Stoichiometric molecular hydration of interstitial sites in a close-packed ionic lattice

Chris Ling¹, Frederick Marlton¹, Alex Brown¹, Andrey Maljuk², Bernd Büchner², William Lewis¹, Matthew Sale¹, Ian Luck¹

¹The University of Sydney, Sydney, Australia; ²IFW-Dresden, Dresden, Germany;

chris.ling@sydney.edu.au

The hexagonal perovskite-type oxide $6H-Ba_4Ta_2O_9$ undergoes an unconventional symmetry lowering lattice distortion when cooled below 1100 K in the presence of atmospheric water. This temperature corresponds to the onset of hydration, which reaches a stoichiometric value $6H-Ba_4Ta_2O_9$.¹/₂H₂O by ~500 K. In the study to be presented here, we used a combination of diffraction, *ab initio* calculations and spectroscopy to show that both processes are due to the incorporation of intact water molecules into the closepacked ionic lattice. The presence of very large Ba^{2+} cations in octahedral interstitial sites (perovskite *B* sites) forces adjacent vacant octahedral interstitial sites to also expand, making room for occupation by water molecules, while also destabilizing the structure in a way that cannot be adequately addressed by conventional symmetry-lowering pathways on cooling. This gives rise to a synergistic hydration-distortion mechanism, which, to the best of our knowledge, is unique among close-packed ionic compounds. We will discuss the implications of our model for protonic and oxide ionic conductivity in hexagonal perovskites as fuel-cell membrane materials, and for earth sciences given the possibility that more examples could exist under high-temperature and pressure conditions.

Keywords: Hydration, ionic conduction, hexagonal perovskite, neutron diffraction, DFT