Polytelluride Anions in Deficient RETe₂₋₅ Structures – Superstructures and Bonding Analysis

Hagen Poddig, Kati Finzel, Thomas Doert*

Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany

*thomas.doert@tu-dresden.de

The structures of the rare earth metal polychalcogenides $REX_{2-\delta}$ (RE = La-Nd, Sm; Gd-Lu; X = S, Se, Te; $0 \le \delta \le 0.2$) attracted some attention due to their distorted square planar chalcogenide layer and the motives observed within these layers. All structures share a common structural motif of an alternating stacking of puckered [REX] and planar [X] layers (Figure 1a) and are closely related to the ZrSSi structure (space group P4/nmn), which is regarded as their common aristotype [1]. For electronic reasons, the planar [X] layer shows distortions from a perfect square net, forming dianions X_2^{2-} for the non-deficient REX_2 . By reducing the chalcogenide content vacancies are observed within the planar layer, resulting in different superstructures for the $REX_{2-\delta}$ compounds depending on the vacancy concentration. For the sulfides and selenides this results in additional X^{2-} anions along vacancies to maintain a charge balanced layer. The tellurides, however, show different ordering patterns in the planar [Te] layer for the non-deficient $RETe_{2-\delta}$ compounds, but also a tendency to form larger anionic fragments for the deficient $RETe_{2-\delta}$ compounds, as seen for the commensurate structure of GdTe_{1.8}, e.g. [2].

LaTe_{1.94} and LaTe_{1.82} are two examples of different incommensurate crystal structures for RETe_{2- δ} compounds, separated by the number of vacancies in the planar [Te] layer [3, 4]. Both compounds share an average tetragonal unit cell with $a \approx 4.50$ Å and $c \approx 9.17$ Å, based on the structure of their aristotype (Figure 1a). The major difference of these compounds are their respective q vectors, which are compatible with tetragonal symmetry for LaTe_{1.94}, but indicate a loss of the fourfold rotational axis for LaTe_{1.82}, ending up in an orthorhombic superspace group. The [Te] layer of LaTe_{1.94} is mainly composed of single vacancies (point defects), isolated Te²⁻ anions and Te₂²⁻ anions. LaTe_{1.82} is more Te deficient and features adjacent vacancies in addition to Te₃⁴⁻ anions, to compensate for the missing charges (Figure 1b). To evaluate the formation of possible larger anionic fragments, like a bent Te₃²⁻ anion and the influence of additional vacancies to the structure, DFT based ELI-D real space analysis of approximant structures were performed (Figure 1c).

Figure 1. a) Average structure of $LaTe_{1.82}$; b) section of the modulated [Te] layer of $LaTe_{1.82}$; c) orthoslices of ELI-D of the Te layer of $LaTe_{1.82}$ with isocontour lines based on a commensurate approximant.

[1] Doert, T. & Müller, C. J. (2016). Reference Module in Chemistry, *Molecular Sciences and Chemical Engineering*, Elsevier.
[2] Poddig, H., Donath, T., Gebauer, P., Finzel, K., Kohout, M., Wu, Y., Schmidt, P. & Doert, T. (2018). *Z. Anorg. Allg. Chem.* 644, 1886–1896.
[3] Poddig, H., Finzel, K., Doert, T. (2020) *Acta Crystallogr. Sect. C* 76, 530–540.

[4] Poddig, H., Doert, T. (2020), Acta Crystallogr. Sect. B, 76, 1092-1099.

Keywords: Polytellurides; rare earth metals; superstructures; incommensurate structures; bonding analysis

Acta Cryst. (2021), A77, C398