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The multislice method, which simulates the propagation of the incident electron

wavefunction through a crystal, is a well established method for analysing the

multiple scattering effects that an electron beam may undergo. The inclusion of

magnetic effects into this method proves crucial towards simulating enhanced

magnetic interaction of vortex beams with magnetic materials, calculating

magnetic Bragg spots or searching for magnon signatures, to name a few

examples. Inclusion of magnetism poses novel challenges to the efficiency of the

multislice method for larger systems, especially regarding the consistent

computation of magnetic vector potentials A and magnetic fields B over large

supercells. This work presents a tabulation of parameterized magnetic (PM)

values for the first three rows of transition metal elements computed from

atomic density functional theory (DFT) calculations, allowing for the efficient

computation of approximate A and B across large crystals using only structural

and magnetic moment size and direction information. Ferromagnetic b.c.c.

(body-centred cubic) Fe and tetragonal FePt are chosen to showcase the

performance of PM values versus directly obtaining A and B from the unit-cell

spin density by DFT. The magnetic fields of b.c.c. Fe are well described by the

PM approach while for FePt the PM approach is less accurate due to

deformations in the spin density. Calculations of the magnetic signal, namely the

change due to A and B of the intensity of diffraction patterns, show that the PM

approach for both b.c.c. Fe and FePt is able to describe the effects of magnetism

in these systems to a good degree of accuracy.

1. Introduction

The engineering, design and exploration of novel magnetic

materials necessitate characterization methods capable of

rendering the behaviour of these materials down to the atomic

scale. Recent progress in the development of electron beam

monochromators has made it possible for the ever-versatile

transmission electron microscope to probe low-energy exci-

tations at this scale. Detection of magnetism in samples

remains challenging, given that the interaction of magnetic

moments with the electron beam is weaker than the Coulomb

interaction by three to four orders of magnitude (Chapman et

al., 1978; Rother & Scheerschmidt, 2009; Loudon, 2012).

Within the transmission electron microscope setup, electron

holography (Tonomura, 1995), Lorentz microscopy (McVitie

et al., 2015), differential phase contrast microscopy (Edström

et al., 2019) and electron magnetic circular dichroism

(Schattschneider et al., 2006) have all been put forward as

approaches to study magnetism in materials. As these

approaches gain momentum in the literature (McVitie et al.,

2015; Schattschneider et al., 2006), there is a clear need for a

consistent and efficient description of magnetic vector

potentials and fields in the materials under consideration.
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Efficiency becomes key in simulations of crystalline systems

used in electron microscopy, where crystals on a size scale

beyond the reach of standard density functional theory (DFT)

or other commensurate methods limit the computational

capability for describing magnetism from ab initio methods

directly.

Such efficiency becomes a moot point if the effects of

magnetism cannot be readily measured in an experimental

setup. To this end, magnetic effects in the elastic scattering

regime can reach relative strengths of up to a few per cent

(Edström et al., 2016a,b, 2019) through the use of phase-

shaped electron beams, such as aberrated or vortex beams

(Bliokh et al., 2017; Schattschneider et al., 2014), although

gradual deterioration of the angular momentum of the elec-

tron beam tends to occur as it traverses the crystal (Löffler et

al., 2019; Lubk et al., 2013; Rusz et al., 2014). Furthermore,

modern direct and hybrid-pixel detectors currently offer

drastically improved detection dynamic range and low back-

ground noise, with detection capability close to 10�7 of the full

beam intensity within tens of pixels of the recorded signal’s

maximum (Plotkin-Swing et al., 2020). With recent improve-

ments in monochromator and spectrometer design, resulting

in increased energy resolutions, especially at lower accelera-

tion voltages (Krivanek et al., 2019), signals of weak intensity

such as those related to magnetic effects are within the realm

of experimental feasibility, as shown by recent work towards

the detection of such effects in antiferromagnetic materials

(Huang et al., 2021; Loudon, 2012).

When it comes to a parameterization of a potential in the

context of the multislice method, electron atomic scattering

factors (Doyle & Turner, 1968; Weickenmeier & Kohl, 1991;

Peng, 1999, 2005; Kirkland, 2010; Lobato & Van Dyck, 2014),

first introduced to describe and evaluate the scattered beam

amplitudes of electrons by crystals, come to mind. The use of

the electron atomic scattering factors in this context relies on

two main assumptions, namely that incoming electrons

travelling at high enough energies will see the atom as a

scattering centre, and that the total Coulomb potential can be

computed as a superposition of atomic potentials, neglecting

the charge redistribution that occurs in a crystal. While not

identical, if similar criteria are assumed to hold true for

magnetic fields and vector potentials with certain limitations, it

stands to reason that knowledge of these quantities for an

atomic setup can be used in superposition to build up a

suitable approximation for the magnetic profile of any mate-

rial. As with electron atomic scattering factors, it is important

to note that bonding in many materials has a considerable

effect on the spin densities of the valence electrons, and the

advantage presented through use of an independent atom

approximation to magnetism is only as useful as the quality of

such an approximation to the system under consideration.

For such a parameterization to be generally useful across a

large spectrum of systems of interest in electron microscopy,

certain criteria must be met. First, the difference in the atomic

magnetic moment for the same atom in different crystal

configurations must be easy to account for. Second, the

potentials and fields should be smoothly varying, independent

of the choice of grid on which the quantities are represented.

