HoF(OH)₂: A fluoride-containing holmium(III) hydroxide with UCI₃-type crystal structure

F. C. Goerigk and Th. Schleid

University of Stuttgart, Institute for Inorganic Chemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany

schleid@iac.uni-stuttgart.de

Rod-shaped single crystals of HoF(OH)₂ could be synthesized from Ho₂O₃ and HoF₃ using a high-pressure hydrothermal synthesis route in order to obtain crystalline holmium fluoride oxide (HoFO). The reaction was performed in a gold capsule filled with the starting materials and about 15 vol-% of demineralized water to provide suitable conditions. The gold capsule was sealed by coldwelding and placed into a rock-salt pressure cell. Using an end-loaded piston-cylinder high-pressure apparatus deriving from the *Boyd* and *England* design, the cell pressure was dwelled on 500 °C at 10.5 kbar for five days [1]. After quenching to room temperature, small pale-yellow crystals were isolated and investigated using single-crystal X-ray diffractometry. The hexagonal unit cell of the measured crystals showed a noticeable deviation regarding the detected axes and density, when compared to UCl₃-type Ho(OH)₃ ($a \approx$ 626.6 pm, $c \approx 355.3$ pm, $\rho_X = 5.94$ g/cm³ [2]; our results for HoF(OH)₂: $a \approx 603.3$ pm, $c \approx 356.8$ pm, $\rho_X = 6.44$ g/cm³). Therefore, it was concluded that a mixed F⁻/OH⁻ anion site is present, leading to the composition HoF(OH)₂. The F⁻-to-OH⁻ ratio of 1:2 is plausible, when the molar volumes of UCl₃-type Ho(OH)₃ ($V_m = 36.38$ cm³/mol) [2] and HoF(OH)₂ ($V_m = 33.86$ cm³/mol) are compared with the one of YF₃-type HoF₃ (29.03 cm³/mol; d(Ho–F) = 229 – 232 pm plus 250 pm for C.N. = 8+1) [3].

The UCl₃-type crystal structure of HoF(OH)₂ (space group: $P6_3/m$) features one crystallographic position for each ion. Ho³⁺ is surrounded by nine anions in the shape of a tricapped trigonal prism [HoF₃(OH)₆]⁶⁻ (Figure 1) with interatomic distances of d(Ho-F/OH) = 237 pm for the prism anions and d(Ho-F/OH) = 234 pm for the capping ones. This finding contrasts with the crystal structure of Ho(OH)₃, where the bond lengths to the prism corners are with 242 pm almost 3 pm shorter than those to the caps [2].

To investigate the mixed occupation of the anion site with OH^- and F^- anions, wavelength-dispersive X-ray spectrometry (WDXS) was performed for the measured crystal. The spectrum clearly showed the presence of both the $O-K_{\alpha}$ and the $F-K_{\alpha}$ emission line in relevant intensity with a F:O ratio of 35:65 and thus confirmed the structure model derived from the single-crystal X-ray diffraction data.

Figure 1. Mixed-anionic coordination sphere of the Ho^{3+} cations in the UCl₃-type crystal structure of $HoF(OH)_2$ as tricapped trigonal prism $[HoF_3(OH_6)]^{6-}$ with interatomic distances d(Ho-F/OH) in pm.

[1] F. R. Boyd, J. L. England, (1960) J. Geophys. Res. 65, 741.

[2] G. W. Beall, W. O. Milligan, H. A. Wolcott, (1977) J. Inorg. Nucl. Chem. 39, 65.

[3] M. Piotrowski, H. Ptasiewicz-Bak, A. Murasik, (1979) Phys. Status Solidi A 55, 163.

Keywords: crystal structure; rare-earth metals; holmium; fluorides, hydroxides

Acta Cryst. (2021), A77, C1021