Broken-helix antiferromagnetic order protecting a crystalline axion insulator phase and exotic surface states in Euln2As2.

S Riberolles¹, T V Trevisan², B Kuthanazhi³, T Heitmann⁴, F Ye⁵, D Johnston⁶, S Bud'ko⁷, D Ryan⁸, P Canfield⁹, A Kreyssig¹⁰, A Vishwanath¹¹, R McQueeney¹², L L Wang¹³

¹Ames Laboratory ²Department of Physics and Astronomy, Ames Laboratory, Iowa State University, ³Department of Physics and Astronomy, Ames Laboratory, Iowa State University, ⁴Missouri Research Reactor, University of Missouri, ⁵No affiliation given, ⁶Department of Physics and Astronomy, Ames Laboratory, Iowa State University, ⁷Department of Physics and Astronomy, Ames Laboratory, Iowa State University, ⁸Physics Department and Centre for the Physics of Materials, McGill University, ⁹Department of Physics and Astronomy, Ames Laboratory, Iowa State University, ¹⁰Department of Physics and Astronomy, Ames Laboratory, Iowa State University, ¹⁰Department of Physics and Astronomy, Harvard University, ¹²Department of Physics and Astronomy, Ames Laboratory, Iowa State University ¹³Department of Physics and Astronomy, Ames Laboratory, Iowa State University simonr@ameslab.gov

EuIn2As2 is theoretically predicted to order in a collinear antiferromagnetic structure that preserves inversion symmetry and induces an axion-insulator state. Combining results from neutron diffraction, symmetry analyses and density functional theory, we show that EuIn2As2 instead exhibits low-symmetry helical antiferromagnetic order which breaks inversion. However, the combination of a 180° rotation and time-reversal symmetry (C2 x T= 2') elements still makes the compound a stoichiometric magnetic topological-crystalline axion insulator. Surfaces normal to the 2' symmetry axes show exotic gapless Dirac cones (DC) which are unpinned to specific time-reversal invariant momenta (TRIM). Gapped DC pinned to TRIM appear on the other surfaces. Dissipationless charge transport arises on the 2' protected surfaces while half-integer quantum anomalous-type conductivity occurs on the other surfaces. We predict that modest values of applied magnetic field can switch between the different surfaces states.