Third, for computational efficiency, the determination of

magnetic quantities at a given grid point should depend solely

on local structural and magnetic moment size and direction

information. This paper presents the quasi-dipole approach,

satisfying all of the above criteria and thereby streamlining the

implementation of magnetic potentials and fields into the

growing set of methods in microscopy that take account of

magnetic effects in materials (Negi et al., 2018; Edström et al.,

2019; Lyon et al., 2021; Krizek et al., 2020; Kovács et al., 2017;

Schneider et al., 2018; Midgley & Dunin-Borkowski, 2009;

Grillo et al., 2017; Matsumoto et al., 2016; Chen et al., 2018;

Nguyen et al., 2020; Verbeeck et al., 2010). In this work,

specific use is made of the Pauli multislice method (Edström et

al., 2016a,b), which employs the paraxial Pauli equation in a

multislice formalism to account for the role of A and B fields

in electron beam scattering.

The methodology behind the parameterized magnetism

method is outlined in Section 2, including the calculation of

the periodic components of A and B from the spin density in

DFT, the quasi-dipole approximation that forms the basis for

parameterization of atomic magnetic components, and the

computational details of the DFT calculations and the least-

squares fit. Tabulated results for 25 transition metals are given

in Section 3.1, while the quality of the parameterized

magnetism approach is benchmarked against DFT results and

against different grids and geometries in Section 3.2. Section

3.3 concludes the paper by showing how the parameterized

magnetism approach utilized in the Pauli multislice method

compares with DFT results. This comparison is done by

calculation of the magnetic signal, namely the redistribution of

intensity in diffraction patterns due to the periodic compo-

nents of A and B, as measured via the squared amplitude of

the exit wavefunction in a multislice setup.

2. Methodology

In the following sections we will summarize the methods used

in this work. This begins in Section 2.1 with a summary of

how the magnetic vector potential AðrÞ and magnetic field

BðrÞ can be calculated using DFT in a consistent manner, as

shown by Rother & Scheerschmidt (2009), Edström et al.

(2016a). The framework for the parameterization of fields

surrounding atoms by fitting to DFT calculations is then

developed in Section 2.2. Computational details are summar-

ized in Section 2.3.

2.1. Calculation of A and B fields

The magnetization density for a crystalline system is given

by

mðrÞ ¼ �Bhri ¼ �BTr �ðrÞr½ �

¼ �B 2Re  �" #
� �

;�2Im  �# "
� �

; �spin

� �
ð1Þ

where �spin = j "j
2
� j #j

2 is the spin density projected onto

the spin quantization axis (Edström et al., 2016b). For the case
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of atomic systems, collinear magnetism occurs by default,

resulting in the simplified

matomðrÞ ¼ �B�spinẑz: ð2Þ

In order to obtain the magnetic vector potential A and the

corresponding flux density B, following Edström et al. (2016b),

we first make the assumption that for the materials under

consideration in this paper we can safely neglect the orbital

current density. While this assumption is not valid for all

elements, especially for f-electron systems such as rare earths

and actinides, quenching of orbital angular momentum due to

interaction with the crystalline electric field applies for the

substantial majority of transition metals with unfilled d-elec-

tron shells (Mohn, 2006). The total current density can

therefore be expressed via (Strange, 1998)

jðrÞ ¼ jspinðrÞ ¼ r �mðrÞ: ð3Þ

Working with Maxwell’s equations in the Coulomb gauge

(r �A ¼ 0) yields

r � BðrÞ ¼ 0; r � BðrÞ ¼ ��AðrÞ ¼ �0jðrÞ: ð4Þ

Applying the Fourier transform over the Brillouin zone (BZ)

to the magnetic field in real space,

BðrÞ ¼
R

BZ

BðkÞ expðik � rÞ dk; ð5Þ

gives

k � BðkÞ ¼ 0; ik� BðkÞ ¼ �0jðkÞ; ð6Þ

where Bðk ¼ 0Þ corresponds to the volume average of BðrÞ. As

we seek to calculate A and B fields on a grid of a unit cell,

where the magnetization density is defined, it is necessary to

separate the periodic components (Ap, Bp) from the non-

periodic ones (Anp, Bnp). Considering that, by definition,

ik�AðkÞ ¼ BðkÞ, a periodic vector potential Ap can only be

achieved by setting the k ¼ 0 component of the periodic

magnetic field, Bpðk ¼ 0Þ, equal to zero, corresponding to a

zero average magnetic field in the unit cell (Edström et al.,

2016b). The non-periodic component Anp, corresponding to

the average magnetic field within the unit cell, is defined in the

Coulomb gauge via

AnpðrÞ ¼
1

2
Bavg � r ¼

1

2
ð�0Mþ BextÞ � r; ð7Þ

where M is the macroscopic magnetization of the material and

Bext is an external magnetic field. Since �AnpðrÞ is here equal

to zero, equation (4) can be written as

�ApðrÞ ¼ ��0jðrÞ: ð8Þ

Applying the Fourier transform over the BZ to the periodic

part of A allows, in conjunction with the Fourier transform of

equation (3), for equation (8) to be rewritten as

�k2ApðkÞ ¼ ��0jðkÞ ¼ �i�0k�mðkÞ: ð9Þ

The magnetic vector potential and magnetic field can thereby

be expressed in reciprocal space as

ApðkÞ ¼ i�0

k�mðkÞ

k2
; BpðkÞ ¼ ��0

k� ½k�mðkÞ�

k2
; ð10Þ

where mðkÞ is the k component of the Fourier-transformed

atomic magnetization [see equation (1)]. The average of Bp, as

mentioned before, is zero due to the requirement of the

periodicity of the corresponding Ap, while the average of Ap

in equation (10) can be chosen to be zero by gauge freedom

(Jackson, 1999). For a DFT calculation where mðrÞ is defined

on a grid, applying forward and backwards Fourier transforms

will directly yield the periodic components of Ap and Bp in

real space, with the zero average condition enforced by setting

Apðk ¼ 0Þ ¼ 0 and Bpðk ¼ 0Þ ¼ 0.

