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The section of the Bilbao Crystallographic Server (https://www.cryst.ehu.es/)

dedicated to subperiodic groups contains crystallographic and Brillouin-zone

databases for the layer groups. The crystallographic databases include the

generators/general positions (GENPOS), Wyckoff positions (WYCKPOS) and

maximal subgroups (MAXSUB). The Brillouin-zone database (LKVEC) offers

k-vector tables and Brillouin-zone figures of all 80 layer groups which form the

background of the classification of their irreducible representations. The

symmetry properties of the wavevectors are described applying the so-called

reciprocal-space-group approach and this classification scheme is compared with

that of Litvin & Wike [(1991), Character Tables and Compatibility Relations of

the Eighty Layer Groups and Seventeen Plane Groups. New York: Plenum

Press]. The specification of independent parameter ranges of k vectors in the

representation domains of the Brillouin zones provides a solution to the

problems of uniqueness and completeness of layer-group representations. The

Brillouin-zone figures and k-vector tables are described in detail and illustrated

by several examples.

1. Introduction

The Bilbao Crystallographic Server (https://www.cryst.ehu.es/)

(Aroyo et al., 2006, 2011; Tasci et al., 2012) is a free web site

that grants access to specialized databases and tools for the

resolution of different types of crystallographic, structural

chemistry and solid-state physics problems. The server has

been operating for more than 20 years, and is in constant

improvement and development, offering free-of-charge tools

to study an increasing number of crystallographic systems

(Elcoro et al., 2017; Gallego et al., 2019; de la Flor et al., 2019).

The programs on the server are organized into different

sections depending on their degree of complexity, in such a

way that the more complex tools make use of the results

obtained by the simpler ones. The Bilbao Crystallographic

Server (hereafter referred to as BCS) is built on a core of

databases that include data from International Tables for

Crystallography, Vol. A, Space-group Symmetry (Aroyo, 2016;

henceforth abbreviated as ITA), Vol. A1, Symmetry Relations

between Space Groups (Wondratschek & Müller, 2010), and

Vol. E, Subperiodic Groups (Kopský & Litvin, 2010; hence-

forth referred to as ITE). A k-vector database with Brillouin-

zone figures and classification tables of the wavevectors for all

230 space groups (Aroyo et al., 2014) is also available in the

server, together with the magnetic and double-space-group

databases. The magnetic and the incommensurate structure

databases are also hosted on the server.

Aside from the subgroups of space groups with three-

dimensional lattices which are again space groups, there also
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exist subgroups called subperiodic groups with translation

lattices of dimensions one or two. These groups are essential

to describe polymers, nanotubes, nanowires, layered and

multilayered materials. The interest in materials with sub-

periodic symmetry is constantly growing due to their

outstanding properties and possible technological applica-

tions. There are three types of subperiodic groups: frieze

groups (two-dimensional groups with one-dimensional trans-

lation lattices), rod groups (three-dimensional groups with

one-dimensional translation lattices) and layer groups (three-

dimensional groups with two-dimensional translation lattices).

The crystallographic data for subperiodic groups are compiled

in ITE and also now offered online in the BCS section dedi-

cated to subperiodic groups. This section includes programs

which give access to the generators/general positions

(GENPOS), Wyckoff positions (WYCKPOS) and maximal

subgroups (MAXSUB) databases.

In addition, we have developed the Brillouin-zone database

of layer groups which contains k-vector tables and Brillouin-

zone figures that form the background of the classification of

the irreducible representations of layer groups. The Brillouin-

zone figures and the wavevector data for space groups are well

established and many authors have contributed to the stan-

dardization of the data (see e.g. Miller & Love, 1967; Bradley

& Cracknell, 1972; Cracknell et al., 1979; Stokes & Hatch,

1988). For layer groups, however, the Brillouin-zone and

wavevector descriptions proposed by several authors (Ipatova

& Kitaev, 1985; Hatch & Stokes, 1986; Milošević et al., 2008)

are incomplete and difficult to compare due to the lack of

standards in the classification and nomenclature of the k

vectors. To the best of our knowledge, the only complete

compilation of layer-group k vectors together with the

Brillouin-zone diagrams is found in the work of Litvin & Wike

(1991) (in the following, referred to as LW). In this description

the k vectors are labelled following the classification scheme

of space-group k vectors used by Cracknell et al. (1979). Based

on the group–subgroup relations between space and layer

groups and using the so-called reciprocal-space-group

approach (cf. Wintgen, 1941; Aroyo & Wondratschek, 1995;

Aroyo et al., 2014), we have derived the k-vector data and

Brillouin-zone figures for all 80 layer groups and compared

them with the classification of LW. An auxiliary tool for the

complete characterization of wavevectors is also available:

given the wavevector coefficients referred to a primitive or

conventional dual basis, the program assigns the corre-

sponding wavevector symmetry type, specifies its LW label,

determines the layer little co-group of the wavevector and

generates the arms of the wavevector star. The BCS Brillouin-

zone database of layer groups is accessed by the retrieval tool

LKVEC.

The aim of this contribution is to present the crystal-

lographic databases and the Brillouin-zone database for layer

groups available in the BCS. In the following, the retrieval

tools GENPOS, WYCKPOS, MAXSUB and LKVEC, and the

procedure to derive and classify the k vectors of layer groups

are described in detail. The utility of the programs is

demonstrated by several illustrative examples.

2. Crystallographic databases for layer groups

The BCS section Subperiodic Groups: Layer, Rod and Frieze

Groups hosts the layer-group crystallographic databases. The

structure of these databases is similar to that of the space

groups – they include information on generators, general

positions, Wyckoff positions and maximal subgroups for the 80

layer groups. Apart from the data shown in ITE the server

offers additional information and computer tools that allow

the generation of data not available in ITE. The BCS

programs and databases use the so-called standard or default

settings of the layer groups. These are the specific settings of

layer groups that coincide with the conventional layer-group

descriptions found in ITE. For layer groups with more than

one description in ITE, the following settings are chosen as

standard: (i) cell-choice 1 description for the two monoclinic/

oblique layer groups p11a (No. 5) and p112=a (No. 7)

described with respect to three cell choices in ITE, and (ii)

origin choice 2 descriptions (i.e. origin at an inversion centre)

for the three layer groups p4=n (No. 52), p4=nbm (No. 62) and

p4=nmm (No. 64) listed with respect to two origins in ITE.

