Designing Composite Spin Chain Structures Built up of Dimeric and Trimeric Polyhedral Units: The oxides A_{1+y}[(Mn_{1-x}Cox)_{1-z}◊_z]O₃ (A = Ca, Sr; x = 3/8)

O. Pérez¹, V. Caignaert¹, B. Raveau¹, V. Hardy¹, N. Sakly¹, Md. Motin Seikh²

¹Laboratoire CRISMAT, UMR 6508 CNRS-ENSICAEN, University of Caen, Bd du Maréchal Juin, 14050 Caen Cedex, France

²Department of Chemistry, Visva-Bharati University, Santiniketan 731235, West Bengal, India

olivier.perez@ensicaen.fr

Spin chain oxides containing cobalt and manganese whose structure is closely related to the 2H hexagonal perovskite [1-5] offer a very attractive field for the investigation of magnetic and multiferroic properties. The structure of the prototypic one-dimensional manganate and cobaltate $Sr_4Mn_2CoO_9$ consists of chains of face-sharing MnO₆ octahedra and trigonal CoO₆ prisms. According to the very important study performed by Perez-Mato et al [2], these spin chain oxides can be described as a composite 2H hexagonal perovskite family $A_{1+x}(Mn_1-Co_x)O_3$. Recently the possibility of extra oxygen incorporation during synthesis has been evidenced leading to a large family aperiodic chain structures [6] expressed by the simple formal formula $Sr_{1+x}(Mn_1-xCo_x)O_{3+\delta}$; it induces a decrease of the proportion of the number of trigonal prismatic sites (N_P) with respect to the octahedral sites (N_O) within the chains as δ increases and concomitantly the formation of cobalt vacancies on the trigonal prismatic sites. Therefore the structural formula of these oxides must be expressed as $Sr_{1+y}[(Mn_1-xCo_x)_{1-z}\phi_z]O_3$.]

The air-synthesized oxide x = 3/8-Sr_{1+x}(Mn_{1-x}Co_x)O_{3+ $\delta}$ is of great interest, since by decreasing the oxygen over stoichiometry to δ =0, one should obtain the oxide "Sr₁₁Mn₅Co₃O₂₄"(x = y, z = 0) expected to be built up of trimeric and dimeric polyhedral units according to the sequence [Sr₄Mn₂CoO₉]₂.[Sr₃CoMnO₆]. Such an oxide containing exclusively strontium was never synthesized in air due to the partial oxidation of Co²⁺ into Co³⁺, imposing δ >0. We then have investigated the substitution of calcium for strontium in the pure Sr-phase x = 3/8 (δ _0.09). The objective was to design composite structures built up of trimeric and dimeric units by decreasing δ down to zero through Ca for Sr substitution in order to finally obtain the stoichiometric oxide A_{11} Mn₅Co₃O₂₄ (A = Sr,Ca). We report herein on a series of $A_{11/8}$ (Mn_{5/8}Co_{3/8})O_{3+ δ} oxides with composite structures, commensurate or incommensurate, built up of trimeric M₃O₉ and dimeric M₂O₆ units (M = Mn, Co, ₀) with cationic vacancies on the trigonal prismatic sites. We also show the possibility to synthesize the quasi commensurate stoichiometric composite Sr_{4.2}Ca_{6.8}[Mn₂COO₉]₂.[MnCoO₆] (δ = 0.002).}

- [1] J. Darriet, M.A. Subramanian, J. Mater. Chem. 5 (1995) 543-552.
- [2] J.M. Perez-Mato, M. Zakhour-Nakhl, F. Weill, J. Darriet, J. Mater. Chem. 9 (1999) 2795-2807.
- [3] K. Boulahya, M. Parras, J.M. Gonzalez-Calbet, J. Solid State Chem. 145 (1999) 116-127.
- [4] K.E. Stitzer, J. Darriet, H.-C. zur Loye, Curr. Opin. Solid State Mater. Sci. 5 (2001) 535-544.
- [5] H.-C. zur Loye, Q. Zhao, D.E. Bugaris, W.M. Chance, Cryst. Eng. Commun. 14 (2012) 23-39.
- [6] Caignaert V, Perez O, Boullay P, Seikh MM, Sakly N, Hardy V, Raveau B, J. of Mater Chem. C 8 (2020) 14559-14569

Keywords: Composite, aperiodicity, non stoichiometry