2.2. Quasi-dipole approximation

In order to describe the magnetic vector potential and fields

for each atomic system, we seek a function which can be

parameterized in a way similar to electron form factors while

still retaining the main properties of the dipole-like fields that

surround atoms, a property that naturally comes about due to

Hund’s rule for the maximization of spin (Strange, 1998). For

this approach we opt for a quasi-dipole formulation, such that

the magnetic vector potential A and magnetic field

B ¼ r �A are defined via

A ¼ ðm̂m� rÞ
X4

i¼0

ai

rnðiÞ þ bi

ð11Þ

B ¼
X4

i¼0

ai

nðiÞðr � m̂mÞrnðiÞ�2r þ f2bi � ½nðiÞ � 2�rnðiÞgm̂m

rnðiÞ þ bi

� �2
; ð12Þ

where r ¼ jrj, nðiÞ ¼ ði=2Þ þ 3 and m̂m is the unit vector with

direction of the magnetic moment of the atom. The bi coeffi-

cients in this equation serve to smooth out the short-range

behaviour of the classical dipole, while the ai modulate the

strength of the field over all space. The choice of five pairs of

parameters, corresponding to ten total coefficients, was

necessary to achieve the desired root mean square (RMS)

error for the B field below 0.1 T across all elements under

consideration. Having the summation stop at order r�4 for the

magnetic vector potential (r�5 for the magnetic field) serves to

prevent high-frequency oscillations that may be expected to

occur at higher orders. Lastly, the choice of five pairs of

parameters helps to ensure the drop-off of magnetic field

strength beyond 3 Å from the atomic centre. It is important to

note that the magnetic moment of an atom changes its

magnitude depending on the surrounding environment (Billas

et al., 1994), so considering materials with variable magnetic

moments necessitates a rescaling of the magnetic moment

vector.

Utilizing the above equations serves three main purposes.

First, introducing the parameters bi > 0 eliminates the possible

divergence associated with using a traditional dipole approx-

imation. Second, by allowing for a sum over higher powers of

the radial distance in the denominator, this approximation is

better able to capture the short distance fluctuations within
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1 Å of the atomic centres that differentiate the magnetic

properties of each element. Third, the shape of A and B will

remain the same no matter which way the moment points, and

the parameterizations for each element can readily be used in

the computation of larger structures, as only the element type

and the direction and size of the magnetic moment are

necessary to yield the periodic A and B components over all

space. In addition, the symmetry of the fit function allows for

the computation of radial prefactors that drastically speed up

computation speed, namely

A ¼ ðm̂m� rÞa½rq�; B ¼ rðr � m̂mÞb1½rq� þ m̂mb2½rq�;

a½r� ¼
X4

i¼0

ai

rnðiÞ þ bi

; b1½r� ¼
X4

i¼0

nðiÞrnðiÞ�2

rnðiÞ þ bi

� �2
;

b2½r� ¼
X4

i¼0

2bi � ½nðiÞ � 2�rnðiÞ

rnðiÞ þ bi

� �2
; ð13Þ

where rq is a discretized approximation to r, depending on the

grid spacing of the radial prefactors.

One major aspect where the atomic and bulk magnetic

quantities diverge is in the quashing of the spin magnetic

moment in the transition from atomic systems to clusters to

the bulk (Billas et al., 1994), a natural consequence of the

delocalization of atomic orbitals in response to bonding. This

decreased local magnetic moment means that each individual

atom will contribute less to the total A and B than in the

atomic case. While a proper treatment of the shape of

magnetic fields in response to orbital deformation needs to be

considered on a material-specific basis, for the purposes of

general approximation we present in this work that a simple

scaling of the atomic parameterized fields to the experimental

magnetic moment values is sufficient for the purposes of

multislice calculations.

In order for this parameterization to be generally useful

towards the approximation of A and B for crystals of arbitrary

size, the condition that the A and B within a certain area of

each atom sum to zero is crucial, as this allows for the periodic

component of A and B to be directly constructed from the

individual zero-average atomic magnetic components. As seen

in equation (7), the total magnetic field and vector potential

for a system can then be obtained using the total magnetiza-

tion. However, it is important to note that calculation of the

parameterized values ai and bi in equations (11) and (12) for

atomic systems are optimized on a specific fine grid, so care

must be taken that the final total sum of the periodic

components of A and B over the entire supercell is as close to

zero as possible.

2.3. Computational details

All DFT calculations employ the projector augmented wave

method code GPAW (Mortensen et al., 2005; Enkovaara et al.,

2010) within the atomic simulation environment ase (Bahn &

Jacobsen, 2002; Larsen et al., 2017). An electronic temperature

of kBT ’ 1 meV was chosen. All calculations are done in the

spin polarized state. The Kohn–Sham wavefunctions are

represented by plane waves (PWs) with a converged energy

cutoff of Ecut ’ 400 eV. For the 25 atomic calculations,

Gamma point calculations were performed with a unit cell of

dimensions 12� 12� 12 Å. The Perdew–Burke–Ernzerhof

(PBE) parameterization (Perdew et al., 1996) of the general-

ized gradient approximation to the exchange-correlation (XC)

