Ferroelectricity driven by ' A ' and ' B ' site off-centered displacements in cubic phase with Pm-3m space group

Digvijay Nath Dubey ${ }^{1}$, Gurvinderjit Sing ${ }^{2}$, and Saurabh Tripathi ${ }^{1}$
${ }^{l}$ Department of Physics, Indian Institute of Technology (BHU), Varanasi, 221005, India
${ }^{2}$ Laser and Functional Materials Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013, India

digvijayndubey.rs.phy17@itbhu.ac.in
The present work is based on the development of a new lead-free perovskite system $\left(\mathrm{Ba}_{1-\mathrm{x}} \mathrm{Ca}_{\mathrm{x}}\right)\left(\mathrm{Sn}_{0.11} \mathrm{Zr}_{0.05} \mathrm{Ti}_{0.84}\right) \mathrm{O}_{3}(\mathrm{BCSZTx}) ; 0 \leq \mathrm{x} \leq$ 0.20 , exhibiting ferroelectricity in an average cubic structure [1]. The x-ray diffraction measurements have shown a simple cubic phase with Pm-3m space group for all the compositions. Despite having a centrosymmetric cubic phase, a slim hysteresis loop has been observed via PE loop measurements. Raman spectroscopic measurements have revealed the presence of local ordering in the macroscopically cubic matrix, corresponding to ' A ' and ' B ' sites. The cooperative behaviour of ' A ' and ' B ' site off-centered (local) atoms leading to microscopic polar symmetry in the macroscopically cubic matrix is held responsible for the observed ferroelectricity [2-4]. Owing to the aforementioned contrapositive behaviour, these ceramics have shown a diffuse dielectric phase transition with relaxor nature and thus exhibit a high value of dielectric constant. Eventually, we have clearly observed a decisive role of Ca^{2+} dopant at 'A' site in BCSZTx ceramic system leading to the enhancement in the ferroelectric and dielectric properties. The presence of a slim hysteresis loop along with broad and diffuse dielectric nature makes these ceramics a potential candidate for energy storage applications.
[1] Y. Yao, C. Zhou, D. Lv, D. Wang, H. Wu, Y. Yang, and X. Ren, EPL (Europhysics Letters) 98, 27008
(2012).
[2] D. Fu, M. Itoh, S.-y. Koshihara, T. Kosugi, and S. Tsuneyuki, Physical review letters 100, 227601 (2008).
[3] A. K. Singh, D. N. Dubey, G. Singh, and S. Tripathi, EPL (Europhysics Letters) 130, 36002 (2020). [4] V. Buscaglia, S. Tripathi, V. Petkov, M. Dapiaggi, M. Deluca, A. Gajovic, and Y. Ren, Journal of Physics: Condensed Matter 26, 065901 (2014).

Keywords: x-ray diffraction, average cubic, local ordering, ferroelectric and dielectric properties.