Note that, following the conventions of ITE, the ab plane is

the plane of periodicity for the layer groups and therefore the

translation vectors are of the form

t1

t2

0

0
@

1
A:

2.1. Generators and general positions

The BCS database of layer groups includes the list of

generators/general positions of each layer group. These data

can be retrieved using the program GENPOS, by specifying

the sequential ITE layer-group number (which, if unknown,

can be determined by choosing the corresponding Hermann–

Mauguin symbol from a table with the layer-group symbols).

The generators and/or general positions of layer groups are

specified by their coordinate triplets, the matrix-column

representations of the corresponding symmetry operations

and their geometric interpretation:

(a) The list of coordinate triplets (x, y, z) reproduces the

data of the General Positions blocks of layer groups found in

ITE. The coordinate triplets may also be interpreted as

shorthand descriptions of the matrix presentation of the

corresponding symmetry operations.

(b) Matrix-column presentation of symmetry operations.

With reference to a coordinate system, consisting of an origin

O and a basis (a1, a2, a3), the symmetry operations of layer

groups are described by (3 � 4) matrix-column pairs.

(c) Geometric interpretation. The geometric interpretation

of symmetry operations is given (i) following the conventions

in ITE [including the symbol of the symmetry operation, its

glide or screw component (if relevant) and the location of the

related symmetry element], and (ii) using the Seitz notation. It

is worth pointing out that, in contrast to the online and printed

editions of ITE, the programs of BCS use the standard
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International Union of Crystallography Seitz notation. For

example, a twofold rotation around the c axis is denoted by

2001 instead of 2z (for details, cf. Litvin & Kopský, 2014).

Fig. 1 shows the general position for the layer group p112=a

(No. 7) in the default setting (cell-choice 1).

The program GENPOS lists the generators and/or general

positions of layer groups in the standard/default setting as well

as in conventional non-standard settings of monoclinic/

rectangular and orthorhombic/rectangular layer groups

described in Table 1.2.6.1 of ITE (option ITE settings). In

addition, the program can produce the data in any non-

conventional setting if the transformation relating the non-

conventional setting to the standard one is specified (option

Non-conventional setting). The matrix-column pair (P, p) of

the transformation relating the two settings consists of two

parts: a linear part P defined by a (3 � 3) matrix, which

describes the change of direction and/or length of the basis

vectors (a1, a2, a3)non-conv = (a1, a2, a3)stanP, and an origin shift p

= ðp1; p2; p3Þ defined as a (3 � 1) column, whose coefficients

describe the position of the non-conventional origin with

respect to the standard one.

The URL of the program GENPOS is https://www.cryst.

ehu.es/subperiodic/get_sub_gen.html.

2.2. Wyckoff positions

The BCS Wyckoff-positions database for layer groups is

accessible under the WYCKPOS program. The data on

Wyckoff positions can be retrieved by specifying the ITE

number of the layer-group type. As a result, the program

WYCKPOS shows a table with the Wyckoff positions [see Fig.

2(a)]. Following ITE, each Wyckoff position is characterized

by its multiplicity, Wyckoff letter, site-symmetry group and a

set of coordinate triplets of the Wyckoff-position points in the

unit cell. For centred subperiodic groups, the centring trans-

lations are listed above the coordinate triplets. The site-

symmetry groups [see column three of Fig. 2(a)] are described

by oriented symbols which display the same sequence of

symmetry directions as the layer-group symbols (cf. Table

1.2.4.1 of ITE). An explicit listing of the symmetry operations

of the site-symmetry group of a point is obtained by clicking

directly on its coordinate triplet. A recently implemented

auxiliary tool permits the identification of the Wyckoff posi-

tion and the site-symmetry operations of a point specified by

its coordinate triplet [see Fig. 2(b)]. The program accepts as

input relative point coordinates in fractions, decimals or

variable parameters (indicating a generic value). Fig. 3 shows

the list of the symmetry operations of the site-symmetry group

of the layer group cmmm (No. 47) for the points ð5=4; 3=4; zÞ.

The points belong to the Wyckoff position 8h with site-

symmetry group ..2.

Apart from the standard/default setting option the program

is also able to calculate the Wyckoff positions in different ITE

(conventional) settings (option ITE settings) or with respect to

a non-conventional setting if the corresponding coordinate
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Figure 1
General-position table of the layer group p112=a (No. 7), provided by the
program GENPOS.

Figure 2
A screenshot of the output of the program WYCKPOS, showing (a) the
Wyckoff positions of the layer group cmmm (No. 47), and (b) the
interface of the auxiliary tool for the determination of the Wyckoff
position and the site-symmetry group of a specific point.

Figure 3
Output of the auxiliary tool in WYCKPOS that shows the symmetry
operations of the site-symmetry group for points with coordinates
ð5=4; 3=4; zÞ of the layer group cmmm (No. 47). The points belong to the
Wyckoff position 8h with site-symmetry group ..2.



transformation (P, p) is defined (option Non-conventional

setting).

The URL of the program WYCKPOS is https://www.

cryst.ehu.es/subperiodic/get_sub_wp.html.

2.3. Maximal subgroups

The listing of maximal subgroups of layer groups available

in ITE is incomplete and lacks additional information, such as,

for example, possible unit-cell transformations and/or origin

shifts involved. In contrast, the BCS database of maximal

subgroups of layer groups provides the complete listing (not

just by type but individually) of (i) all maximal non-isotypic

subgroups for each layer group, and (ii) all maximal isotypic

subgroups of indices 2, 3 and 4. The list of maximal subgroups

is retrieved by the access tool MAXSUB. Each subgroup is

specified by its ITE number, Hermann–Mauguin symbol,

index, subgroup type (t for translationengleiche or k for klas-

sengleiche) and transformation matrix-column pair (P, p) that

relates the standard setting of the group with that of the

subgroup (see Fig. 4). The different maximal subgroups are

distributed into conjugacy classes. The identification of the

subgroup symmetry operations as a subset of the elements of

the group is achieved by an optional tool of MAXSUB that

transforms the general-position representatives of the

subgroup to the coordinate system of the group.