functional was chosen for every element except for scandium,

iron, nickel, rhodium and osmium, for which the closely

related PBEsol (Perdew et al., 2008) XC functional was chosen

due to convergence issues. The magnetic moments for scan-

dium and palladium were forced into the 1�B and 2�B states,

respectively, as otherwise these atomic systems proved diffi-

cult to converge. For b.c.c. (body-centred cubic) iron, defined

by a 2:87� 2:87� 2:87 Å unit cell with iron atoms located at

ð0; 0; 0Þ and ð0:5; 0:5; 0:5Þ in scaled coordinates, and for FePt

(Gilbert et al., 2013), defined by a 2:71� 2:71� 3:72 Å unit

cell with iron at ð0:25; 0:25; 0:25Þ and platinum at

ð0:75; 0:75; 0:75Þ in scaled coordinates, the PBE XC functional

was again chosen while using a 6� 6� 6 k-point Monkhorst–

Pack mesh (Monkhorst & Pack, 1976) for both calculations,

noting that the relatively small k-point grid is sufficient for

describing the approximate electron density in these struc-

tures. The local magnetic moment calculated in GPAW for Fe

in the b.c.c. iron unit cell is 2:33�B, while in the FePt unit cell

the local moment for Fe is 2:969�B and for Pt is 0:397�B.

To simulate the orientation of magnetic moments for a

supercell of b.c.c. Fe of size 30� 30� 100 unit cells in

response to thermal fluctuations, angles � for the magnetic

moment divergence from the z axis were sampled from a

multivariate normal distribution of mean zero (i.e. aligned

with the z axis) and standard deviation 30�, simulating a

supercell with 90% of the z-direction magnetization of a

collinear supercell, while the azimuthal angles � were sampled

uniformly from 0 to 360�. An exponential distance decay

factor (Wackernagel, 2003; Rusz et al., 2006) of expð��dÞ,

where � ¼ 0:08 Å�1 and d is the distance between spins

in ångström, was introduced into the covariance matrix for

both distributions to imitate in-plane spin–spin spatial corre-

lation, while spatial correlation along the z axis was imitated

by doing a layer-by-layer iterative mixing of � and �, so every

layer consists of a weighted average of 2/3 the angles from the

layer above and 1/3 the angles drawn from the multivariate

distributions.

A and B generated from the atomic DFT calculations yield

grids of 108� 108� 108 points over the 12� 12� 12 Å cells.

The parameterized values in equations (11) and (12) are

obtained with the LMFIT (Newville et al., 2021) package in

Python, with optimization carried over the approximately

23 000 points within a 2 Å radius of the atom centre and an

additional 47 000 points randomly chosen from elsewhere in

the unit cell, with the only restriction on the least-squares fit

being that bi > 0 for all materials. An RMS error calculation is

evaluated over the 70 000 total points involved in the calcu-

lation of the fit. RMS errors of at most 0.1 T for the fits to B

and 0.025 T Å for the fits to A were obtained.

For all calculations making use of the parameterized A and

B fields, a cutoff radius of 3 Å around each atom was used,
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with the contribution of the atom beyond this radius to the A

and B fields set to zero.

3. Results and discussion

In the following sections we present the results of this work.

The tabulation of the parameterized magnetization values is

shown in Section 3.1. Section 3.2 shows a simulation for the

appearance of the magnetic vector potential on a large

supercell, examines the performance of the parameterized

magnetism approach compared with DFT in describing

magnetic fields in unit cells, and considers the flexibility of the

approach with different grid sizes and geometries. Finally,

Section 3.3 compares the magnetic signal from both a b.c.c.

iron and a tetragonal FePt supercell, using magnetic fields and

potentials determined by the parameterized approach versus

DFT as input to a Pauli multislice approach.

3.1. Tabulated magnetic coefficients for the transition metals

Table 1 shows the parameterized magnetic factors for

transition metal elements from scandium (Z ¼ 21) to gold

(Z ¼ 79), following equations (11) and (12), neglecting

elements with filled d orbitals (and therefore zero spin

magnetic moment) or for which GPAW has no atomic

projector augmented wave (PAW) setups (Tc). The para-

meters ai are scaled so that the resulting A and B values

correspond to an atom with spin magnetic moment of one

Bohr magneton (�B). Therefore, for example, calculations for

a b.c.c. iron supercell would involve a rescaling of the listed ai

parameters in Table 1 by a factor of 2.33 for every constituent

iron atom.

Three main features stand out from Table 1. First is the fact

that the values of a4, corresponding to a quasi-dipole that

propagates asymptotically in space as 1=r5 rather than the 1=r3

of the classical dipole (Jackson, 1999), have a median an order

of magnitude lower than values a0 to a3, suggesting that the

fluctuations in the magnetic fields located very close to the

atomic centres are not crucial to the overall performance of

the model. Second is that all values a0 are positive across all
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Table 1
Parameterized magnetic factors for transition metal elements from scandium (Z ¼ 21) to gold (Z ¼ 79), following equations (11) and (12).

Elements with filled d orbitals or for which GPAW has no atomic PAW setups are left out. The parameters ai are scaled so that the resulting A and B values
correspond to a spin magnetic moment of one Bohr magneton (�B). The RMS error is included for each calculation.

