Crystal growth and characterisation of organic-inorganic lead-free 2D double perovskite for application in radiation sensing

V. Murgulov¹, C. Schweinle², M. Daub^{1,2}, H. Hillebrecht^{1,2}, M. Fiederle¹

¹Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Germany ²Institute of Inorganic and Analytical Chemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Germany

valeria.murgulov@fmf.uni-freiburg.de

Single crystals of lead-free organic-inorganic 2D (BA)₂CsAgBiBr₇ with double perovskite structure (monoclinic, P_{21}/m) exhibit a significant potential for X-ray sensing [1]. This stems from their heavy elements constituting the perovskite octahedral network that is in an alternating arrangement with the barrier layer of organic BA⁺ cations, consequently producing desirable electrical properties. In this study, several yellow-coloured single crystals of (BA)₂CsAgBiBr₇ were grown from a low-temperature solution [2]. All crystals are characterised by growth/dissolution features and defects (Figure 1). The phase purity and crystallinity of all samples have been verified from the powder XRD data. High ordering of Ag⁺ and Bi³⁺ octahedra cations is apparent from the XRD patterns for single crystals, which depict peaks arising from the {001} plane.

Results from electrical characterisation of the single crystals of $(BA)_2CsAgBiBr_7$ reveal high resistivity $(10^{11} \Omega cm)$ and low density of trap states $(10^{11}-10^{12} \text{ cm}^{-3})$, which are comparable to those published in literature [1]. This implies that the samples synthesised in this study also satisfy requirements for radiation sensors.

Figure 1. The top crystal surface of the sample $(BA)_2CsAgBiBr_7_Exp1$ (top right corner, 4 x 4 x 0.75 mm³) is characterised by irregular growth /dissolution features (image on the left made in reflected light, 100 µm scale bar) and defects such as twinning planes at 90° (image on the right made in transmitted light).

Xu, Z., Liu, X., Li, Y., Liu, X., Yang, T., Ji, C., Han, S., Xu, Y., Luo, J., & Sun, Z. (2019). Angew. Chem. Int. Ed. 58, 15757.
Connor, B. A., Leppert, L., Smith, M. D., Neaton, J.B., & Karunadasa, H. I. (2018). J. Am. Chem. Soc. 140, 5235.

Keywords: 2D layered single crystals, double perovskite, crystal growth, crystal structure, electrical properties