The URL of the program MAXSUB is https://www.

cryst.ehu.es/subperiodic/get_sub_maxsub.html.

3. Classification of wavevectors

A layer group L is defined as a three-dimensional crystal-

lographic group with periodicity restricted to a two-dimen-

sional subspace. Just as for space groups, the general strategy

for determining the irreducible representations, called irreps

for short, of such a group is to exploit the fact that it contains

the translation subgroup T as a normal abelian subgroup and

that irreps of abelian groups are one-dimensional. The

elements of T have matrix-column pairs of the form ðI; tÞ

where t lies in a two-dimensional lattice L with basis a1; a2.

Each one-dimensional irrep of T is then of the form

�kðI; tÞ ¼ expð�2�i k � tÞ for a k vector k ¼ k1a�1 þ k2a�2 in the

reciprocal space spanned by the reciprocal basis a�1; a�2 defined

by ai � a
�
j ¼ �ij.

Starting from an irrep �k of T , an irrep of the full layer

group L is obtained by first extending �k to the stabilizer of �k

under the conjugation action of L and then inducing to the full

group L. When the induced irrep of L is restricted to T , it is

the sum of those one-dimensional irreps �k0 of T which lie in

the orbit of �k under the conjugation action of L and these are

precisely the irreps of T that yield irreps ofL equivalent to the

one obtained from �k. For the action of L on the k vectors

only the part acting on the plane of periodicity of L is relevant

and the restriction of L to this plane gives rise to a plane group

P associated to L. In the convention of ITE, the matrix-

column pairs of L are expressed with respect to a basis a; b; c

such that the first two basis vectors span the plane of peri-

odicity. Therefore, the matrices of the linear parts of the plane

group P are simply the upper 2� 2 diagonal blocks of the

linear parts of the layer group L.

An explicit computation shows that the k0 in the orbit of k

are of the form k0 ¼ kWþ K for W an element of the point

group P of P and K an element from the reciprocal lattice L�

of L, i.e. for K ¼ k1a�1 þ k2a�2 with k1; k2 integers. The set of

elements W for which k ¼ kWþ K is called the little co-group

P
k

of k. The k vector is called general if P
k

contains only the

identity element of P, i.e. P
k

= {I}; otherwise P
k

> {I} and k is

special (Bradley & Cracknell, 1972; Dresselhaus et al., 2008). If

{Wm} is the set of coset representatives of the decomposition

of P with respect to P
k
, then the set of k vectors {kWm} is

called the star of k while the vectors kWm are called the arms

of the star. Using the relation between the elements of the

layer group L and the plane group P associated to L, in

analogy to P
k
, one defines the little layer co-group L

k
which is

essential for the derivation of the irreps of L.

The preceding discussion indicates the importance of the

so-called reciprocal plane group ðPÞ
�, defined as the

symmorphic plane group having the reciprocal lattice L� as

translation vectors and P as point group. It is crucial that the

operations in ðPÞ� act on reciprocal space, i.e. they act on rows,

as opposed to P which acts on columns. In order to identify

ðPÞ
� with one of the symmorphic plane groups in their stan-

dard setting, the action on reciprocal space (on rows) has to be

transformed into one on direct space (on columns).

3.1. Transformation between reciprocal space and direct
space

After fixing a basis a1; a2 for direct space, the action of the

point group P of P on L is given by 2� 2 matrices W acting on

columns. We now have to relate the action on the reciprocal

lattice L� to that on L. Defining

bi ¼
bi;1

bi;2

� �
¼ W

ai;1

ai;2

� �
¼Wai;

the basis a1; a2 is mapped by W to the new basis b1; b2. The

corresponding matrix W� for the action on reciprocal space
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Figure 4
Maximal subgroups of the layer group cmmm (No. 47) provided by the
program MAXSUB.



(on rows) must then map the reciprocal basis a�1; a�2 to the

reciprocal basis b�1; b�2 of b1; b2. From

a�j � ai ¼ �ij ¼ b�j � bi ¼ ða
�
j W�ÞðWaiÞ ¼ a�j ðW

�WÞai

it follows that W�W must be the identity matrix I. We thus

have W� ¼ W�1, i.e. the action on the rows of reciprocal space

is given by the inverse matrices acting on the columns of direct

space. Since P is a group, it contains with every matrix W of

course also the inverse matrix W�1; hence the set of matrices

remains the same, but they now act from the right on rows.

As an example, we take the layer group p�66m2 (No. 78).

Restricting the action to the plane of periodicity gives the

plane group p3m1 (No. 14). If we look at the k vector

ð�1:21; 1Þ, applying the threefold rotation with matrix

0 �1

1 �1

� �

to the row k gives k0 ¼ ð1; 0:21Þ and applying it again gives

k00 ¼ ð0:21;�1:21Þ. On the other hand, applying the reflection

with reflection line 2x; x and matrix

1 0

1 �1

� �
;

we see that the row k is mapped to ð�0:21;�1Þ, which is equal

to k up to a reciprocal-lattice vector. The star of k consisting of

the k vectors in the orbit under L is therefore
�k ¼ fð�1:21; 1Þ; ð1; 0:21Þ; ð0:21;�1:21Þg.

As we have just demonstrated, it is natural to consider the

action of the reciprocal plane group ðPÞ� on rows, but on the

other hand ðPÞ� is by construction isomorphic to a

symmorphic plane group P0. In order to identify ðPÞ� with the

proper symmorphic plane group, the action on rows has to be

transformed to an action on columns. This is of course

achieved by simply transposing the matrices of the point group

P, since ðkWÞtr ¼ Wtrktr and the transpose ktr of a row is a

column. The symmorphic plane group P0 isomorphic to ðPÞ� is

therefore the group

P0 ¼ fðW
tr; ttr

KÞ jW 2 P; tK 2 L�g:

The only problem that may occur is that P0 is not given in its

standard setting. This can be seen from different (strongly

interrelated) perspectives:

(i) The reciprocal basis a�1; a�2 may not be a conventional

basis of the lattice L�. For example, the reciprocal lattice of a

hexagonal lattice is also a hexagonal lattice, but while the

vectors a1; a2 in the conventional basis have an angle of 120�,

the reciprocal basis vectors a�1; a�2 enclose an angle of 60� and

are therefore not a conventional basis of a hexagonal lattice.