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 RMS error

Element a0 (T Å3) b0 (Å3) a1 (T Å3.5) b1 (Å3.5) a2 (T Å4) b2 (Å4) a3 (T Å4.5) b3 (Å4.5) a4 (T Å5) b4 (Å5) A (T Å) B (T)

Sc 9.627E-01 1.298E+00 �1.195E-02 1.887E-03 3.207E-03 7.223E-04 1.746E-01 2.624E-01 2.062E-02 3.740E-02 7.075E-03 2.531E-03
Ti 9.865E-01 2.000E+00 �2.565E-03 1.442E-03 3.906E-01 2.528E-01 �5.238E-01 6.228E+00 �1.731E-01 3.869E-01 1.416E-02 4.423E-02
V 6.594E+00 4.638E+02 2.007E+00 4.761E-01 �4.102E+01 3.962E+03 �1.165E+00 2.720E+00 �7.793E-01 4.911E-01 1.807E-02 1.154E-02
Cr 1.201E+00 4.655E+00 1.304E+00 2.783E-01 �5.867E+00 1.045E+00 3.577E+00 5.462E+00 3.880E+00 1.312E+00 1.982E-02 1.625E-02
Mn 8.182E-01 4.156E+00 2.390E+00 2.663E-01 �6.858E+00 3.055E+00 6.222E+00 4.960E+00 �7.540E-01 2.450E-01 1.580E-02 2.844E-02
Fe 6.967E+00 4.357E+02 1.799E+00 1.894E-01 �4.485E+01 3.955E+03 �6.665E-01 1.294E+00 �5.191E-01 1.693E-01 1.807E-02 2.034E-02
Co 5.324E+00 2.716E+02 1.894E+00 1.638E-01 �3.158E+01 2.386E+03 �8.253E-01 9.567E-01 �5.211E-01 1.285E-01 1.781E-02 9.368E-02
Ni 2.123E+00 2.109E-01 5.423E+00 6.535E+00 �4.232E+01 9.541E-01 7.010E+01 1.139E+00 �3.031E+01 1.325E+00 1.126E-02 1.231E-02
Cu 1.684E+00 1.976E-02 �1.093E+00 5.604E-02 �7.235E-02 2.058E-03 �1.153E-01 4.499E-03 �4.434E-01 5.774E-01 5.049E-03 4.416E-03
Y 1.808E+00 1.824E-03 �5.816E-01 9.904E-02 �1.824E+00 3.088E-04 1.045E+00 1.321E-04 �1.714E-01 5.709E-05 9.262E-03 3.086E-02
Zr 2.954E-03 3.582E-04 1.251E+00 2.098E+01 9.615E-01 5.496E+00 �1.008E-01 2.481E-01 1.946E-01 5.740E-01 1.096E-02 3.841E-02
Nb 9.850E-01 6.480E-02 3.354E-01 3.146E+00 �3.161E-01 2.979E-02 �1.071E+00 2.602E-01 6.619E-01 2.939E-01 1.509E-02 1.356E-02
Mo 1.150E+00 7.032E-01 2.098E-01 1.704E-02 �1.331E+00 3.853E-02 7.077E-01 3.072E-02 1.815E-01 1.724E-01 1.647E-02 2.066E-02
Ru 1.141E+00 7.594E-01 2.508E-01 1.774E-02 �1.329E+00 4.251E-02 5.850E-01 1.624E-01 3.849E-01 2.449E-02 1.386E-02 4.651E-02
Rh 2.283E-02 1.625E-03 2.769E+00 1.724E+00 �2.187E+00 2.573E+00 �1.444E-01 4.847E-02 1.402E-01 6.810E-02 1.379E-02 7.110E-02
Pd 7.623E-03 4.048E-04 �3.558E+00 9.647E+01 9.942E+00 1.691E+02 2.203E+00 1.102E+01 2.391E-01 4.986E-01 6.902E-03 3.193E-02
Ag 4.349E+00 3.961E+01 �8.312E+00 1.537E+02 4.611E-01 2.675E-01 �6.189E-01 3.481E-01 2.320E+00 2.111E+01 8.045E-03 4.964E-03
Hf 8.602E-01 1.201E+00 2.697E-01 6.587E-02 �1.946E-01 1.345E+00 �1.715E-01 5.218E-02 �1.149E-01 3.384E-01 1.061E-02 3.482E-02
Ta 9.782E-01 1.502E+00 2.160E-01 5.528E-02 �6.757E-01 1.135E-01 3.900E-01 1.210E+00 2.566E-01 1.225E-01 1.199E-02 3.337E-02
W 8.705E-01 1.171E+00 9.543E-01 6.933E-02 �1.546E+00 7.871E-02 2.710E-01 2.382E-01 3.197E-01 5.784E-02 2.105E-02 1.434E-02
Re 2.070E+00 6.697E+02 1.518E+00 9.766E-02 4.992E-01 1.397E+01 �5.630E-01 4.738E-02 �4.218E-01 2.385E-01 1.641E-02 2.250E-02
Os 1.042E+00 1.469E+00 3.499E-01 5.149E-02 �1.514E+00 1.153E-01 1.086E+00 9.417E-01 7.026E-01 1.142E-01 1.373E-02 3.353E-02
Ir 2.514E-02 2.202E-02 1.139E+01 1.011E+02 �2.154E+01 2.992E+02 2.050E+00 6.562E+00 �2.924E-02 4.927E-02 1.846E-02 1.204E-02
Pt 2.001E+00 1.925E-01 �3.305E+00 2.058E-01 1.185E+00 8.158E+00 3.716E+00 2.857E-01 �2.088E+00 3.153E-01 6.134E-03 4.514E-02
Au 6.100E-01 1.747E+00 1.069E+00 2.511E+00 6.258E-01 2.764E-01 �3.433E+00 6.340E-01 2.102E+00 7.760E-01 7.167E-03 5.947E-03

Figure 1
RMS error for the least-squares fit of parameterized values in equations
(11) and (12) versus atomic DFT-calculated A and B values.



elements, which matches with the expectation that since these

coefficients correspond to the quasi-dipole term closest to the

classical dipole, the contribution to the overall magnetization

is positive as well. Third, the median values for bi are between

0.25 and 1.25 in units of Ån(i), suggesting again that on the

whole no one term in the quasi-dipole approximation is

accounting for short- or long-term behaviour of the A and B

values over the entire unit cell. The RMS error for the

calculations over the 25 transition metal elements is presented

in Fig. 1. No general relationship exists between para-

meterizations that yield good fits for A while also doing so for

B, but most importantly the maximum error of this approach is

revealed to be consistent across a range of atomic elements.

