Why the knowledge of the anharmonicity is important for the structural processes that govern the orthorhombic/tetragonal phase transformation in chlorine-substituted MAPbl₃

Götz Schuck¹, Daniel M. Többens¹, Tong Sy Tien², Susan Schorr^{1,3}

¹Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany, ²University of Fire Prevention and Fighting, Vietnam, ³Freie Universität Berlin, Germany

goetz.schuck@helmholtz-berlin.de

The anharmonicity of the lead-halide bond influences the optoelectronic properties of hybrid perovskites. Since many optoelectronic properties undergo large changes during the orthorhombic/tetragonal phase transformation, this temperature range is the focus of our investigation. The aim of this study was to determine the anharmonicity of the lead-halide bond in chlorine-substituted MAPbI₃ by combining temperature-dependent synchrotron XRD and Pb L3-edge EXAFS measurements from 20 K to 265 K. The partial negative thermal expansion (NTE) behaviour of the [PbX₆] octahedra observed with XRD is related to the negative tension effects of the lead-halide bond in MAPbI₃ and MAPbI_{2.94}Cl_{0.06} observed with EXAFS, whereas in MAPbCl₃ the positive bond expansion towards higher temperatures is predominant. The experimentally observed EXAFS parameters showed clear effects at 100 % chlorine substitution. The lead-halide bond in the orthorhombic phase of MAPbCl₃ was much less anharmonic than in pure MAPbI₃. However, after the phase transition to the room temperature phase, MAPbCl₃ showed much greater anharmonicity, indicating a significantly changed state of the lead-chlorine bond. At 2 % chlorine substitution, smaller changes became apparent compared to MAPbI₃. But significant differences between MAPbI₃ and MAPbI_{2.94}Cl_{0.06} could be observed in the degree of anisotropy γ and the asymmetry parameter C₃/C₂^{3/2}. By determining the structural parameters that are required for the conversion of the effective force constants k₀ and k₃, into the Morse potential parameters α and D, we found our results to be in conformance with other experimental findings.

Keywords: EXAFS; anharmonicity; halide perovskite; photovoltaics

This work was made possible by allocation of synchrotron radiation beamtime at BESSY II, Helmholtz-Zentrum Berlin.