(ii) The matrices W of the point group fix the metric tensor

G of the lattice L, i.e. one has WtrGW ¼ G. The transposed

matrices fix the inverse metric tensor G�1 as can be seen from

inverting the above equation: WtrGW = G¼)W�1G�1W�tr =

G�1
¼)WG�1Wtr ¼ G�1. This corresponds to the fact that

the reciprocal lattice L� has metric tensor G�1. But G�1 may

not be the metric tensor of a lattice with respect to its

conventional basis. For example, a hexagonal lattice has a

metric tensor of the form

G ¼ a2 2 �1

�1 2

� �

which has inverse

G�1
¼

1

3a2

2 1

1 2

� �
:

This is the metric tensor of a hexagonal lattice with basis

vectors having an angle of 60�, i.e. in a non-conventional

setting.

(iii) The transposed matrices Wtr simply do not occur as

matrices of one of the point groups of plane groups in their

standard setting. For example, the transposed matrix

0 1

�1 �1

� �

of the matrix

0 �1

1 �1

� �

of a threefold rotation 3þ does not belong to the point group

of any of the plane groups.

For plane groups, the hexagonal lattice is actually the only

case in which the transposed matrices do not belong to a point

group in its standard setting. For all other lattices, the inverse

of the metric tensor still belongs to a conventional basis or, in

other words, the set of matrices of the point group does not

change by transposing.

In order to identify the symmorphic plane group P0 in the

case of a hexagonal lattice, the group has to be transformed to

a basis in the conventional setting, i.e. which has a metric

tensor equal to a multiple of

2 �1

�1 2

� �
:

Such a transformation is

P ¼
1 �1

0 1

� �

(or its compositions with powers of a sixfold rotation) and the

transposed matrices of the point group have to be conjugated

by this. This interchanges the two types of reflections (in

p6mm), those with normals along the two basis vectors and

their sum and those with reflection lines along the basis

vectors (and their sum). For example, for

W ¼
1 0

1 �1

� �
;

the reflection with reflection line 2x; x, one gets

P�1WtrP ¼
1 1

0 1

� �
1 1

0 �1

� �
1 �1

0 1

� �
¼

1 �1

0 �1

� �

which is the reflection with reflection line along the a axis.

As a result, for a layer group with plane group of type p3m1,

the symmorphic plane group P0 isomorphic to the reciprocal

plane group ðPÞ� is of type p31m and vice versa.
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Based on the identification of the reciprocal plane group

ðPÞ
� with a symmorphic plane group P0, the special k vectors

for a layer group L can be directly read off from the Wyckoff

positions of P0.

3.2. Crystallographic conventions in the classification of
layer-group irreps

The isomorphism between a reciprocal plane group ðPÞ�

and a symmorphic plane group P0 allows the application of

crystallographic conventions in the classification of the

wavevectors (and henceforth of the irreps) of the layer

groups L:

(i) The unit cells of the symmorphic plane groups listed in

ITA can replace the Brillouin zones as unit cells of the reci-

procal space. To find all irreps of L, it is necessary to consider

only the wavevectors of the so-called representation domain. It

is defined as a simply connected part of the (first) Brillouin

zone (a unit cell of the reciprocal space) which contains

exactly one k vector of each orbit of k. The asymmetric units

of plane groups can serve as representation domains. The

advantage of choosing the crystallographic unit cells and their

asymmetric units becomes evident in layer groups where the

Brillouin zones may belong to different topological types

depending on the ratios of the lattice parameters. Lines on the

Brillouin zone may appear or disappear or change their

relative sizes depending on the lattice parameters. In contrast

to that, the unit cells and their asymmetric units of ITA are

independent of the ratios of the lattice parameters.

(ii) The action of the reciprocal plane group ðPÞ� on the

wavevectors results in their distribution into orbits of

symmetry-equivalent k vectors with respect to ðPÞ�. Thanks to

the isomorphism of (P)� with the symmorphic plane group P0,

the different types of k vectors correspond to the different

kinds of point orbits (Wyckoff positions) of P0. In this way, a

complete list of the special sites in the Brillouin zone of (P)� is

provided by the Wyckoff positions of P0 found in ITA. The

site-symmetry groups of ITA correspond to the little co-

groups of the wavevectors and the number of arms of the star

of a wavevector follows from the multiplicity of the Wyckoff

position. The Wyckoff positions with zero, one and two vari-

able parameters correspond to special k-vector points, special

k-vector lines and special (or general) k-vector planes,

respectively. A k-vector type, i.e. the set of all k vectors

corresponding to a Wyckoff position, consists of complete

orbits of k vectors and thus of full stars of k vectors. The

different orbits (and stars) of a k-vector type are obtained by

varying the free parameters. Correspondingly, the irreps of k

vectors of a k-vector type are interrelated by parameter

variation and are said to belong to the same type of irreps

(Boyle, 1986). In this way all wavevector stars giving rise to the

same type of irreps are related to the same Wyckoff position

and designated by the same Wyckoff letter.