3.2. Evaluation of the parameterized magnetism approach

To showcase the capabilities of the parameterized

magnetism (PM) approach, Fig. 2 presents heatmap plots in

the xy plane for three components of A for a supercell of b.c.c.

Fe of size 86� 86� 287 Å, i.e. 30� 30� 100 unit cells. The

orientation of the magnetic moments, meant to provide a basic

simulation of thermal fluctuations, is given by selecting two

angles for each moment from spatially correlated multivariate

distributions, as explained in Section 2.3. The magnetic field

and vector potential were evaluated on a grid of

1500� 1500� 3000 points, utilizing the parameterization of

the A and B fields for the iron atom and rescaling to the

2:33�B magnetic moment of b.c.c. Fe. In Fig. 2, the subfigures

in the left column are for the plane located at z = 0 Å, where

900 atoms lie at the surface. A sort of grid-like pattern

emerges for Ax and Ay, as nearly all moments are oriented

towards the z axis and the fluctuations in the spin density are

strongest nearest to the atoms. Fewer of these punctures are

visible for Az as the local moments there must point relatively

off the z axis. A broad continuity of the colour spectrum is also

visible, reflecting the slow fluctuations expected from the

chosen spatial autocorrelation factor. The lack of sharp peaks

or troughs in the vector potential is a reflection of the intro-

duction of bi terms in equations (11) and (12), which would

not be the case for certain choices of grid in a classical dipole

approach.

The right column subfigures of Fig. 2 are for the plane

located at z = 0.75 Å deeper in the material. It is evident that

the general fluctuations in the three components of A match

with those of the left column of subfigures. The smoother

nature of these heatmaps versus the left column is a natural

consequence of being in a plane an equal distance from both

planes of iron atoms.

Aside from the performance of the parameterized

magnetism approach in generating magnetic vector potentials

and fields over large supercells, it is instructive to see the

predictive capabilities of this approach by contrasting with A

and B generated directly from the DFT supercell. Figs. 3 and 4

514 Lyon and Rusz � Parameterization of magnetic vector potentials Acta Cryst. (2021). A77, 509–518

research papers

Figure 2
Heatmaps in the xy plane for (a), (b) Ax, (c), (d) Ay and (e), (f) Az for a
supercell of b.c.c. Fe of size 86� 86� 287 Å, with magnetic vector
potential generated from the parameterization of magnetic fields around
the iron atom. Directions of the magnetic moments are given by spatially
correlated multivariate normal and uniform distributions. (a), (c), (e) are
for the plane located at z = 0 Å, where 900 atoms lie at the surface, while
(b), (d), (f) are for the plane located at z = 0.75 Å deeper in the material.

Figure 3
Density plots of a b.c.c. iron unit cell for (a), (b) Bx, (c), (d) By, (e), (f) Bz

in the xy plane 0.25 Å above one of the iron atoms, with (a), (c), (e)
calculated directly from the DFT-calculated spin density and (b), (d), (f)
calculated via the parameterized values shown in Table 1 for the iron
atom, with magnetic moments normalized to bulk values.



show density plots of the three components of B in the xy

plane for a periodic b.c.c. iron unit cell and a periodic FePt unit

cell, respectively, with all moments aligned along the z axis.

Both sets of subfigures evaluate the magnetic fields at a

z-axis location 0.25 Å above the topmost iron atom, with

the left column showing results from the converged spin

density of a DFT calculation over a unit cell and the right

column showing the parameterized magnetization approach,

including the scaling of A and B by the bulk moments as listed

in Section 2.3.

For Fig. 3, the approximations of the magnetic fields along

the x and y directions are in close agreement both in magni-

tude and shape. Along the z direction, the density map in Fig.

3(f) reveals the underlying symmetry inherent in the quasi-

dipole approximation, as a purely spherical shape surrounds

the atom, in contrast to Fig. 3(e). In both (e) and (f) the

presence of the second iron atom in the bottom right can also

be faintly seen. As the magnitudes along this direction are also

in close agreement, it is likely that the parameterized

magnetization approach will serve as a close approximation to

the magnetic behaviour for this system.

For Fig. 4, we again see qualitatively that the general shape

along all directions for the B field are in good agreement, with

the rightmost column showing parameterized magnetic fields

having a more symmetrical character than their DFT coun-

terparts. However, in contrast to b.c.c. iron in Fig. 3, it is

noticeable that along the x and y directions the PM approach

underestimates the DFT field by a factor of 0.6, while along

the z direction the B field is overestimated by a factor of 1.55.

For this material, deformation of the electron density

surrounding the iron atoms in response to neighbouring

platinum atoms has changed the surrounding magnetic vector

potentials and fields in such a way that our quasi-dipole

approximation, which enforces a fixed ratio between the three

directions of each quantity, cannot provide a suitable quanti-

tative fit along every direction. It is expected that if calcula-

tions within the multislice method are especially sensitive to

these ratios, the results for the parameterized magnetization

approach may provide a quantitatively worse description for

the magnetic properties of the system. The consequences of

this anisotropy of spin density will be evaluated in Section 3.3

below.

