methods M1, M2,

M4 and M6]. A similar comparison related to CeI is presented

in Figs. 11(a)–11(d).

The figures testify that both in the 2� ranges with high

(crystalline peaks) and low values of intensity the residuals are

much smaller than the standard errors SEi. No correlation,

trends or interdependencies between the errors SEi and si can

be noticed.

In the case of the models obtained for the WAXD curve of

iPP the residuals are also smaller than the root-mean-square

errors si calculated based on five independently recorded

curves. In the case of PVDF, CeI and CeII, the residuals are

very close to the respective errors si. One can notice that the

highest residuals are obtained using the methods M4 and M6.

The residuals obtained in the methods M1, M3 and M5 are

nearly the same – the respective plots nearly overlap each

other. Similar results were also obtained for PVDF and CeII.

6.3. Statistical tests

To check if the residuals obtained in a given method met the

necessary conditions listed in Section 5, we performed suitable

statistical tests. The hypotheses that the conditions were

fulfilled were verified with the significance level of 0.05 which

meant that the probability of rejection of a true hypothesis

was 0.05.

The results of the performed tests are shown graphically in

Fig. 12. As each decomposition procedure with a given method

(M1–M6) was run ten times, the presented values are the

fractions of positive results of a given test, i.e. the number of
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Table 7
Angular positions of crystalline peaks of PA6 determined by means of the
PSO optimization procedure using methods M1–M4 and M6.

The presented values were calculated as the average of the results obtained
from ten runs of the decomposition procedure. In all cases, the maximum value
of the standard deviation was smaller than 0.02�. Literature data were
calculated based on the unit-cell parameters of PA6 given by Holmes et al.
(1955).

Miller index (hkl)

101 211 112 133 331

Literature data 2� (�) 12.3 19.8 22.8 37.4 40.3
M1, 2� (�) 12.6 19.8 22.84 37.6 40.6
M2, 2� (�) 12.6 19.8 22.86 37.6 40.6
M3, 2� (�) 12.6 19.8 22.83 37.5 40.7
M4, 2� (�) 12.6 19.8 22.86 37.6 40.8
M6, 2� (�) 12.6 19.9 22.80 37.4 40.7

Figure 10
A comparison of the errors SEi and si with the absolute values of residuals obtained in the tested methods for iPP (a), (b) in the 2� ranges with high
intensities and (c), (d) in the 2� ranges with low intensities. The presented values were calculated using normalized WAXD curves of iPP.



positive results of a test divided by ten. Obviously, the higher

this value, the better fulfilled is the tested condition.

The plots testify that only in the case of method M1 are all

conditions related to the residuals met for all polymers. The

residuals in method M2 are most frequently correlated. In

methods M3 and M5 they are asymmetric and biased. More-

over, the residuals in method M5 are correlated. In the case of

methods M4 and M6 only the randomness of the residuals is

fulfilled.

6.4. Testing of the homoscedasticity of residuals

The homoscedasticity of residuals means that they are of

the same order of magnitude in all subranges of the whole

recording range. They cannot systematically increase or

decrease with increasing diffraction angle. To verify if resi-

duals are homoscedastic, the whole range of diffraction angles

(5–60�) in which the WAXD curves were recorded was divided

into four subranges. For a given polymer the subranges were

chosen in such a way that one of them comprised points with

the highest values of intensity (crystalline peaks) and another

one included points with the lowest intensities (peripheral

region). For each range the average value of residuals

obtained in each method was calculated. According to the

condition of homoscedasticity, the averages of residuals in all

subranges should not differ significantly from each other and

should be close to zero.

The averages of residuals �"" (their absolute values) in the

subranges with the highest and the lowest intensities, calcu-

lated for all methods and polymers, are shown in Figs. 13 and

14, respectively. Fig. 15 shows the averages of residuals (their

absolute values) in the whole recording range. As we see, only

for the residuals obtained with method M1 is the condition of

homoscedasticity met for all polymers. Method M2 gives small

residuals in the subranges with low intensity values and big

ones in the subranges of high intensity, while the inverse is true

for method M3. In the case of methods M4 and M6 the resi-

duals are big in the whole recording range and different for

different polymers.