(iii) A complete set of irreps of L is derived by considering

exactly one k-vector representative per k-vector orbit. To

achieve that, it is necessary to specify the exact parameter

ranges of the independent k-vector regions within the repre-

sentation domain (or the asymmetric unit). While such data

are not available in the literature, the Brillouin-zone database

of BCS offers the listing of the exact parameter ranges for the

k vectors which are absolutely necessary for the solution of the

problems of uniqueness and completeness of layer-group

irreps. For this purpose it is advantageous to describe the

different k-vector stars belonging to a Wyckoff position

applying the so-called uni-arm description. Two k vectors of a

Wyckoff position are called uni-arm if one can be obtained

from the other by parameter variation. The description of k-

vector stars of a Wyckoff position is called uni-arm if the k

vectors representing these stars are uni-arm. Frequently, in

order to achieve a uni-arm description, it is necessary to

transform k vectors to equivalent ones. In addition, to enable a

uni-arm description, symmetry lines outside the asymmetric

unit may be selected as orbit representatives. Such a segment

of a line is called a flagpole. Examples of flagpoles are

displayed in Fig. 9, and Figs. 10 and 11 for the layer group

cm2m (No. 35) [cf. Section 5.2 for a detailed account of the use

of flagpoles in the uni-arm description of k-vector types that

belong to Wyckoff position 2a of the reciprocal plane group

ðc1m1Þ�].

4. The Brillouin-zone database for layer groups

The k-vector data of the Brillouin-zone database of the BCS

are accessed by the retrieval tool LKVEC which uses as input

the ITE number of the layer group. The output consists

essentially of wavevector tables and figures. There are several

sets of figures and tables for the same layer group when its

Brillouin-zone shape depends on the lattice parameters of the

reciprocal lattice. The k-vector data are the same for layer

groups of the same arithmetic crystal class.

In the k-vector tables, the wavevector data of LW are

compared with the Wyckoff-position data of ITA. In the

figures, the Brillouin zones and the representation domains of

LW, and the asymmetric units, chosen often in analogy to those

of ITA, are displayed.

LW describe the monoclinic/rectangular layer groups with

respect to a setting that is different from the conventional one

found in ITE. Using the relationship between the two settings,

we have transformed the k-vector data of LW to the conven-

tional setting of ITE for all six monoclinic/rectangular arith-

metic crystal classes: 211p, 211c, m11p, m11c, 2=m11p and

2=m11c. The transformed special k-vector points, lines and

planes keep the LW labels of the k vectors from which they

were derived.

The URL of the program LKVEC is https://www.cryst.

ehu.es/subperiodic/get_layer_kvec.html.

4.1. Guide to the tables

Each k-vector table is headed by the corresponding

Hermann–Mauguin symbol of the layer group, its ITE number

and the symbol of the arithmetic crystal class to which the

layer group belongs. If there is more than one table for an

arithmetic crystal class, then these tables refer to different
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geometric conditions for the lattice parameters that are indi-

cated after the symbol of the arithmetic crystal class. The set of

layer groups of the arithmetic crystal class are also indicated in

the headline block. They are followed by the symbol of the

corresponding reciprocal plane-group type together with the

conditions for the lattice parameters of the reciprocal lattice, if

any (asterisks denote reciprocal-space quantities). From the k-

vector table there is a link to the corresponding Brillouin-zone

figure.

The k-vector tables consist of two parts: (i) ‘Litvin & Wike’

description and (ii) ‘Plane-group description’. The first three

columns under the heading ‘Litvin & Wike’ refer to the

description of the k-vectors found in Tables 24 and 25 of LW. It

consists of labels of k-vectors (column 1), their parameter

descriptions (column 2) and their layer little co-group (column

3 for primitive lattices and column 4 for c-centred). Note that

LW substitutes the Greek-character labels for the symmetry

points and lines inside the Brillouin zone by a symbol

consisting of two Roman characters, e.g. GM instead of �, LD

instead of � etc. In order to enable the uni-arm description

new k-vector types, equivalent to those of LW, are added to

the k-vector lists. Equivalent k vectors (related by the sign �)

are designated by the same labels; additional indices distin-

guish the new k vectors.

Different k vectors with the same LW label always belong to

the same k-vector type, i.e. they correspond to the same

Wyckoff position. k Vectors with different LW labels may

either belong to the same or to different types of k vectors.

When k vectors with different LW labels belong to the same k-

vector type, the corresponding parameter descriptions are

followed by the letters ‘ex’ (from Latin, with the meaning of

‘from’ or ‘out of’). Symmetry points or lines of symmetry of

LW, related to the same Wyckoff position, are grouped toge-

ther in a block. In the k-vector tables, neighbouring Wyckoff-

position blocks are distinguished by a slight difference in the

background colour. The parameter description of the uni-arm

region of a k-vector type is shown in the last row of the

corresponding Wyckoff-position block.

The wavevector coefficients of LW (column 2 of the k-

vector tables) refer always to a primitive basis irrespective of

whether the conventional description of the group in ITE is

with respect to a centred or primitive basis. For that reason, for

layer groups with centred lattices, the wavevector coefficients

with respect to the usual conventional reciprocal basis, i.e. dual

to the conventional centred basis, are listed in the column

under the heading ‘Conventional’ of the k-vector tables. The

relations between the conventional coefficients (k1, k2) and

the primitive coefficients (kp1, kp2) are summarized in Table 1.

(For layer groups with primitive lattices, the wavevector

coefficients referred to a primitive basis coincide with those

referred to the basis dual to the conventional one of ITA.)

The layer little co-group data of each k vector are listed

under the heading ‘Layer little co-group’ of the k-vector

tables. The layer little co-groups are subgroups of the point

group of the layer group and are described by oriented point-

group symbols (as is customary for site-symmetry groups of

Wyckoff positions).

The data for the crystallographic classification scheme of

the wavevectors are listed under the heading ‘Plane-group

description’ in the k-vector tables. The columns ‘Wyckoff

positions’ show the ‘multiplicity’, ‘Wyckoff letter’ and ‘site-

symmetry’ of the Wyckoff positions of the corresponding

symmorphic plane group P0 of ITA which is isomorphic to the

reciprocal plane group (P)�. The multiplicity of a Wyckoff

position divided by the number of lattice points in the

conventional unit cell of ITA is equal to the number of arms of

the star of the corresponding k vector. The alphabetical

sequence of the Wyckoff positions determines the sequence of

the LW labels. Unlike in ITA, the tables start with the Wyckoff

letter ‘a’ for the Wyckoff position of the highest site symmetry.

