Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogen effectors to trigger cell death and confer disease resistance [1]. The Toll/interleukin-1 receptor (TIR) domains of plant NLRs can hydrolyze nicotinamide adenine dinucleotide in its oxidized form (NAD$^+$), which is required for NLR-mediated immune signalling [2, 3]. The Cryo-EM structures of the RPP1 and Roq1 resistosomes show that formation of two asymmetric dimers of TIR domains is critical for the NADase activity [4, 5]. However, the structural mechanism underlying TIR-catalyzed NAD$^+$ cleavage remains unknown. Here, we report a crystal structure of RPP1-TIR in complex with NAD$^+$. The TIR domain forms a tetramer in an asymmetric unit, which is nearly identical with that seen in the RPP1 resistosome. The NAD$^+$ is bound to the catalytic center between the asymmetric head-to-tail TIR homodimers, with the adenosine group contacting one TIR monomer (TIRb) and the phosphate groups and the nicotinamide ribose contacting the other TIR (TIRA). The nicotinamide-ribose bond of NAD$^+$ has been cleaved, and the free nicotinamide stacks against the adenosine group. The carboxylate oxygen of the catalytic Glu158 interacts with the C-2 and C-3 hydroxyl groups of the nicotinamide ribose, and the interactions are highly conserved in the cADPR-bound ADP-ribosyl cyclase CD38. Our study reveals NAD$^+$ recognition mechanism of a plant TIR domain and provides insight into NAD$^+$ hydrolysis catalyzed by the TIR protein.

Keywords: NLR; TIR; NAD$^+$; NADase

Acta Cryst. (2021), A77, C107