Formation and ordering of orbital molecules in AV₂O₄ spinels

A. J. Browne^{1,2}, J. P. Attfield²

¹School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom, ²Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3FD, United Kingdom ajb58@st-andrews.ac.uk

Orbital molecules are clusters of transition metal cations formed by orbital- and charge-ordering in systems with direct d-d interactions [1]. Vanadium oxides exhibit a particularly rich variety of orbital molecule states, notably the V-V dimerisation that accompanies the metal-insulator transition in VO₂ [2]. In vanadium oxide spinels such as AIV_2O_4 and GaV_2O_4 the 3D connectivity of V-V nearest neighbours allows larger orbital molecules to form, and these also persist into a hidden high-temperature disordered state [3].

Not all AV₂O₄ spinels have orbital molecule ground states, but as the formation of V-V bonds is associated with marked lattice distortions we have employed synchrotron X-ray powder diffraction and pair-distribution function analysis to determine the structural and electronic requirements for V-V bonding to be stabilised. Studying the $Zn_xGa_{1-x}V_2O_4$ family of materials revealed that, whilst the long-range order of orbital molecules in the ground state of GaV_2O_4 is highly sensitive to A-site substitution, local V-V bonding interactions are stable to x > 0.75 before the ground state of ZnV_2O_4 , which is orbitally ordered but without V-V bonding, emerges [4]. Furthermore, we have found a monoclinic distortion coincident with the reported pressure-driven metal-insulator transition in LiV₂O₄ that suggests it to be the result of orbital-molecule formation [5]. Overall, we have determined that the formation and ordering of orbital molecules bonds in AV₂O₄ spinels is principally dependent on the V-V nearest-neighbour distance (Fig. 1).

Figure 1. Phase diagram illustrating the dependence of V-V bonding in the ground states of AV₂O₄ spinels on the ratio of observed to ideal V-V nearest neighbour distances d/d_{ideal}. n is the average number of 3d electrons per V cation [4].

- [1] Attfield, J. P. (2015). APL Mater. 3, 041510.
- [2] Goodenough, J. B. (1971). J. Solid State Chem. 3, 490.
- [3] Browne, A. J., Kimber, S. A. J. & Attfield, J. P. (2017). Phys. Rev. Mater. 1, 052003(R).
- [4] Browne, A. J. & Attfield, J. P. (2020). Phys. Rev. B 101, 024112.
- [5] Browne, A. J., Pace, E. J., Garbarino, G. & Attfield, J. P. (2020). Phys. Rev. Mater. 4, 015002.

Keywords: vanadium oxide; spinel; orbital molecule; metal-insulator transition

Supported by the ERC, Advanced Grant No. EC339312; access to facilities supported by the STFC.

Acta Cryst. (2021), A77, C271