Magnetic phase diagram of the high-temperature spiral magnet YBaCuFeO$_5$

J. Lyu1, T. Shang1,2, M. Morin1,3, M. T. Fernández-Díaz4, M. Medarde1

1Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland, 2Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China, 3Excelsus Structural Solutions (Swiss) AG, PARK innovAARE, 5234 Villigen, Switzerland, 4Institut Laue Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble CEDEX 9, France

ejike.lyu@psi.ch

Frustrated magnets with spiral magnetic phases are currently being intensively studied owing to their ability for inducing ferroelectricity. This could potentially be exploited in spintronics and low power memories devices.[1-2] However, the low magnetic order temperatures (typically < 100 K) in most of frustrated magnets greatly restrict their fields of application. One of the most notable exceptions are Cu/Fe-based layered perovskites, featuring magnetic spiral phases whose ordering temperatures can be continuously tuned far beyond RT.[3-5]. However, the influence of magnetic field on the magnetic structures especially spiral phases, imperative for further cross-control of the magnetic and ferroelectric orders, is barely known.

Here, we report a comprehensive description of the evolution of magnetic order in the layered perovskite YBaCuFeO$_5$ under the application of magnetic fields up to 9.0 T and at temperatures between 1.5 K and 300 K. Using bulk magnetization measurements and neutron powder diffraction we reveal the existence of a new incommensurate magnetic phase with a weak ferromagnetic component stable at low magnetic fields. Moreover, we observe a field-induced spin reorientation in the collinear phase. The resulting H-T phase diagram of YBaCuFeO$_5$ will be discussed, with emphasis in the magnetic phases with the largest potential to display strong magnetolectric effects. [6]

Figure 1. Left: Crystal structure of YBaCuFeO$_5$ showing the Cu/Fe disorder in the bipyramidal sites. Magnetic structure of the incommensurate spiral phase (Middle) and the commensurate collinear phase (Right).

Keywords: YBaCuFeO$_5$; High-temperature Magnetic Spiral; Magnetic Phase Diagram; Multiferroic

Acta Cryst. (2021), A77, C407