Dynamics of multi-domain protein ER-60 revealed by small angle X-ray scattering data and molecular dynamics simulations

Masahiro Shimizu, Aya Okuda, Ken Morishima, Nobuhiro Sato, Rintaro Inoue, Reiko Urade, Masaaki Sugiyama

Institute for Integrative Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, Japan

Shimizu.masahiro.3n@kyoto-u.ac.jp.

Small-angle X-ray scattering (SAXS) profile of a biomolecule reflects its meso- and nano- scale structure. Since the profile is contributed by all molecules in solution, the SAXS is a powerful method to study structural ensemble of the protein. We are establishing methods to elucidate structural ensemble of proteins at near-atomic resolution by combining SAXS and molecular dynamics simulations.

In this study we focused on structure and dynamics of multi-domain protein ER-60. ER-60 is a member of Protein disulfide isomerase family, which promote correct protein folding via isomerization of disulfide bonds. The ER-60 is composed four domains, **a**, **b**, **b**', and **a**'. Both **a** and **a**' domain have active Cys-Gly-His-Cys (CGHC) motif [1]. In each CGHC motif, two cysteines take either S-S (oxidized) or -SH (reduced) states. We have obtained SAXS profiles of ER-60 with both all CGHC oxidized (oxidized ER-60) and CGHC reduced (reduced ER-60). Our SAXS profiles did not match known crystal structure, and the SAXS profiles of the two states were slightly different from each other [2].

To investigate behaviour of ER-60 in solution, we performed multi-scale molecular dynamics simulations. First, fluctuation of each domain was examined by atomistic MD simulations. The fluctuation around active motif differed between oxidized and reduced ER-60, but no significant difference was seen in the other regions. It suggests that the difference of SAXS profile between two states is not due to the difference of intra-domain dynamics.

Second, motion of full-length ER-60 was examined by coarse-grained molecular dynamics (CGMD) simulations with CG Martini model [3], where each amino acid is represented by one to six particles. We have successfully obtained simulation trajectory which reproduce our SAXS profile. From the simulation trajectory, we analysed inter-domain interface and frequency of binding/dissociation of each pair of the four domains.

Third, structural difference between oxidized ER-60 and reduced ER-60 was studied by coarser CGMD simulations with AICG2+ model [4], which enable extensive structural-sampling. We compared simulation snapshots which reproduce SAXS profile of oxidized ER-60 with simulation snapshots which reproduce that of reduced ER-60. Our simulation showed that the difference of two SAXS profiles reflect the difference in position of \mathbf{a} ' domain [2].

[1] Kozlov, G., Määttänen, P., Tomas, D. Y. & Gehring, K. (2010). FEBS J. 277, 3924.

[2] Okuda, A., Shimizu, M., Morishima, K., Inoue, R., Sato, N., Urade, R. & Sugiyama, M. (2021). Sci. Rep. 11, 5655.

[3] Souza, P. C. T., Alessandri, R., Barnoud, J., Thallmair, S., Faustino, I., Grünewald, F., Patmanidis, I. et al. (2021). Nat. Methods 18, 382.

[4] Li, W., Wang, W. & Takada, S. (2014). Proc. Natl. Acad. Sci. USA 111 (29), 11550.

Keywords: small angle X-ray scattering; multi-domain protein; ER-60; molecular dynamics simulation