Site symmetries are described by means of oriented point-

group symbols which are also links to more detailed infor-

mation on the symmetry operations of the site-symmetry

group. Besides the shorthand description, the matrix-column

representation and the geometric representation of the

symmetry operations of the site-symmetry group, the program

also provides a table with the relationship between the

symmetry operations of the site-symmetry group and the

layer little co-group (cf. Fig. 5 and Section 3.1 for detailed

explanations).

The parameter description of the Wyckoff positions is shown

in the last column of the wavevector tables under the heading

‘Coordinates’. It consists of a representative coordinate

doublet of the Wyckoff position and algebraic statements for

the description of the independent parameter range. In some

cases, the algebraic expressions are substituted by the desig-

nation of the parameter region in order to avoid clumsy

notation. Because of the dependence of the shape of the
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Figure 5
Relation between the symmetry operations of the site-symmetry group
.m. of the plane group c1m1 (No. 5) and the layer little co-group m2m of
the layer group cm2m (No. 35) for the k vector DT = (�u, u).

Table 1
‘Conventional’ k-vector coefficients kj (i.e. with respect to a basis dual to
the conventional basis of ITA) expressed by the ‘primitive’ k-vector
coefficients kpj (i.e. referred to a primitive basis) for the different Bravais
lattices in direct space.

Bravais lattice k1 k2

mp, op, tp, hp kp1 kp2

oc kp1 þ kp2 �kp1 þ kp2



Brillouin zone on the lattice parameter relations there may be

vertices of the Brillouin zone with a variable coordinate. If

such a point is displayed and designated in the tables and

figures by an upper-case letter, then the label of its variable

coefficient used in the parameter-range descriptions is the

same letter but typed in lower case.

Because of the isomorphism between P0 and (P)� the

coordinate doublets of the Wyckoff positions of P0 can be

interpreted as k-vector coefficients (ka1, ka2) determined with

respect to the conventional ITA basis of P0. The relation

between the ITA coefficients (ka1, ka2) and the conventional

coefficients (k1, k2) is shown in Table 2.

At the bottom of the web page with the k-vector table one

finds an auxiliary tool which allows the complete character-

ization of a wavevector of the reciprocal space (not restricted

to the first Brillouin zone): given the k-vector coefficients

referred either to a primitive (LW) or to a conventional basis,

the program assigns the k vector to the corresponding wave-

vector symmetry type, specifies its LW label, and calculates the

layer little co-group and the arms of the k-vector star.

Consider again the example of the k vector with coefficients

ð�1:21; 1Þ for the layer group p�66m2 (No. 78), cf. Fig. 6 and Fig.

8. It is a vector outside the first Brillouin zone and its coeffi-

cients do not correspond to any of the parameter descriptions

of the k-vector representatives listed in Fig. 6. The output of

the auxiliary tool indicates that k ð�1:21; 1Þ is a point of a

special k-vector line of type SM and belongs to the Wyckoff-

position block 3c. As already commented in Section 3.1, its

star consists of three k vectors, �k = {(�1.21, 1), (1, 0.21), (0.21,

�1.21)}. The site-symmetry group ..m is generated by a

reflection plane that can be identified by direct inspection

among the symmetry operations of (p31m)�. The layer little

co-group, however, is mm2, due to the additional reflection in

the layer plane.

4.2. Guide to the figures

The headline of each Brillouin-zone figure includes the

same information as the k-vector tables: the Hermann–

Mauguin symbol of the layer group, the ITE number and the

symbol of the arithmetic crystal class to which the layer group

belongs. Different figures for the same arithmetic crystal class

are distinguished by the geometric conditions for the lattice.

The corresponding conditions for the lattice parameters of the

reciprocal lattice are indicated after the symbol of the reci-

procal plane group.

The Brillouin zones are two-dimensional objects in the

reciprocal space. The coordinate axes are designated by kx and
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Figure 6
k-Vector table of the layer group p�66m2 (No. 78) as shown on the BCS. The Brillouin-zone diagram is shown in Fig. 8.

Table 2
‘Conventional’ k-vector coefficients kj (i.e. with respect to a basis dual to
the conventional basis of ITA) expressed by the ITA k-vector coefficients
kaj (i.e. referred to the conventional ITA basis of P0) for the different
Bravais lattices in direct space.

Bravais lattice k1 k2

mp, op, tp ka1 ka2

oc 2ka1 2ka2

hp ka1 � ka2 ka2



ky, and the origin with coefficients (0, 0) always coincides with

the centre of the Brillouin zone and is called � (indicated as

GM in the k-vector tables). In the Brillouin-zone figures the

representation domains of LW are compared with the asym-

metric units of ITA. A statement of whether the representa-

tion domain of LW and the asymmetric unit are identical or

not is given below the k-vector table. The asymmetric units are

often not fully contained in the Brillouin zone, but protrude

from it, in particular by flagpoles.

The representatives of the orbits of k-vector symmetry

points or k-vector symmetry lines, as well as the edges of the

representation domains of LW and of the asymmetric units are

brought out in colour (see Fig. 7):

(a) Symmetry points. A representative point of each orbit of

special k-vector points is designated by a circle filled in red

with its label also in red. Note that a point is coloured red only

if it is really a special point, i.e. a point whose layer little co-

group is a supergroup of the little co-groups of the points in its

neighbourhood. In the figures, a point is marked by its label

and an empty circle if it is listed in the corresponding k-vector

table but is not a point of special symmetry. For example,

points listed by LW are not coloured if they form part of a

symmetry line or a symmetry plane. The same designation is

used for the auxiliary points that have been added in order to

facilitate the comparison between the traditional and the

reciprocal plane-group descriptions of the k-vector types.

(b) Symmetry lines. A line is coloured in red with its label

also in red only if it is a special k-vector line, i.e. the layer little

co-groups of the points on the line are supergroups of the little

co-groups of the points in its neighbourhood. The colour of

the line is pink for an edge of the asymmetric unit which is not

a symmetry line. The colour of the line is brown with the name

in red for a line which is a symmetry line as well as an edge of

the asymmetric unit. The edges of the representation domains

are coloured light blue if the representation domain of LW

does not coincide with the asymmetric unit. Edges of the

representation domain and their labels are coloured dark blue

if they are symmetry lines. Flagpoles are always coloured in

red. Coordinate axes, edges of the Brillouin zone or auxiliary

lines are displayed by thin solid black lines.