Returning to a point made in Section 2.2, we explore

numerical behaviour in utilizing the parameterized magnetism

approach with regards to grid sizes and sparsity. For the first

aspect, as the parameterization for each atom is calculated and

fitted on a 0.11 Å-spaced grid, it is expected that grids of

different sizes, especially coarser ones, may have a substantial

effect on the total magnetization within a cell. The second

aspect regarding sparsity relates to the mismatch between

unit-cell parameters and the grid spacing, as for sparser grids

the fields around each atom will not be sampled as evenly or as

symmetrically as for a fine grid. In Fig. 5, calculations of A and

B over 5� 5� 5 supercells of collinear b.c.c. iron were done

with the parameterized magnetism approach, with the unit

cells varying between those with atoms located at

hð0; 0; 0Þ; ð0:5; 0:5; 0:5Þi in scaled coordinates and those at

hð0:45; 0:45; 0:45Þ; ð0:95; 0:95; 0:95Þi in steps of 0.05. Grids of

size 0.02, 0.05, 0.1, 0.15 and 0.2 Å were used for each system.

The expected magnetization per unit cell is given by the two

iron atoms each with local magnetic moment of 2:33�B.

research papers
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Figure 5
Heatmap of the ratio of the calculated total magnetization versus the
expected for a collinear unit cell of b.c.c. iron, using grid spacings ranging
from 0.02 to 0.2 Å and with the locations of iron atoms located in the
scaled coordinates ranging between hð0; 0; 0Þ; ð0:5; 0:5; 0:5Þi (shift of 0)
and hð0:45; 0:45; 0:45Þ; ð0:95; 0:95; 0:95Þi (shift of 0.45).

Figure 4
Density plots of a FePt unit cell for (a), (b) Bx, (c), (d) By, (e), (f) Bz in the
xy plane 0.25 Å above the iron atom, with (a), (c), (e) calculated directly
from the DFT-calculated spin density and (b), (d), (f) calculated via the
parameterized values shown in Table 1 for the iron and platinum atoms,
with magnetic moments normalized to bulk values.



Two main features stand out in Fig. 5. First, for a grid

spacing lower than 0.1 Å, the total magnetization per unit cell

of b.c.c. iron will be within 	2% of the expected value,

reflecting the smoothness of the quasi-dipole approximation

and its portability to fine grids of different sizes. It is worth

noting that the higher magnetization ratio for the finer grid is

not necessarily the case across the parameterization of every

element and should be considered on a case-by-case basis.

Second, as expected, sparse grids have a strong influence both

on the magnetization ratio relative to the finer grids and

between grids of the same size but with geometrically

isomorphic unit cells. Most importantly, the choice of a

suitably fine grid for calculations of the magnetic vector

potential and fields should yield a magnetization in line with

calculations optimized on the atomic DFT grid.

3.3. Magnetic signal in the multislice method using para-
meterized magnetism

Most important for the parameterized magnetism approach,

from the perspective of performing multislice calculations, is

its predictive capability for the magnetic signal for large

supercells. For the case where the magnetic moments in a large

supercell all point in different directions, doing DFT simula-

tions to determine the magnetic field across the entire cell is

challenging computationally. However, for a fully collinear

system, the periodic magnetic vector potential and field in any

one unit cell will be identical, while the non-periodic compo-

nent can be computed via equation (7), and the results of

multislice calculations from both DFT and parameterized

magnetism can be directly compared.

For Fig. 6, supercells consisting of 20� 20� 10 unit cells for

both b.c.c. iron (a 57:4� 57:4� 28:7 Å supercell) and FePt (a

54:2� 54:2� 37:2 Å supercell) were considered. An accel-

eration voltage of Vacc ¼ 200 kV was used along with a

convergence semi-angle of � = 25 mrad. Debye–Waller factors

have not been included in order to allow for a one-to-one

comparison of the parameterization method with DFT

calculations, although they can generally be applied within the

Pauli multislice scheme. A magnetic field of 2 T was added to

both crystals. Multislice calculations were performed with zero

periodic magnetic components (i.e. all moments set to zero)

for calibration, with the DFT-calculated magnetic fields for

b.c.c. iron and FePt as outlined in Section 2.3, and with PM

calculations done using the values of bulk moments obtained

from DFT as listed in Section 2.3. In addition, for the FePt,

calculations were also carried out with the tabulated values for

iron normalized instead by �Fe;local ¼ 1:687�B and �Pt;local =

0:39�B. This is done in order to explore the effect of having

the Bz for the FePt system with moments aligned along the z

axis match quantitatively with the DFTresults as seen in Fig. 3.

This approach has been labelled as PM2 in Fig. 6.

Plotted in subfigures (a) and (c) of Fig. 6 are the radial

magnetic signal after subtracting the squared amplitude of the

calibration exit wavefunction, �CAL, at each pixel from that of

the calculated exit wavefunction, given by
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Figure 6
Magnetic signal for collinear (a) b.c.c. iron and (c) FePt using magnetic vector potentials and fields calculated using DFT and PM, respectively, with PM2
for the FePt showing the magnetic signal with PM parameters scaled directly using DFT fields instead of bulk magnetic moments. The logarithms of the
relative ratio of the squared amplitude of the output wavefunctions for the DFT and PM methods are given for (b) b.c.c. iron and (d) FePt. Output
wavefunctions are calculated with the Pauli multislice method (Edström et al., 2016b) using 20� 20� 10 unit supercells with Vacc ¼ 200 kV and � =
25 mrad.



