Microsymposium

Crystal engineered hybrid ultramicroporous materials for single-step ethylene purification from C₂-CO₂ ternary mixture

Soumya Mukherjee^{1,2}, Michael J. Zaworotko²

¹Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching b. Munich, Germany

²Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland Email of

communicating author: soumya.mukherjee@tum.de

Mankind is now in the "age of gas"[1] and there are urgent needs in gas purification that will likely only be solved by a new generation of physisorbent porous materials that offer reduced cost and superior performance. Engaging the principles of crystal engineering, hybrid ultramicroporous materials, HUMs (pore size < 0.7 nm) [2], by means of combining small pores (< 0.7 nm) with strong electrostatics offer an ideal sorbent platform suited for tight-fit of the target sorbate, resulting in performance benchmarks over the recent years [3, 4]. However, due to narrow pore networks imposing steric restrictions, crystal engineering of modular HUMs on account of organic ligand functionalisation has remained largely elusive.

Moving one step ahead of the synergistic sorbent separation technology [5], herein we address single-step purification of ethylene (C_2H_4) , the highest volume product of the chemical industry, by crystal engineering of two HUMs of formula $[Ni(pyz-NH_2)_2(MF_6)]_n$ (pyz-NH₂ = aminopyrazine, 17; M = Si, Ti), MFSIX-17-Ni [6]. Isostructural pyrazine analogues (SIFSIX-3-Zn [7], SIFSIX-3-Ni [8]) are the benchmark physisorbents for trace carbon capture but are unsuited for acetylene capture. No single physisorbent has the requisite selectivity to purify C₂H₄ from ternary C₂-CO₂ mixtures (C₂H₄/C₂H₂/CO₂) under ambient conditions until now. Indeed, both MFSIX-17-Ni sorbents produce polymer grade ethylene (> 99.95% purity) from a 1:1:1 ternary mixture (Figure 1). Regarding insights for the future, we attribute the observed properties to the unusual binding sites in MFSIX-17-Ni that offer comparable affinity to both CO₂ and C₂H₂, thereby enabling coadsorption of C₂H₂ and CO₂. *In situ* synchrotron x-ray diffraction, *in situ* IR spectroscopy and molecular modelling provide insight into these binding sites and why they differ from those of the pyrazine-linked materials.

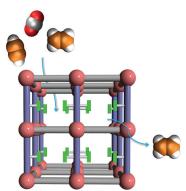


Figure 1. Schematic illustration of MFSIX-17-Ni that exhibits single-step C_2H_4 purification by simulatneous CO_2 and C_2H_2 removal.

Keywords: porous materials; crystal engineering; coordination networks; physisorption; ethylene purification

S.M. acknowledges Prof. Roland A. Fischer for support and the Alexander von Humboldt foundation for funding.

[1] Kitagawa, S. (2015) Angew. Chem. Int. Ed. 54, 10686.

[2] Mukherjee, S. & Zaworotko, M. J. (2020) Trends Chem. 2, 506.

[3] Cui, X., Chen, K., Xing, H., Yang, Q., Krishna, R., Bao, Z., Wu, H., Zhou, W., Dong, X., Han, Y., Li, B., Ren, Q., Zaworotko, M. J. & Chen, B. (2016) Science 353, 141.

[4] Li, B., Cui, X., O'Nolan, D., Wen, H.-M., Jiang, M., Krishna, R., Wu, H., Lin, R.-B., Chen, Y.-S., Yuan, D., Xing, H., Zhou, W., Ren, Q., Qian, G., Zaworotko, M. J. & Chen, B. (2017) Adv. Mater. 29, 1704210.

[5] Chen, K.-J.; Madden, D. G.; Mukherjee, S.; Pham, T.; Forrest, K. A.; Kumar, A.; Space, B.; Kong, J.; Zhang, Q.-Y. & Zaworotko, M. J. (2019). *Science* 366, 241.

[6] Mukherjee, S., Kumar, N., Bezrukov, A. A., Tan, K., Pham, T., Forrest, K. A., Oyekan, K., Qazvini, O. T., Madden, D. G., Space, B. & Zaworotko, M. (2021) Angew. Chem. Int. Ed. 60, 10902.

[7] Nugent, P., Belmabkhout, Y., Burd, S. D., Cairns, A. J., Luebke, R., Forrest, K., Pham, T., Ma, S., Space, B., Wojtas, L., Eddaoudi, M. & Zaworotko, M. J. (2013) *Nature* 495, 80.

[8] Kumar, A., Madden, D. G., Lusi, M., Chen, K.-J., Daniels, E. A., Curtin, T., Perry IV, J. J. & Zaworotko, M. J. (2015) Angew. Chem. Int.Ed. 54, 14372.

Acta Cryst. (2021), A77, C126