5. Examples

The relation between the traditional and the reciprocal group

descriptions of the wavevector types is illustrated by the

following examples. The figures and tables included here form

part of the output of the access tool LKVEC.

5.1. k-Vector table and Brillouin zone for the layer group
p62m (No. 78)

The k-vector table and the Brillouin-zone diagram of the

hexagonal layer group p�66m2 (No. 78) are shown in Fig. 6 and

Fig. 8, respectively. The reciprocal lattice of a hexagonal p

lattice is also a hexagonal p lattice and the Brillouin zone is a

hexagon. The conventional basis for the reciprocal lattice has

�� ¼ 60� while the ITA description of hexagonal layer groups

is based on a basis aH, bH with � ¼ 120�. In the Brillouin-zone

diagrams, the axis kx is taken along aH while ky points out in

the direction of aH + bH.

The k vectors of p�66m2 (No. 78) listed by LW (Fig. 6) are

distributed in four k-vector types: (i) the Wyckoff-position

block 1a formed by the GM point, (ii) the block 2b formed by

the K point, (iii) the k-vector point M and the k-vector lines

SM and SN correspond to the block 3c, and (iv) the Wyckoff-

position block 6d formed by the k-vector lines LD and T and

the k-vector planes B and BB. The parameter description of a

k-vector type is given in the last column of the table. Consider

for example the line SM which, according to the ITA
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Figure 8
Brillouin zone and representation domain of LW, and asymmetric unit of
the layer group p�66m2 (No. 78). The reciprocal plane group is ðp31mÞ�

(No. 15). The representation domain of LW is different from the
asymmetric unit.

Figure 7
Colour coding of points and lines applied in the Brillouin-zone diagrams.



description, forms part of the k-vector type that is assigned to

the Wyckoff position 3c with a site-symmetry group ‘..m’. Its

parameter description x, 0: 0 < x < 1/2 indicates that the

independent segment of the line x, 0 in the asymmetric unit is

limited by the special k-vector points � (x = 0) and M (x = 1/2)

with x varying between 0 and 1/2. The parameter descriptions

of the uni-arm regions of the k-vector types are shown in the

last row of the corresponding Wyckoff-position block. For

example, in the block for position 3c, the k-vector line SN is

equivalent (by a threefold rotation) to x; 0 : �1=2< x< 0

which in turn is equivalent (by a translation) to the line

x; 0 : 1=2< x< 1, denoted by SN1. This gives the uni-arm

description M+SM+SN1 for the Wyckoff position 3c in Fig. 6.

As the asymmetric unit and the representation domain do

not coincide, their edges are coloured in pink and light blue,

respectively. It has already been pointed out that k-vector

points and lines are brought out in red only if they are special

k-vector points and lines. For example, the lines T and LD

(indicated as � on Fig. 8) are not coloured as special lines

since they belong to the k-vector type of the Wyckoff-position
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Figure 9
k-Vector tables of the layer groups with arithmetic crystal class m2mc, acute (a > b) and obtuse (a < b) cases, as shown on the BCS. The Brillouin-zone
diagrams are shown in Figs. 10 and 11.



block 6d, and their symmetry coincides with that of the

neighbouring points of the symmetry plane B = [GM K M].

The points GM (indicated as � on Fig. 8) and K, however, are

represented by red circles as they are special k-vector points

(cf. Fig. 6). Likewise, the line SM (indicated as � on Fig. 8) is

coloured in brown because it is an edge of the asymmetric unit

and at the same time is a special k-vector symmetry line. The

k-vector line SN is coloured in dark blue as it is a special

symmetry line along the edge of the representation domain.

As already indicated, the k-vector line SN together with SM

and the point M belong to the special k-vector type of the

Wyckoff-position block 3c, i.e. all these different wavevectors

belong to the same k-vector type. Although M is explicitly

listed by LW as a special k-vector point, it is represented by an

open circle in Fig. 8: in fact, it joins the symmetry lines SM and

SN1 to a continuous line as its little co-group type coincides

with those of the points on the lines.

5.2. k-Vector table and Brillouin zone for the layer group
cm2m (No. 35)

The layer group cm2m (No. 35) is an example of ortho-

rhombic layer groups with a c-centred lattice. It belongs to the

arithmetic crystal class m2mc which also includes the layer

group cm2e (No. 36). The k-vector tables and Brillouin-zone

figures for the layer groups belonging to the arithmetic crystal

class m2mc are given in Fig. 9, and Figs. 10 and 11, respectively.

The k-vector tables show all special wavevectors with their

coefficients and layer little co-groups as specified in Tables 24

and 25 of LW. The wavevector coefficients with respect to the

conventional reciprocal basis, i.e. dual to the conventional

centred basis, are listed in the column under the heading

‘Conventional’ of the k-vector tables. For example, a k-vector

point of the DT line (Fig. 9) with primitive coefficients

ð�1=4; 1=4Þ is described as ð0; 1=2Þ with respect to a basis dual

to the conventional basis of cm2m.

The comparison of the wavevector list of LW and the reci-

procal plane-group description indicates clearly the redun-

dancy of most of the k vectors given by LW. In fact, for the

derivation of a complete set of irreps it is necessary to consider

just two k-vector types: a general one corresponding to the

general Wyckoff position 4b, and the k-vector symmetry line

related to the special Wyckoff position 2a. The large number

of additional k vectors given in the tables of LW are due to two

main reasons:

(a) The more symmetry a layer group has lost compared

with its holosymmetric layer group (layer groups whose point

groups are holohedral), the more k vectors are introduced in

LW. In the case of cm2m, the holosymmetric layer group is

cmmm (No. 47), and the lines DA and FA are examples of

such additional k vectors. In most cases these additional k

vectors can be avoided by extending the parameter range in

the k-vector space.

(b) In the transition from a holosymmetric Lh to a non-

holosymmetric layer group L, the order of the little co-group

of a special k vector in Lh may be reduced in L and, as a result,

the special k vector in Lh may lose its ‘special nature’ in L.