IDFT=PM=PM2ð�Þ ¼
P

����
r<� �DFT=PM=PM2ði; jÞ
�� ��2� �CALði; jÞ

�� ��2h i
P

����
r<� 1
; ð14Þ

where i; j are the pixel positions relative to the centre of the

diffraction pattern, r ¼ ði2 þ j2Þ
1=2, ‘CAL’ refers to the cali-

brated exit wavefunction from only having the 2 T field

applied to the supercell, and a �� of 2 mrad was chosen. Both

subfigures reveal that the PM approach is to a strong degree

able to qualitatively predict the magnetic signal in these large

supercells to a similar degree as DFT-generated magnetic

vector potentials and fields across all areas of the diffraction

pattern. For the b.c.c. iron in (a), the PM consistently under-

estimates the DFT magnetic signal by a factor between 5 and

10%, matching the expectation hinted at in Fig. 3 that the two

magnetic quantities were qualitatively and quantitatively

similar. For FePt in (c), the PM consistently overestimates the

magnetic signal relative to DFT, with the smallest scattering

angles especially showing a difference of the order of 200%

difference. For this reason the PM2 approach is included,

recalibrating the magnetic moments so that the Bz fields are in

close quantitative agreement. The PM2 approach clearly

works to bring the magnetic signal more in line with the DFT-

predicted value, suggesting that this may be a superior

approach for systems with strong deformation of the elec-

tronic density around the atoms concerned. (b) and (d) in Fig.

6 show the logarithm of the relative ratio (i.e. difference

divided by the sum) of the squared amplitude of the DFT and

PM exit wavefunctions for the b.c.c. iron and FePt supercells,

respectively, providing a visual clue as to the degree to which

these two approaches are in agreement, with the b.c.c. iron

relative ratio consistently below 10�5 across the whole

diffraction pattern while the FePt relative ratio does not go

beyond 10�4. While the relative ratio appears highest beyond

60 mrad from the centre, it should be noted that the sample

thickness in these simulations is approximately 3 nm, meaning

that most of the intensity in the diffraction pattern is

concentrated in the central disc and that scattering intensities

outside the central disc are much smaller and therefore more

sensitive to minute changes in the intensity.

4. Conclusion

A framework for the atomic parameterization of magnetic

vector potentials and fields for transition metal elements has

been presented herein, with the overarching goal being to

provide an efficient and reliable method for the inclusion of

magnetic effects in magnetic multislice calculations (Edström

et al., 2016b) for materials and crystals of arbitrary size.

Calculating these magnetic quantities traditionally requires

either a heavy effort on the part of computationally

demanding software, or on locally inaccurate approximations

like a classical dipole method (Jackson, 1999). Relying on spin

densities generated in GPAW (Mortensen et al., 2005; Enko-

vaara et al., 2010), a quasi-dipole approximation consisting of

ten free parameters was fitted using least-squares for 25

transition metal elements (Newville et al., 2021). The flexibility

of this approach was showcased by a magnetic vector potential

A on a grid of size 85� 85� 283 Å for a b.c.c. iron supercell

with moments aligned according to spatially correlated normal

and uniform distributions. The performance of the para-

meterized magnetization was directly compared with magnetic

quantities derived from DFT calculations in the unit cell for

b.c.c. iron and for tetragonal FePt, showing that the perfor-

mance of the parameterization is best for materials without

significant deformation of their spin density due to bonding

(Billas et al., 1994). The performance of the parameterized

magnetization approach was shown to be flexible on grids and

geometries of different sizes. Lastly, a direct comparison of the

magnetic signals resulting from Pauli multislice calculations of

the approach with DFT calculations showed that for both

b.c.c. iron and tetragonal FePt, the parameterized magnetism

method was able to capture the behaviour of the magnetic

signal as a function of scattering angle, with better quantitative

results depending on the scaling of magnetic moments in the

unit cell.
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Madsen, G. K. H., Nieminen, R. M., Nørskov, J. K., Puska, M.,
Rantala, T. T., Schiøtz, J., Thygesen, K. S. & Jacobsen, K. W. (2010).
J. Phys. Condens. Matter, 22, 253202.

Gilbert, D. A., Wang, L.-W., Klemmer, T. J., Thiele, J.-U., Lai, C.-H. &
Liu, K. (2013). Appl. Phys. Lett. 102, 132406.

research papers

Acta Cryst. (2021). A77, 509–518 Lyon and Rusz � Parameterization of magnetic vector potentials 517

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ou5020&bbid=BB11


Grillo, V., Harvey, T. R., Venturi, F., Pierce, J. S., Balboni, R.,
Bouchard, F., Carlo Gazzadi, G., Frabboni, S., Tavabi, A. H., Li,
Z.-A., Dunin-Borkowski, R. E., Boyd, R. W., McMorran, B. J. &
Karimi, E. (2017). Nat. Commun. 8, 689.

Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I. E.,
Christensen, R., Dułak, M., Friis, J., Groves, M. N., Hammer, B.,
Hargus, C., Hermes, E. D., Jennings, P. C., Bjerre Jensen, P.,
Kermode, J., Kitchin, J. R., Leonhard Kolsbjerg, E., Kubal, J.,
Kaasbjerg, K., Lysgaard, S., Bergmann Maronsson, J., Maxson, T.,
Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C., Schiøtz, J.,
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