Fig. 16 may serve as a good illustration of the homo-

scedasticity of residuals in method M1. In this figure we can

compare the WAXD curve of iPP and residuals obtained with
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Figure 11
A comparison of the errors SEi and si with the absolute values of residuals obtained in the tested methods for CeI (a), (b) in the 2� ranges with high
intensities and (c), (d) in the 2� ranges with low intensities. The presented values were calculated using normalized WAXD curves of CeI.

Figure 12
The results of performed tests for the models of the WAXD curve of iPP,
PVDF, CeI, CeII.

Figure 14
Absolute values of the averages of residuals �"" in the subranges with the
lowest intensity (peripheral regions).

Figure 13
Absolute values of the averages of residuals �"" in the subranges with the
highest intensity (regions with crystalline peaks).



this method. The residuals are very small and nearly the same

in the whole 2� range.

6.5. Quality of mathematical models of WAXD curves

To evaluate the quality of mathematical models of WAXD

curves obtained by means of the tested methods M1–M6, the

integral similarity index SS and normalized R index were

calculated for all models and compared with each other. A

graphical presentation of the obtained results is given in Figs.

17 and 18. The presented values of both indices were calcu-

lated by averaging the results obtained in ten runs of the

decomposition procedure. It should be emphasized that the

lower the values of SS and R, the better is the model, i.e. the

better quality of fitting of the theoretical curve to the

experimental one. It is clearly seen in the figures that for all

polymers the lower values of analysed indices, and thereby the

highest quality of fitting, is reached by method M1.

As has already been mentioned in Section 5, the quality of

fitting offered by a given model can also be visually evaluated

by comparing the so-called theoretical integral intensity curve

ŶYð2�Þ related to the model with the experimental integral

intensity curve Y(2�) related to the experimental WAXD

curve. The integral intensities can be calculated using formulas

(18), (19) and plotted in one figure. The shapes of the integral

intensity curves of various polymers differ clearly from each

other, being characteristic for a given polymer.

Fig. 19 shows the experimental integral intensity curve

determined for iPP superimposed onto the original WAXD

curve.

Fig. 20 presents the experimental integral intensity curve of

iPP and theoretical integral intensity curves obtained with

methods M1–M6. We see that all theoretical intensity curves

are very close both to each other and to the experimental

integral intensity curve. However, a magnified picture in the

inset shows clear shifts between the curves. A careful inspec-

tion of such plots, performed in the whole range of the

diffraction angle 2�, showed that generally for all polymers the

smallest differences between theoretical and experimental
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Figure 19
Experimental integral intensity curve calculated for iPP superimposed
onto the original WAXD curve.

Figure 16
WAXD curve of iPP (black line) and residuals (red line) obtained with
method M1.

Figure 17
The integral similarity index SS for investigated methods.

Figure 18
The integral similarity index R for investigated methods.

Figure 15
Absolute values of the averages of residuals �"" in the whole recording
range.



integral intensity curves are observed in the case of the models

obtained with method M1.

7. Summary

The analyses presented in this work clearly show that the

objective function which is minimized in the fitting of a

theoretical curve to the experimental one influences consid-

erably the shape of the theoretical curve and its parameters. In

comparing and evaluating the six methods of fitting of a

theoretical curve to the experimental one, it was assumed that

the best method should not only give the crystalline peak

positions compatible with the crystalline structure of the

investigated polymer but also it should be marked by the

lowest values of the informational criteria SS and R, and the

smallest differences between experimental and theoretical

integral curves. Moreover, the residuals obtained with this

method should fulfil the conditions described in Section 5.

The performed analysis shows that all these requirements

were fulfilled in the best way by method M1 (least-squares

method). Moreover, it was shown that for all tested polymers

the scatter of crystallinity values obtained with this method is

the smallest (Table 1). It means that in order to obtain the

most credible mathematical model of an experimental curve,

useful for determination of the structural parameters of the

investigated polymer, we should employ this method.