Such k vectors become part of a more general k-vector type

(i.e. assigned to a Wyckoff position of lower site symmetry)

and can be described by an extension of the corresponding

parameter range. Consider, for example, the k-vector points �
and Y in the tables of cm2m. They are special k-vector points

lying on the reflection plane of m010 in the holosymmetric layer

group cmmm, but in (the non-holosymmetric group) cm2m

which does not contain m010 the two points form part of the

special k-vector line with the uni-arm description:

0; y : �1=2< y 	 1=2 (cf. the last row of the 2a Wyckoff-

position block, Fig. 9).

The Brillouin zone of the layer groups of the arithmetic

crystal class m2mc is a non-regular hexagon (cf. Figs. 10 and
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Figure 11
Brillouin zone and representation domain of LW, and asymmetric unit of
the arithmetic crystal class m2mc: layer group cm2m (No. 35) and cm2e
(No. 36) obtuse case (a < b). The reciprocal group is ðc1m1Þ� (No. 5). The
representation domain of LW does not coincide with the asymmetric unit.

Figure 10
Brillouin zone and representation domain of LW, and asymmetric unit of
the arithmetic crystal class m2mc: layer group cm2m (No. 35) and cm2e
(No. 36) acute case (a > b). The reciprocal group is ðc1m1Þ� (No. 5). The
representation domain of LW does not coincide with the asymmetric unit.



11). Depending on the relation between the lattice parameters

a and b, two topologically different Brillouin zones are to be

distinguished: (i) the acute case with a> b and (ii) the obtuse

case with a< b. Because of the reflection �x; y (with normal

kx) of the reciprocal plane group ðc1m1Þ�, the representation

domain is only one half of the hexagon: for example, in the

acute case (Fig. 10) it is the trapezium with vertices

�0; F0; F2; �2 (light blue boundary). The asymmetric unit is

different from the representation domain: it is the rectangle

with vertices J2; J4; V4; V2 (pink boundary), i.e. the points

x; y : 0 	 x 	 1=2; �1=4 	 y 	 1=4. While the representa-

tion domains of the acute and obtuse unit cells have the more

complicated form of a trapezium, the asymmetric units in both

cases have the topologically identical and relatively simple

shape of a rectangle.

As already indicated, the points �, Y2 and S (acute case),

and �, Y and S (obtuse case) are not special k-vector points

but form part of special lines and planes and in the diagrams

they are represented by open circles. The line SM is not a

symmetry line and is represented by a thin black line because

it is located inside the Brillouin zone. The lines DT and DA are

coloured in brown because they are symmetry lines and at the

same time are edges of the asymmetric unit. Parts of DT and

DA are also coloured in red because they correspond to

flagpoles. The k-vector lines F and FA (acute case) are

coloured in dark blue as they are symmetry lines along the

edges of the representation domain.

Because of the special shape of the Brillouin zone and the

representation domain for the acute case (a> b), the special k-

vector line corresponding to the Wyckoff-position block 2a

splits into several segments: the lines DT and DA, located

inside the Brillouin zone, and the lines F and FA (coloured

dark blue) at the border of the Brillouin zone (cf. Figs. 9 and

10). For the description of the end points of the segments, it is

necessary to introduce additional parameters as dt0 and f0

whose values depend on the specific relations between the

lattice parameters. [In fact, the vertices �0 and F0 of the

representation domain have the coordinates �0 :
0; 1=4þ 1=4ða�=b�Þ and F0: 0; 1=4� 1=4ða�=b�Þ.] The use of

flagpoles enables the uni-arm description: the flagpole [J2 Y2]

0; y : 1=4< y< 1=2 is equivalent to the segment [V4 Y]

1=2; y : �1=4< y< 0 and the flagpole [V2 Y4] 0; y :
�1=2< y< � 1=4 is equivalent to the segment [Y J4]

1=2; y : 0< y< 1=4. The uni-arm description of the k-vector

type of the Wyckoff position 2a is shown in the last row of the

Wyckoff-position block and it is formed by the union of the

points GM and Y2, the lines DT, DA, DT1(�FA) and DA1

(�F). Its parameter description (0, y) with y varying in the

range (�1/2, 1/2) coincides with that of the acute case. The

parameter description of the flagpole and its parameter range

with respect to the basis of the reciprocal group are given

below the k-vector table.

6. Conclusions

In this paper we have presented the layer-group crystal-

lographic and wavevector databases of the BCS, together with

the programs which give access to these data. Like the rest of

the programs on the server, these tools are freely available and

can be accessed via user-friendly web interfaces. The programs

GENPOS, WYCKPOS and MAXSUB provide access to

generators/general positions, Wyckoff positions and maximal

subgroup information, respectively.

The wavevector database which contains the Brillouin-zone

figures and wavevector tables for all 80 layer groups was

recently implemented on the BCS. One can access the data-

base through the program LKVEC. In this compilation, the

representation domains and lists of special k vectors in the

tables on layer-group representations by Litvin & Wike (1991)

are compared with the figures and wavevector data derived

applying the reciprocal-space-group approach. This new

database provides a solution to the completeness problem of

layer-group representations by specifying the independent

parameter ranges of general and special k vectors within the

representation domains.
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Phys. A, 31, 3625–3648.

Stokes, H. T. & Hatch, D. M. (1988). Isotropy Subgroups of the 230
Crystallographic Space Groups. Singapore: World Scientific.

Tasci, E. S., de la Flor, G., Orobengoa, D., Capillas, C., Perez-Mato,
J. M. & Aroyo, M. I. (2012). EJP Web Conf. 22, 00009.

Wintgen, G. (1941). Math. Ann. 118, 195–215.
Wondratschek, H. & Müller, U. (2010). Editors. International Tables

for Crystallography, Vol. A1, Symmetry Relations between Space
Groups, 2nd ed. Chichester: John Wiley & Sons.

research papers

Acta Cryst. (2021). A77, 559–571 Gemma de la Flor et al. � Layer groups on the Bilbao Crystallographic Server 571

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ug5030&bbid=BB14

