Temperature dependent structural studies of incommensurately modulated Rb$_2$ZnCl$_4$

S. R. Kotla1, A. M. Schaller1, T. Rekis1, S. Ramakrishnan1, J. Bao1, L. Noohinejad2, S. van Smaalen1, G. de Laitre3, M. de Boissieu3

1Laboratory of Crystallography, University of Bayreuth, 95447 Bayreuth, Germany,
2DESY, Notkestrasse 85, 22607 Hamburg, Germany,
3Univ. Grenoble Alpes, CNRS, Grenoble INP, BP 75, 38402 Saint Martin d'Hères Cedex, France.

smash@uni-bayreuth.de

Rubidium tetrachloro zinicate (Rb$_2$ZnCl$_4$) belongs to A$_2$BX$_4$ crystal family with the β-K$_2$SO$_4$ structure type [1], which are known for their ferroelectric properties and successive phase transitions. Rb$_2$ZnCl$_4$ has an orthorhombic crystal structure with Pmcn as its space group in its normal phase and goes from a normal disordered structure to incommensurately modulated structure along its c-axis at 303 K, then goes to a commensurately modulated structure around 192 K (T_c) [2]. Here we report the temperature dependent crystal structure of Rb$_2$ZnCl$_4$ in an attempt to elucidate the relation between structure and physical properties of this compound.

In the incommensurate phase the modulation wave vector is given by $q = (1/3 - \delta)$ c*, where δ is the parameter which changes with temperature, it decreases with decrease in temperature and finally becomes zero at the lock-in phase transition temperature T_c [3]. In Rb$_2$ZnCl$_4$ the modulation wave function changes from a sinusoidal harmonic function just below the incommensurate phase transition (303K) to a strongly anharmonic function near the lock-in phase transition at T_c. The modulation function in the incommensurate phase of Rb$_2$ZnCl$_4$ is not only given by displacive modulation but also modulations of atomic displacement parameters (ADPs) and anharmonic ADPs [4-5]. The structural analysis together with the lattice dynamics studies help us to understand the relation between aperiodic order and physical properties.

Keywords: Aperiodic crystals; Incommensurate structures; modulation wavefunction; lock-in transition; single crystal XRD

High quality single crystals of Rb$_2$ZnCl$_4$ have been grown by Ms. Kerstin Küspert at the Laboratory of crystallography. The project is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 406658237.