Complex A-site magnetism in quadruple perovskite materials

Midori Amano Patino¹, Fabio Denis Romero^{1,2}, Masato Goto¹, Takashi Saito³, Fabio Orlandi⁴, Pascal Manuel⁴, Attila Szabo^{4,5}, Paul Attfield⁵, Yuichi Shimakawa¹

¹ICR, Kyoto University, JP, ²Hakubi Center for Advanced Research, Kyoto University, JP, ³Institute of Materials Structure Science, KEK, JP, ⁴ISIS Neutron and Muon Source, UK, ⁵Department of Physics, University of Oxford, UK, ⁶CSEC, The University of Edinburgh, UK

amanopatino.midoriestefani.3e@kyoto-u.ac.jp

The *A*-site ordered quadruple perovskites $AA'_{3}B_{4}O_{12}$ can accommodate transition metal cations at the square-planar *A*' site (Fig. 1(a)). When the *B* site is occupied by non-magnetic cations, the complex magnetic interactions between the spins at the orthogonallyoriented *A*'-sites can result in a wide variety of non-trivial magnetic orders.[3] For example, *A*'-site Cu²⁺ (*S* = 1/2) spins can align either ferromagnetically (FM) in CaCu₃Sn₄O₁₂ or CaCu₃Ge₄O₁₂ (*T_C* = 10 and 13 K respectively), or antiferromagnetically (AFM) in CaCu₃Ti₄O₁₂ (*T_N* = 25 K) as a result of competition between direct exchange and superexchange interactions (Fig. 1(b)).[3] *A*'-site Mn³⁺ (*S* = 2) in YMn₃Al₄O₁₂ yields a G-type AFM structure (*T_N* = 37 K) and Mn²⁺ (*S* = 5/2) spins in LaMn₃V₄O₁₂ break the symmetry to form a helix-type AFM structure (*T_N* = 44 K, Fig. 1(c)).[4,2]

Figure 1. (a) The quadruple perovskite structure $AA'_{3}B_{4}O_{12}$ with square-coordinated A'-site cations (blue spheres). (b) FM and AFM spin structures of CaCu_{3}B_{4}O_{12} for $B = Ge^{4+}$, Sn⁴⁺ and Ti⁴⁺ (respectively). (c) The helix-type AFM structure of LaMn_{3}V_{4}O_{12}. (d) The triple-*k* AFM spin structure found for CaFe_{3}Ti_{4}O_{12}.

We recently revisited the material CaFe₃Ti₄O₁₂ with S = 2 (Fe²⁺) centres at the *A*'-sites for which initial studies did not find any long range magnetic order down to 4.2 K.[1] This absence of magnetic ordering was notably unconventional. We discovered that the Fe²⁺ (S = 2) spins in CaFe₃Ti₄O₁₂ order in a complex triple-*k* AFM ground state at $T_N = 2.8$ K (Fig. 1(d)). In contrast to most magnetic insulating oxides, the Heisenberg superexchange between first- and second-neighbour spins are minimised by strong easy-axis anisotropy. Further-neighbour interactions yield the resulting spin ground state. On application of magnetic field, a canted FM spin structure is induced. This magnetic ordering is contrastingly different from those previously reported for *A*'-site magnetic quadruple perovskite materials. Furthermore, our results show that exotic long-range magnetically ordered ground states can emerge in largespin systems when the symmetric exchange is quenched.

[1] Reiff, W. M., Leinenweber, K. & Parise, J. (1997a). MRS Proc. 453, 387.

[2] Saito, T., Toyoda, M., Ritter, C., Zhang, S., Oguchi, T., Attfield, J. P. & Shimakawa, Y. (2014b). Phys. Rev. B. 90, 214405.

[3] Shimakawa, Y. & Mizumaki, M. (2014c). J. Phys. Condens. Matter. 26, 473203.

[4] Toyoda, M., Saito, T., Yamauchi, K., Shimakawa, Y. & Oguchi, T. (2015d). Phys. Rev. B. 92, 014420.

Keywords: quadruple perovskite materials; A-site magnetism; spin structures; neutron powder diffraction; high pressure

The authors acknowledge STFC (UK) for provision of neutron beam time at ISIS, UK (WISH, POLARIS). This work was partly supported by Grants-in-Aid for Scientific Research (Nos. 16H02266, 17F17039, 19H05823, 19K15585. 19K23650, and 20H00397) and grants for the IRCCS and the International Collaborative Research Program of Institute for Chemical Research in Kyoto University from MEXT of Japan. This work was also supported by JSPS Core-to-Core Program (A) Advanced Research Networks and by the Yazaki Memorial Foundation for Science and Technology. Support was also provided by EPSRC and the Royal Society, UK.

Acta Cryst. (2021), A77, C151