Crystal structure of a new polymorph of Sr₂TiO₄ with tetrahedral titanium

D. Pulmannova, C. Besnard, E. Giannini

University of Geneva, Quai Ernest-Ansermet 24, 1205 Geneva, Switzerland

dorota.pulmannova@unige.ch

 Sr_2TiO_4 , first member of the Ruddlesden-Popper series $Sr_{n+1}Ti_nO_{3n+1}$, has been long known to undergo a phase transition at 1550 °C. This transition makes the growth of single crystals of this material highly challenging, because it usually breaks the crystal into a periodic array of uneven lamellae. While the low temperature tetragonal phase is widely studied due to its close connection to the famous perovskite SrTiO₃, there is little information about the high temperature α -phase, except for an unindexed powder pattern by Drys&Trzebiatowski [1].

We stabilized the high-temperature α -Sr₂TiO₄ crystals by rapid cooling of the incongruent melt from above the liquidus temperature. The α -phase crystallizes in the orthorhombic Pna2₁ group with lattice parameters a=14.2901(5) Å b=5.8729(2) Å c=10.0872(3) Å and is isostructural to the orthorhombic forms of Sr₂VO₄ and Sr₂CrO₄ (which belong to the β -K₂SO₄ structure type). Its structure is formed by a complicated framework of large SrO_x polyhedra with tetrahedral cavities occupied by the transition metal. The tetrahedral coordination of Ti^{IV} makes the α -Sr₂TiO₄ quite a rare case among titanate compounds, the only other known example being the barium orthotitanate Ba₂TiO₄ [2].

However, whereas in Ba_2TiO_4 the coordination is tetrahedral in both high- and low-temperature polymorphs and the topotactic relation between the two is known, in the case of Sr_2TiO_4 a transition occurs to the layered Ruddlesden-Popper structure with octahedral titanium coordination.

In this work, we report for the first time the crystal structure of the high-temperature α -phase of Sr₂TiO₄. We elucidate the structural differences between the related compounds and discuss possible mechanism driving the structural transition.

[1] Drys, M., Trzebiatowski, W. (1957). Roczniki Chemii. 31, 489.

[2] Gunter, J., Jameson, G. (1984). Acta Cryst. C40, 207.

Keywords: strontium titanate; strontium orthotitanate; tetrahedral titanium coordination; reconstructive phase transition