Broken-helix antiferromagnetic order protecting a crystalline axion insulator phase and exotic surface states in EuIn2As2.

S Riberolles1, T V Trevisan2, B Kuthanazhi3, T Heitmann4, F Ye5, D Johnston6, S Bud’ko7, D Ryan8, P Canfield9, A Kreyssig10, A Vishwanath11, R McQueeney12, L L Wang13

1Ames Laboratory 2Department of Physics and Astronomy, Ames Laboratory, Iowa State University, 3Department of Physics and Astronomy, Ames Laboratory, Iowa State University, 4Missouri Research Reactor, University of Missouri, 5No affiliation given, 6Department of Physics and Astronomy, Ames Laboratory, Iowa State University, 7Department of Physics and Astronomy, Ames Laboratory, Iowa State University, 8Physics Department and Centre for the Physics of Materials, McGill University, 9Department of Physics and Astronomy, Ames Laboratory, Iowa State University, 10Department of Physics and Astronomy, Ames Laboratory, Iowa State University, 11Department of Physics and Astronomy, Harvard University, 12Department of Physics and Astronomy, Ames Laboratory, Iowa State University

13Department of Physics and Astronomy, Ames Laboratory, Iowa State University

simonr@ameslab.gov

EuIn2As2 is theoretically predicted to order in a collinear antiferromagnetic structure that preserves inversion symmetry and induces an axion-insulator state. Combining results from neutron diffraction, symmetry analyses and density functional theory, we show that EuIn2As2 instead exhibits low-symmetry helical antiferromagnetic order which breaks inversion. However, the combination of a 180° rotation and time-reversal symmetry (C2 x T= 2’) elements still makes the compound a stoichiometric magnetic topological-crystalline axion insulator. Surfaces normal to the 2’ symmetry axes show exotic gapless Dirac cones (DC) which are unpinned to specific time-reversal invariant momenta (TRIM). Gapped DC pinned to TRIM appear on the other surfaces. Dissipationless charge transport arises on the 2’ protected surfaces while half-integer quantum anomalous-type conductivity occurs on the other surfaces. We predict that modest values of applied magnetic field can switch between the different surfaces states.