The least absolute deviations method (M2) treats the tops

of sharp reflections as outliers and for this reason it should not

be used for polymers, the WAXD curves of which contain

narrow crystalline peaks (e.g. iPP or PVDF). Employing this

method we obtained higher values of SS and R and bigger

differences between the integral curves. Furthermore,

the residuals were not always normally distributed and

uncorrelated.

Yet higher values of Ss and R and bigger differences

between the integral curves were obtained for all polymers

when the weighted methods M3 (least relative squares), M4

(least absolute relative deviations), M5 (weighted least

squares) and M6 (least-squared relative deviations) were used.

Additionally, the residuals obtained with these methods did

not meet the required conditions and usually they were biased,

asymmetric and interrelated. The obtained results showed that

method M6 was the worst of all compared methods.

The investigations presented in this work show that it is

difficult to find rational reasons which could justify application

of the objective functions based on relative errors in mathe-

matical modelling of the WAXD curves.
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Warszawa: PWN.

Greenwood, P. E. & Nikulin, M. S. (1996). A Guide to Chi-squared
Testing. New York: Wiley.

Hill, R. J. & Flack, H. D. (1987). J. Appl. Cryst. 20, 356–361.
Hindeleh, A. M. & Johnson, D. J. (1974). Polymer, 15, 697–

705.
Hindeleh, A. M. & Johnson, D. J. (1978). Polymer, 19, 27–32.
Hofmann, D. W. M. & Kuleshova, L. (2005). J. Appl. Cryst. 38, 861–

866.
Holmes, D. R., Bunn, C. W. & Smith, D. J. (1955). J. Polym. Sci. 17,

159–177.
Hu, X. & Hsieh, Y. (1996). J. Polym. Sci. B Polym. Phys. 34, 1451–

1459.
Kennedy, J. & Eberhart, R. (1995). Particle Swarm Optimization,

Proceedings of ICNN’95 – International Conference on Neural
Networks, Vol. 4, pp. 1942–1948. Perth.

Kitamaru, R., Nakaoki, T., Alamo, R. G. & Mandelkern, L. (1996).
Macromolecules, 29, 6847–6852.

Lovinger, A. J. (1982). Developments in Crystalline Polymers – 1,
edited by D. C. Bassett. London and New Jersey: Applied Science
Publishers.

Mencik, Z. (1960). Chem. Prumysl. 10, 377.
Nielsen, L. (2000). Evaluation of Measurement Intercomparisons by

the Method of Least Squares. Technical report DFM-99-R39.
Danish Institute of Fundamental Metrology, Denmark

Nielsen, L. (2001). Evaluation of Measurements by the Method of
Least Squares. ADP013728. Algorithms For Approximation IV.
Proceedings of the 2001 International Symposium, University of
Huddersfield.

Paralikar, K. M. & Batrabet, S. M. (1981). J. Polym. Sci. B Polym.
Lett. Ed. 19, 555–560.

Popli, R., Glotin, M., Mandelkern, L. & Benson, R. S. (1984). J.
Polym. Sci. Polym. Phys. Ed. 22, 407–448.

Rabiej, M. (2003). Polimery, 48, 288–295.
Rabiej, M. (2013). J. Appl. Cryst. 46, 1136–1144.
Rabiej, M. (2014). J. Appl. Cryst. 47, 1502–1511.
Rabiej, M. (2017a). J. Appl. Cryst. 50, 221–230.

546 Rabiej and Rabiej � WAXD curves of semi-crystalline polymers Acta Cryst. (2021). A77, 534–547

research papers

Figure 20
Experimental integral intensity curve for iPP (red line yi) and theoretical
integral intensity curves obtained with methods M1–M6 shown in a large
range of the diffraction angle 2�: 15–50�. One can see that the
experimental curve and the theoretical curve obtained with method M1
nearly overlap each other.
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