Microsymposium

Order from disorder in the sarcomere: FATZ forms a fuzzy complex and phase-separated condensates with α-actinin

Antonio Sponga^{1,*}, Joan L. Arolas^{1,*}, Thomas C. Schwarz¹, Cy M. Jeffries², Ariadna Rodriguez Chamorro¹, Julius Kostan¹, Andrea Ghisleni³, Friedel Drepper^{4,5}, Anton Polyansky^{1,6}, Euripedes De Almeida Ribeiro¹, Miriam Pedron¹, Anna Zawadzka-Kazimierczuk⁷, Georg Mlynek¹, Thomas Peterbauer⁸, Pierantonio Doto¹, Claudia Schreiner¹, Eneda Hollerl¹, Borja Mateos¹, Leonhard Geist¹, Georgine Faulkner⁹, Wiktor Kozminski⁷, Dmitri I. Svergun³, Bettina Warscheid^{4,5}, Bojan Zagrovic¹, Mathias Gautel³, Robert Konrat¹, Kristina Djinović-Carugo^{1,10,\$}

¹Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria

²European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany

³King's College London BHF Centre for Research Excellence, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK

⁴Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany

⁵Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany

⁶National Research University Higher School of Economics, Moscow 101000, Russia

⁷Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland

⁸Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Dr. BohrGasse 9, A-1030 Vienna, Austria

⁹Department of Biology, University of Padova, 35100 Padova, Italy

¹⁰Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia

kristina.djinovic@univie.ac.at

In sarcomeres, α -actinin crosslinks actin filaments and anchors them to the Z-disk. FATZ proteins interact with α -actinin and five other core Z-disk proteins, contributing to myofibril assembly and maintenance as a protein interaction hub.

Here we report the first structure and its cellular validation of α -actinin-2 in complex with a Z-disk partner, FATZ-1, which is best described as a conformational ensemble. We show that FATZ-1 forms a tight fuzzy complex with α -actinin-2 and propose a molecular interaction mechanism via main molecular recognition elements and secondary binding sites. The obtained integrative model reveals a polar architecture of the complex which, in combination with FATZ-1 multivalent scaffold function, might organise interaction partners and stabilise α -actinin-2 preferential orientation in the Z-disk.

Finally, we uncover FATZ-1 ability to phase-separate and form biomolecular condensates with α -actinin-2, raising the intriguing question whether FATZ proteins can create an interaction hub for Z-disk proteins through membrane-less compartmentalization during myofibrillogenesis.

Keywords: striated muscle Z-disk; α-actinin; FATZ; protein-protein interaction hub; intrinsic disorder; tight fuzzy complex; liquid-liquid phase separation; integrative structural biology;