Poster Session

Experimental Electron Density Distribution and QTAIM Topological Analysis for the Perovskite Mineral: Sulphohalite – Na6(SO4)2FCI

A. Wróbel, R. Gajda, K. Woźniak

Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Poland

am.wrobel2@student.uw.edu.pl

A quantitative experimental charge density study was undertaken for the double antiperovskite mineral – *sulphohalite* [Na₆(SO₄)₂FCl]. *High*-resolution X-ray diffraction data was collected employing AgKa radiation ($\lambda = 0.56087$ Å) to a resolution of 0.3941 Å at 100K. *Electron density* (ED) distribution – $\rho(\mathbf{r})$ was modelled, in compliance with the Hansen-Coppens formalism [1], by consecutive least-square multipolar refinements. Based on such experimental distribution of charge, QTAIM *topological analysis* [2] was undertaken. Full-volume property integration over delineated *atomic basins* (AB's) yielded their appertaining charges [Q_{AB-CI} = -0.836e⁻; Q_{AB-S} = 03.168e⁻; Q_{AB-M} = 0.910e⁻; Q_{AB-F} = -1.334e⁻; and Q_{AB-O} = -1.227e⁻] and volumes [V_{AB-CI} = 38.920Å³; V_{AB-S} = 5.656Å³; V_{AB-Na} = 7.931Å³; V_{AB-F} = 14.178 Å³ and V_{AB-O} = 17.416 Å³]. The percentage of unaccounted electrons and volume per unit cell was respectively 0.010% and 0.406%. Within the uncertainty range of performed numerical integration, such percentages can be unheeded. A total of 6 ·BCP's [$\nabla^2\rho(\mathbf{r}_{CI-S}$) = 0.120e⁻·Å⁻⁵; $\nabla^2\rho(\mathbf{r}_{CI-M})$ = 0.575e⁻·Å⁻⁵; $\nabla^2\rho(\mathbf{r}_{S-O})$ = -31.00e⁻·Å⁻⁵ and $\nabla^2\rho(\mathbf{r}_{III,IV})$ = 0.401e⁻·Å⁻⁵; $\nabla^2\rho(\mathbf{r}_{II})$ = 0.332e⁻·Å⁻⁵ and $\nabla^2\rho(\mathbf{r}_{III,IV})$ = 0.401e⁻·Å⁻⁵; were identified (Figure 1). Hence, Morse's 'characteristic set' condition was met [3]. The study of primary bundles (PB's), as proposed by Pendás[4], revealed the interconnection between AB's and CP's onto basins of attraction or basins of repulsion. The nature of interatomic interactions was assessed through the dichotomous classification [3]. The S–O contact was acknowledged as a *covalent* with a *shared-shell*. The remaining contacts we

Figure 1. Gradient vector field of ED, drawn for two planes in the crystal of sulphohalite.

- Bond CP's -(3, -1), Ring CP's -(3, +1) and Cage CP's -(3, -3) are respectively denoted by blue, green, and magenta circles. Interatomic bonding is presented by black lines, whereas bonding paths are depicted by black dashed lines.
- Hansen, N. K.; Coppens, P. Testing Aspherical Atom Refinements on Small-Molecule Data Sets. Acta Crystallographica Section A 1978, 34 (6), 909–921. https://doi.org/10.1107/S0567739478001886.
- [2] Bader, R. Atoms in Molecules: A Quantum Theory.; Oxford University Press: USA, 1994.
- [3] Chemical Bonding in Crystals: New Directions. Zeitschrift f
 ür Kristallographie Crystalline Materials 2005, 220 (5–6), 399–457. https://doi.org/doi:10.1524/zkri.220.5.399.65073.
- [4] Martín Pendás, A.; Costales, A.; Luaña, V. Ions in Crystals: The Topology of the Electron Density in Ionic Materials. I. Fundamentals. Phys. Rev. B 1997, 55 (7), 4275–4284. https://doi.org/10.1103/PhysRevB.55.4275.

Keywords: High-resolution X-ray Diffraction; Experimental Electron Density Distribution; Minerals; QTAIM; Perovskites.

This research was supported by the Polish National Science Centre (NCN) (grant agreement No. UMO-2019/33/B/ST10/02671) and was carried out at the Biological and Chemical Research Centre, University of Warsaw, established within the project co-financed by European Union from the European Regional Development Fund under the Operational Programme Innovative Economy, 2007 – 2013.

Acta Cryst. (2021), A77, C757